FUTURE DIRECTION IN HIGH ENERGY QCD Nishina Hall, RIKEN, Wako, 20-22 October 2011

THEORETICAL STATUS AND OUTLOOK OF HEAVY ION PHYSICS Tetsufumi Hirano Sophia Univ. Many thanks to

Koichi Murase (the Univ. of Tokyo) for numerical results

Outline

- 1. Introduction
- 2. Brief history after "perfect liquid"
- 3. Hydro-based event generator
- 4. Relativistic fluctuating hydro
- 5. Checklist for event generator in the next generation
- 6. Conclusion and outlook

Introduction

Physics of heavy ion collisions and the quark gluon plasma is getting matured:

Discovery stage \rightarrow Precision physics

Main focus in this talk:

Towards precise description of space-time evolution using <u>hydrodynamics</u> after initial conditions

BRIEF HISTORY AFTER "PERFECT LIQUID"

Discovery for "Perfect Liquid"

Future Directions × (https://ccv	rpn10 × 😽 STAR: The STAR × 🔤 Phys. Rev. Lett. × 🕐 My Profile × 📷 RHIC Scientists : × +
C ○ www.bpl.gov/bplv	
	veb/pubai/pi/pi_dispiay.asprpiid=05-50
Brookhaven Nation	al Laboratory News BROOKHAVEN NATIONAL LABORATORY Home
BN	IL: Departments Science ESS&H Newsroom Administration Visitors Directory
search Go News Archives O BNL	🖸 SHARE 📲 22 🧤
News Resources	Contacts: Karen McNulty Walsh, (631) 344-8350 or Peter Genzer, (631) 344-3174
Newsroom Home	
Media Contacts	
News Archives	RHIC Scientists Serve Up "Perfect" Liquid
Image Library	
Streaming Video	New state of matter more remarkable than predicted raising
@brookhaven TODAY	New state of matter more remarkable than predicted raising
Fact Sheets	April 18, 2005
Management Bios	TAMPA EL The four detector groups conducting research at the Pelativist
About Brookhaven	(RHIC) a giant atom "smasher" located at the U.S. Department of Energ Laboratory say they've created a new state of hot, dense matter out of t
:: Physics News	are the basic particles of atomic nuclei, but it is a state quite different and ϵ had been predicted. In <u>peer-reviewed papers</u> summarizing the first three y
Physicist Nima Arkani-Hameo to Give a Talk at Brookhaven Lab on 'Space Time.	scientists say that instead of behaving like a gas of free quarks and gluons, matter created in RHIC's heavy ion collisions appears to be more like a <i>liqu</i>
Quantum Mechanics and the	"Once again, the physics research sponsored by the Department of Energy

http://www.bnl.gov/bnlweb/pubaf/pr/pr_display.asp?prid=05-38

Status as of Press Release

PHENIX, Nucl. Phys. A 757, 184 (2005)

Three pillars of modeling **QGP** ideal hydro hadronic cascade Glauber type initial conditions Other sets of modeling?

Consistency of Three Pillars in Broad Rapidity Region

Triangular shape of v₂(η) after all!

Undershoot the data at midrapidity in central collisions

T.Hirano et al., Phys. Lett. B 636, 299 (2006)

CGC Initial Conditions

CGC and perfect fluid, are they compatible?

T.Hirano et al., Phys. Lett. B 636, 299 (2006)

Importance of Fluctuation in Initial Conditions

PHOBOS, Phys. Rev. Lett. 98, 242302 (2007)

Fluctuation in Initial Conditions

Elliptic flow is generated with respect to *participant plane (x'-y')* rather than *reaction plane (x-y).*

B.Alver *et al.*, Phys. Rev. C 77, 014906 (2008)

Impact of PHOBOS finding

- System could (hydrodynamically?) respond to such a fine structure.
 - Is local thermalization achieved in such a short length scale (~1 fm)?
 - Number of particles is quite small in such a small system.
 - Concept of hydrodynamics? Is ensemble average taken? Event-by-event hydro
 - Higher harmonics?

Higher Harmonics is Finite!

Two particle correlation function is composed solely of higher harmonics

Figures adapted from talk by J.Jia (ATLAS) at QM2011

PHENIX v₂ vs. v₃ Argument

HYDRO-BASED EVENT GENERATOR

Current Status: E-by-E H2C

Hadronic cascade 3D ideal hydro Monte Carlo I.C. (MC-KLN)

*Figure in PHENIX Decadal Plan (2010) adapted from MY figure...

Initial Density Fluctuation

single initial condition event-by-event hydro

V,{***}

v₂{EP}, v₂{2}, v₂{4}, v₂{6}, v₂{LYZ}, ...

Hydro-based event generator → Analysis of the outputs almost in the same way as experimental people do.

Demonstration of v_n analysis according to event plane method by ATLAS setup. E.g.) Centrality cut using E_T in FCal region ATLAS, arXiv:1108.6018 *All calculations performed by K.Murase

Almost boost invariant

Resolution of Event Plane

Reaction (Event) plane is not known experimentally nor in outputs from E-by-E H₂C. <u>Event plane method</u>

Event plane resolution using two subevents

$$R_{n} = \sqrt{\left\langle \cos\left[n\left(\Psi_{n}^{1} - \Psi_{n}^{2}\right)\right]\right\rangle}$$
$$n\Psi_{n} = \tan^{-1}\left(\frac{\sum E_{T,i}\sin n\phi_{i}}{\sum E_{T,i}\cos n\phi_{i}}\right)$$

c.f.) A.M.Poskanzer and S.Voloshin, Phys. Rev. C 58, 1671 (1998)

Resolution of Event Plane from Eby-E H₂C

of events: 80000 (Remember full 3D hydro+cascade!) Subevent "N": charged, -4.8< η < -3.2 (FCal in ATLAS) Subevent "P": charged, 3.2< η < 4.8 (FCal in ATLAS) ATLAS, arXiv:1108.6018

$V_{n}\{EP\}(\eta)$ $v_{n}\{EP\}(\eta, p_{T}) = \frac{1}{R} \langle \cos[n(\phi - \Psi_{n}^{P/N})] \rangle$

Even Harmonics

Odd Harmonics

Not boost inv. $\leftarrow \rightarrow$ almost boost inv. for epsilon

v_n{**EP**} **vs. v**_n{**RP**}

v_n{RP}: v_n w.r.t. reaction plane known in theory

Even Harmonics

v_{even}{EP}>v_{even}{RP} due to fluctuation

Odd Harmonics

v_{odd}{RP}~o

V_n{EP}(p_T)

0-10%

 v_2 {EP} $\approx v_3$ {EP}

Note: $\varepsilon_2 > \varepsilon_3$

40-50%

 $v_{2}{EP} > v_{3}{EP}$

RELATIVISTIC FLUCTUATING HYDRODYNAMICS

Fluctuation Appears Everywhere

Finite number of hadrons

Thermal noise

Initial configuration of nucleons and particle production

Kubo Formula

$$\eta = \lim_{\omega \to 0} \lim_{q \to 0} \frac{1}{2\omega} \int dt dx \, e^{i(\omega t - qx)}$$

$$\times \left\langle \left[T_{xy}(t,x), T_{xy}(0,0) \right] \right\rangle$$

Slow dynamics is extracted. \rightarrow How slow? Finite relaxation time is crucial in relativistic dissipative hydrodynamics to be causal.

Causal Hydrodynamics

Within linear response

 $\Pi(t) = \int dt' G(t,t') F(t')$ Suppose $G(t,t') = \frac{\kappa}{\tau} \exp\left(-\frac{t-t'}{\tau}\right) \theta(t-t')$

one obtains differential form

$$\dot{\Pi}(t) = -\frac{\Pi(t) - \kappa F(t)}{\tau} \implies \begin{array}{l} \text{Simplified Israel-} \\ \text{Stewart Eq.} \end{array}$$

Relativistic Fluctuating Hydrodynamics (RFH)

Thermal fluctuation must be important in event-by-event simulations:

Finite Size Effect

In RFH, fluctuation depends naturally on local volume. $\xi(x) \propto \frac{1}{\sqrt{\Lambda V}}$

- Information about coarse-grained size?
- Fluctuation term ~ average value?
- Need to consider (?) finite size effect in equation of state and transport coefficients

CHECKLIST FOR EVENT GENERATOR IN THE NEXT GENERATION

Checklist for Initial Conditions Glauber, Color Glass Condensate, or any other production mechanism Implement Monte-Carlo method Fluctuation from nucleon configuration **D** Full 3D (even in Glauber) Fluctuation of production mechanism itself Switchable among models of production

- mechanism
- □ Thermalization(?)

Checklist for Hydrodynamics

- Lattice equation of state (finite size effect?)
- Arbitrary temperature dependence of transport coefficients (finite size effect?)
- Full 3D causal dissipative hydro code
- Robust algorithm against shock wave
- Fluctuation terms in constitutive equation
- Interface with hadronic cascade
- Less numerical costs, in particular, at freezeout

Checklist for Hadronic Cascade

Compatible with PDG hadron list
Interface with hydro output (or, in general, arbitrary phase space distribution as an initial condition)
Weak decays

Conclusion and Outlook

- Fluctuation would play an important role in dynamics of QGP
- More sophisticated dynamical model is required towards precision physics
- Finite baryon density for lower energy collisions
- Incorporate of hard/rare probes(?)

Energy-Momentum Flow from Jets

$$\partial_{\mu}T^{\mu\nu} = J^{\nu}$$

- Jet quenching might affect dynamics at LHC (and even at RHIC)
- Many jets could disturb fluid elements (or even heat them up?)
- Beyond linearized hydro \rightarrow Full solution
- How to non-perturbatively formulate J^{μ} ?

BACKUPS

First Elliptic Flow Data at RHIC

p_⊤ integrated v₂ for charged hadrons at midrapidity as a function of centrality for the first time at RHIC

STAR, Phys, Rev. Lett. 86, 402 (2001)

Theoretical Prediction of v₂ at RHIC

STAR v_2 data \rightarrow comparable with ideal hydro prediction by Kolb et al. ($v_2 \sim 0.2\varepsilon$)

P.F.Kolb et al., Phys, Rev. C 62, 054909 (2000)

v₂ in Broad Pseudorapidty Region

PHOBOS, Phys, Rev. Lett. 89, 222301 (2002) Triangular shape in pseudorapidity $\rightarrow v_2$ scales dN/d η rather than eccentricity. $\leftarrow \rightarrow$ Hydro prediction $(v_2 \sim 0.2\epsilon)$?

v₂ from Full 3D Hydro

T.Hirano, Phys, Rev. C 65, 011901 (2001) Result from ideal hydro $\sim v_2$ near midrapidity \rightarrow This already indicates importance of viscosity in forward/backward region.

Particle Identified v₂ Data

PHENIX PID v₂ data

Mass splitting pattern
→ Consistent with ideal

hydro results (caveat*)

• Quark number scaling
→ Collective flow of quark d.o.f.

PHENIX, Phys, Rev. Lett. 91, 182301 (2003)

Mass Splitting Pattern from Ideal Hydro

P.Huovinen *et al.*, Phys, Lett. B 503, 58 (2001)

Mass splitting pattern from a radial flow effect \rightarrow Developed in late stage, not early stage \rightarrow Not necessary from hydro calculations *Less rescattering particles need not follow the pattern.

*T. Hirano et al., Phys. Rev. C77, 044909 (2007).