STAR Upgrade Overview

Future directions in High Energy QCD, Oct. 2011 RIKEN

NATIONAL LABORATORY

Outline

- Unanswered/open questions at RHIC:
 - STAR plans and strategies on how to address them in the context of upgrades in the next decade
- Extending Physics reach with new lepton probe: eSTAR at eRHIC

Main physics themes at RHIC/STAR for the first decade and continuing...

- Phases of QCD matter: properties of sQGP
- Spin structure of nucleon
- Properties of cold nuclear matter

Great discoveries and new understandings, yet with remained and newly opened questions...

Key unanswered questions I What is the nature of QCD matter at the extremes

- What are the properties of the strongly-coupled system produced at RHIC, and how does it thermalize?
- Where is the QCD critical point and the associated first-order phase transition line?
- Are the interactions of energetic partons with QCD matter characterized by weak or strong coupling? What is the detailed mechanism for partonic energy loss?
- Can we strengthen current evidence for novel symmetries in QCD matter and open new avenues?
- What other exotic particles are produced at RHIC?

Key unanswered questions II What is the partonic structure of nucleons and nuclei?

- What is the partonic spin structure of the proton?
- What are the dynamical origins of spin-dependent interactions in hadronic collisions?
- What is the nature of the initial state in nuclear collisions? Nuclear structure at high-energy (small-x)?

STAR strategies to answer these questions I

- Hot QCD matter: high luminosity RHIC II (fb⁻¹ equivalent)
 - Heavy Flavor Tracker: precision charm and beauty
 - Muon Telescope Detector: $e+\mu$ and $\mu+\mu$ at mid-rapidity
 - Trigger and DAQ upgrades to make full use of luminosity
 - Full use of the flexibility of RHIC (U+U,...)
- Phase structure of QCD matter: energy scan
 - Analysis of Phase I Completed in Runs 10,11 followed by targeted fine-scale energy scan
 - Electron cooling if lowest beam energies most promising

STAR strategies to answer these questions II

- Nucleon spin structure and diffraction
 - Forward GEM Tracker: flavor-separated anti-quark polarizations
 - Forward Hadron Calorimeter: strange quark polarization
 - Roman Pots (phase II): proton spectator tagging in polarized p +³He, central exclusive diffraction p+p→p+M_X+p
- Nucleon spin and cold QCD matter: high precision p+p and p
 +A, followed by e+p and e+A
 - Major upgrade of capabilities in forward/backward (electron) direction
 - Utilizing mid-rapidity detectors for the initial e+p and e+A program

STAR: today

over a broad range in pseudorapidity

Evolution of STAR

STAR Upgrades and physics: sQGP, QCD phases

year	near term (11-13)	mid-decade (14-16)	long term (17-19)
Colliding system	р+р, А+А	р+р, А+А	р+р, р+А,А+А
Upgrade	FGT,FHC,DAQ10K, Trigger	FGT,FHC,DAQ10K, Trigger HFT, MTD,Trigger	
Properties of sQGP	Ύ, J/Ψ≁ee, m _{ee} ,v ₂	Υ, J/Ψ→μμ, Charm v ₂ , R _{CP} , corr, Λ _c /D, μ-atoms	p+A comparison
Mechanism of energy loss	Jets,γ-jets, NPE	Charm, Bottom	Jets in CNM
QCD critical point	Fluctuations, Correlations, Ratios	Focused study of critical point region	
Novel symmetries	Azimuthal correlations	e -μ,μ-μ	
Exotic particles	Heavy antimatter		

STAR Upgrades and physics: Nucleon spin and Cold nuclear matter

year	near term (11-13)	mid-decade (14-16)	long term (17-19)
Colliding system	p+p	p+p, p+ ³ He	р+р, р+А
Upgrade	FGT,FHC,DAQ10K, Trigger	HFT,MTD,Trigger, RP phase II	Forward Detectors,Trigger
Nucleon spin structure	$\label{eq:WAL} WA_L \\ jet and di-jet A_{LL}, \\ intra-jet correlation, \\ \Lambda D_{LL}/D_{TT} \\ $	WA∟ with polarized ³ He	A _N in p+p, p+A
QCD beyond collinear factorization	Forward A_N	Forward A _N with ³ He (Flavor separation)	Drell-Yan, Forward- Forward corr.
Exotic particles		exotic mesons,baryons	exotic mesons,baryons
Properties of initial states			Charm corr. Drell- Yan J/Ψ. F-Fcorr. ,Λ

Heavy Flavor Tracker (HFT)

Beampipe

- The HFT puts 4 layers of Silicon around the vertex
- Provides ~20 µm space point resolution on tracks
- Uniquely thin pixels (< 0.6% X₀/layer, targeting 0.32% X₀)
- Topological reconstruction of open charm at low p_T
- DAQ1000-level rate capabilities
- Will be ready for the 2014 run

HFT Physics: Properties of sQGP with Open Charm

- Does charm flow hydrodynamically?
 - Heavy Flavor Tracker: unique access to low-p_T fully reconstructed charmed meson (D)
- Are charmed hadrons produced via coalescence?
 - Heavy Flavor Tracker: unique access to charm baryons (Λ_C)
 - Would force a significant reinterpretation of non-photonic electron R_{AA}
- Muon Telescope Detector: does J/Ψ flow?

Muon Telescope Detector (MTD)

- Muon Tagger: use the magnet steel as absorber, TPC for tracking
- Acceptance: 45% for $|\eta| < 0.5$
- 118 modules, 1416 readout strips, 2832 readout channels
- Long-MRPC detector technology, HPTDC electronics (same as STAR-TOF)
- Unique capability to identify muons at mid-rapidity at RHIC
- Ready in 2014

MTD physics: Properties of sQGP with Upsilon

- Muon Telescope Detector: dissociation of Y, separated by state
 - At RHIC: small contribution from coalescence, so interpretation clean
 - No contribution of Bremsstrahlung tails, unlike electron channel

STAR moving forward: instrumentation upgrade

- Forward instrumentation optimized for **p+A** and **transverse spin** physics
 - Charged-particle tracking
 - e/h and γ/π^0 discrimination
 - Baryon/meson separation
- The upgrade can be utilized for forward (hadronic side) in e+p, e+A

Anti-quark and gluon polarization with 500 GeV p+p

- W measurement will significantly reduce uncertainties on anti-quark polarizations
 - FGT essential for the forward W's
- Inclusive jet and di-jet A_{LL} will extend our knowledge of gluon polarization to smaller-x

Anti-quark and gluon polarization with 500 GeV p+p

- W measurement will significantly reduce uncertainties on anti-quark polarizations
 - FGT essential for the forward W's
- Inclusive jet and di-jet A_{LL} will extend our knowledge of gluon polarization to smaller-x

Accessing strange polarization with Λ

- **STAR** has performed initial ΛD_{LL} measurements at mid-rapidity
 - Provides access to strange quark polarization
 - Most interesting with quite high $p_T \Lambda$ (trigger and statistics limited)
- Similar measurements at forward rapidity are very promising
 - Requires the Forward Hadron Calorimeter

Some planned p+A measurements

- Nuclear modifications of the gluon PDF
 - Access from charm production
- Gluon saturation
 - Forward-forward correlations (extension of existing π^0 - π^0)
 - *h*-*h π*⁰-*π*⁰

 Easier to measure

 - γh $\gamma \pi^0$ Easier to interpret
 - Drell-Yan
 - Able to reconstruct x_1, x_2, Q^2 event-by-event
 - Can be compared directly to nuclear DIS
 - True 2 \rightarrow 1 provides model-independent access to $x_2 < 0.001$
 - Λ polarization at high-x_F (polarization sensitive to saturation scale)
- polarized proton + A: Probing the saturation scale in the nucleus with asymmetries? (Z. Kang, F. Yuan PRD84 (2011))

More Forward: Roman Pots (Phase II) Spectator proton tagging in p+³He Diffraction in p+p

- Spectator tagging crucial for identifying target nucleon in p/e+³He: polarized neutron target
- Deflected protons due to different rigidity can be detected in RPs
- A common detector system ("forward proton spectrometer") can be utilized for measuring diffractive protons and spectator protons in ³He
- Detectors/technique can be utilized to measure p+p→p+Mx+p, and other large rapidity gap events

beyond the current decade **STAR to eSTAR**

Optimizing STAR for e+A and e+p collisions for eRHIC phase I (5 GeV energy energy)

STAR detector upgrade consideration for eRHIC phase I

- General consideration:
 - low multiplicity: $\langle N_{ch} \rangle \sim 4-6$ for $\sqrt{s} = 40-65$ GeV (from ep Hera measurements) $\langle N_{ch}(ep) \rangle \sim \langle N_{ch}(eA) \rangle$
 - Interaction rate: 300 600 kHz at 10³⁴ cm⁻² s⁻¹
- Inclusive measurements
 - Backward (-2.5 < η < -1) electron acceptance essential to span DIS regime
- Semi-inclusive physics
 - Need to investigate how well PID coverage is matched to SIDIS kinematics
 - Both backward and forward hadron coverage valuable for SIDIS
- Exclusive physics program
 - Need forward (~beam rapidity) proton and expanded photon detection (DVCS)
 - Roman Pots (also for spectator proton tagging in e+³He)
 - EM calorimetry for $-4 < \eta < -1$
 - Rapidity gap acceptance for diffractive events

Golden Measurement in e+A

		QCD matter in nuclei		
Deliverables	Observables	What we learn	Phase I	Phase II
integrated gluon	$F_{2,L}$	nuclear wave function;	gluons at	explore sat.
distributions		saturation, Q_s	$10^{-3} \le x \le 1$	regime
k_T -dep. gluons;	di-hadron	non-linear QCD	onset of	RG evolution
gluon correlations	correlations	evolution/universality	saturation; Q_s	
transp. coefficients	large- x SIDIS;	parton energy loss,	light flavors, charm	precision rare
in cold matter	jets	shower evolution;	bottom; jets	probes;
		energy loss mech.		large- x gluons

The EIC Science case: a report on the joint BNL/INT/JLab program (2011)

Golden Measurements in e+p

		Spin and fla	avor structure of the nucleon	
Deliverables	Observables		What we learn	Requirements
polarized gluon	scaling violations		gluon contribution	coverage down to $x \simeq 10^{-4}$;
distribution Δg	in inclusive DIS		to proton spin	\mathcal{L} of about 10 fb ⁻¹
polarized quark and	semi-incl. DIS for		quark contr. to proton spin;	similar to DIS;
antiquark densities	pions and kaons		asym. like $\Delta \bar{u} - \Delta \bar{d}; \Delta s$	good particle ID
novel electroweak	inclusive DIS		flavor separation	$\sqrt{s} \ge 100 \mathrm{GeV}; \mathcal{L} \ge 10 \mathrm{fb}^{-1}$
spin structure functions	at high Q^2		at medium x and large Q^2	positrons; polarized 3 He beam

Three-dime	Three-dimensional structure of the nucleon and nuclei: transverse momentum dependence				
Deliverables Observables		What we learn	Phase I	Phase II	
Sivers and	SIDIS with transv.	quantum interference	valence+sea	3D Imaging of	
unpolarized	polarization/ions;	multi-parton and	quarks, overlap	quarks and gluon;	
TMDs for	di-hadron (di-jet)	spin-orbit	with fixed target	$Q^2 \; (P_\perp) \; { m range}$	
quarks and gluon heavy flavors correlations		correlations	experiments	QCD dynamics	

a second and the second	A CONTRACTOR OF

		Th	hree-dimensional structure of the nucleon and nuclei: spatial imaging				
Deliverables		es	Observables	What we learn	Requirements		
sea	quark a	nd	DVCS and $J/\psi, \rho, \phi$	transverse images of	$\mathcal{L} \ge 10^{34} \text{ cm}^{-2} \text{s}^{-1},$		
gluon GPDs)s	production cross sect.	sea quarks and gluons	Roman Pots		
			and asymmetries	in nucleon and nuclei;	wide range of x_B and Q^2		
				total angular momentum;	polarized e^- and p beams		
				onset of saturation	e^+ beam for DVCS		

STAR at eRHIC - Phase I

- Current detector matches quite well to kinematics of eRHIC
 - Particle ID, sufficient p_T resolution, etc. at mid-rapidity (Q²>10 GeV²)
- Space to extend: focus on $I < Q^2 < I0 \text{ GeV}^2$ (~-2 < η < -1)
- Some important phase I measurements:
 - F_L in e+p and e+A
 - g₁ in polarized e+p
 - SIDIS in e+p and e+A over broad (x,Q^2) range, including dihadron

Parton energy loss in cold QCD matter

- Complementary tool to investigate partonic energy loss
- HERMES: hadrons can form partially inside the medium
 - Mixture of hadronic absorption and partonic energy loss
- eRHIC: light quark hadrons form well outside the medium
- Heavy quarks: unexplored to date. Low $\beta \rightarrow$ short formation time

Beyond inclusive DIS: DVCS

Deeply Virtual Compton Scattering

- Requires measurement of electron, proton, and photon exclusively
- Proton requires Roman Pot, intimately tied to I.R. design
 - Aperture needs mostly driven by proton energy
 - Common device (Roman Pots) can be used for spectator tagging in ${}^{3}\mbox{He}$
- Electron acceptance overlaps with inclusive DIS: -2<η<-1

Further possibilities under investigation: diffraction in J/ψ , ...

eSTAR Task Force at STAR formed

Summary

- ★ STAR upgrade to continue addressing the key open questions in hot/cold nuclear matter at extreme conditions and spin structures of nucleon
 - mid-decade precision, extending to heavy flavor: HFT + MTD ...)
 - A+A, A+B, p+p, p+³He
 - later in the decade exploring forward regime
 - polarized p+A, p+p, $p+^{3}He$
 - end of decade beginning of STAR with eRHIC: eSTAR
- STAR: The first successful decade, and continues with upgrades to deliver compelling physics in the coming decade and beyond

Backup Slides

Cold QCD matter – the initial state at RHIC

- RHIC may provide unique access to the onset of saturation
- Future questions for **p+A**
 - What is the gluon density in the (x,Q^2) range relevant at RHIC?
 - What role does saturation of gluon densities play at RHIC?
 - What is Q_s at RHIC, and how does it scale with A and x?
 - What is the impact parameter dependence of the gluon density?
- Dihadron measurement in e+A with clean kinematic control at eRHIC

J/ Ψ Flow: MTD projection

 $J/\Psi v_2$ small

Dramatic improvement with RHIC II and MTD 32

Either charm does not flow, or

Spectator proton from ³He with the current RHIC optics

- The same RP configuration with the current RHIC optics (at z ~ 15m between DX and D0)
- High acceptance (~ 98%) of spectator proton can be achived

polarized n+p in ³He+p

- Spin-dependent distribution, Sivers function has opposite sign for u- and d-quark flavor
- Polarized ³He could be used to confirm and verify this opposite sign