sPHENIX Upgrade for Forward Rapidity

RIKEN/RBRC Itaru Nakagawa

Compact, hermetic, EM + hadron calorimetry

sPHENIX Forward

2-D Readout board

e.g. Compass, but

with 3-d readout

- RICH has an electron efficiency of 94% for p > 10 GeV/c.
- EMCal has the resolution of the current PHENIX PbGl: $5.95\%/\sqrt{E} + 0.76\%$
- HCAL has the resolution: $50\%/\sqrt{E} + 5\%$ (similar to CMS or LHCb)

sPHENIX Acceptance

(Spin) Physics Highlights w/ Forward sPHNIEX

- Transverse Spin Program
 - Jet
 - Drell-Yan (DY) Process
- Longitudinal
 - Δ G via Jets, γ -Jet (correlated measurement)
- Polarized ³He and RHIC Energy Upgrade
- (Cold Nuclear Matter, Low-x Gluon Saturation)

Transverse Single-Spin Asymmetries: From Low to High Energies!

BRAHMS

 $A_N \sim$ (Initial State Correlation) + (Final State Correlation) + higher order

Isolation of Sivers & Collins

With a good enough detector, we can unambiguously separate all these pieces

Initial State Piece

Jets with identified hadrons (measure A_N for jets)

Do jets from certain quarks prefer to go left or right?

Final State Piece

Left-right asymmetry of identified particle inside a jet

Do certain hadrons fragment from certain quarks to the left or right of the jet axis?

Important to have Jet Detection Capability in Forward Region!

esearch Cente

Sivers Measurement vi Drell-Yan Process The Drell-Yan Process

$$\left(\frac{d^2\sigma}{dx_1dx_2}\right)_{D.Y.} = \frac{4\pi\alpha^2}{9\,sx_1\,x_2}\sum_a e_a^2 \left[q_a(x_1)\overline{q}_a(x_2) + \overline{q}_a(x_1)q_a(x_2)\right]$$

DY vs. DIS

- solid factorization
- no fragmentation
 - direct correlation of intrinsic transverse quark momentum to the proton spin
- fundamental QCD test

Figure 6.1: Feynman di**ppg** for SIDIS (left) and Drell-Yan (rig**by** showing the color structure and the final- and initial-state interaction via gluon exchange.

$$\Delta^{N} f_{q/p}(x, k_{\perp})_{\text{SIDIS}} = -\Delta^{N} f_{q/p}(x, k_{\perp})_{DY}$$

Existing Experiments of SIDIS

Extract Sivers function from SIDIS (HERMES&COMPASS)

- u and d almost equal size, different sign
- d-Sivers is slightly larger

Drell-Yan measurement

Heavy Flavor Background Suppression

DY S/N w.r.t QCD backgrounds

- Drell Yan signal
 3 10 GeV/c²
- Energy cut
 - $E_{1,2} > 2 \text{ GeV}$
- Forward rapidities
 - Effectively no background left
 - Statistically limited
 - Drell Yan for m_{inv} < 3 GeV/c² not physical (PYTHIA settings)

Longitudinal

- Broader kinematic coverage
- Different combination of underlying hard subprocess.
- Important inputs to Global fit.

Δ G Smaller-x w/ γ –Jet , di-Jet

Polarized ³He-p Collision

Polarized ³He as "Effective" Polarized Neutron

RHIC Energy Upgrade

 $\frac{S_w(650\,GeV)}{S_w(500\,GeV)} \sim 2$

Need to overcome machine issues:

- Quench performance of magnets (DX, arc dipoles and quads, IR quads)
- Crossing angles at IPs and luminosity
- Polarization
- Current feed-throughs
- Power supplies and transformers
- Dump kicker (strength, pre-fires)
- Reliability generally reduced at higher energies
- etc…

With More Luminosity ...

Summary

- Hermetic EM and hadron calorimeters in forward acceptance:
 - Jet (cleaner measurement of ΔG , Sivers, Collins)
 - γ -Jets, di-Jets (golden channel for ΔG , fix kinematics)
 - Different subprocesses combinations for input to global analysis
- Sivers measurement via DY tests fundamental QCD
- Full flavor separation of sea quark polarization using "effective" neutron target of 3He beam
- Luminosity, Luminosity, Luminosity....

Thank you for coming to RIKEN!

