

QCD at JLab 12 GeV

Zein-Eddine Meziani Temple University

Experimental tools: Scattering

- Use of lepton and hadron beams
 - Polarized beams of e-, e+, μ+, μ-, p
- Use of proton and nuclear targets
 - Targets in many cases are polarized (p, D, NH₃, ND₃, ³He,....) 1
- Electromagnetic probe: Compton scattering, real and virtual
 - Exclusive, semi-inclusive or inclusive (elastic scattering, inelastic scattering)

Rutherford, 1908, Chem. N.P.

The Tools

Spectroscopy

Resolution of the probe and scale of theory tools

12 GeV Science Program

- The physical origins of quark confinement (GlueX, meson and baryon spectroscopy)
- The spin and flavor structure of the proton and neutron (PDF's, GPD's, TMD's...)
- The quark structure of nuclei
- Probe potential new physics through high precision tests of the Standard Model
- Defining the Science Program:
 - Six Reviews: Program Advisory Committees (PAC) 30, 32, 34, 35, 36, 37, 38
 - 2006 through 2011
 - Results: 48 experiments approved; 4 conditionally approved

Exciting slate of experiments for 4 Halls planned for initial five years of operation!

12 GeV Upgrade Project

Future Directions in High Energy QCD, Thomas Jefferson National Accelerator Facility

12 GeV Scientific Capabilities

Hall D – exploring origin of confinement by studying exotic mesons

Hall B – understanding nucleon structure via generalized parton distributions and transverse momentum distributions

Hall C – precision determination of valence quark properties in nucleons and nuclei

Jefferson Lab

Hall A – short range correlations, form factors, hyper-nuclear physics, future new experiments (e.g., MOLLER, PVDIS, SIDIS)

Future Directions in High Energy QCD, Thomas Jefferson National Accelerator Facility

Hall A (Additional Equipment Required)

- High luminosity on polarized ³He
- Better than 1% errors for small bins
- Large Q² coverage
- x-range 0.08-0.6
- W²> 4 GeV² October 20-22, 2011

SOLID for PVDIS:

- High Luminosity on LD2 and LH2
- Better than 1% errors for small bins
- Large Q² coverage
- x-range 0.25-0.75
- W²> 4 GeV²

12 GeV Upgrade Schedule

Future Directions in High Energy QCD, Thomas Jefferson/National Accelerator Facility

Hall D Status – July 2011

Ready For Equipment (RFE) Dec. 28, 2010

Future Directions in High Energy QCD, Thomas Jefferson/National Accelerator Facility

Arc Dipole Installation

Future Directions in High Energy QCD, Thomas Jefferson National Accelerator Facility

New Projects in Hall A

SoLID (solenoidal large intensity device): general purpose deep inelastic scattering (PVDIS, SIDIS)

- Dedicated MOLLER Experiment (successor to SLAC E158)
- DOE MIE proposal \rightarrow CD-0

New Collaboration Opportunities

- MOLLER
- SoLID
- A' searches
- RICH detectors for CLAS12 and GlueX

Inclusive double spin asymmetries using 12 GeV

Effect of considering transverse momentum of quarks in the nucleon

Future Directions in High Energy QCD, Wako, Japan

Longitudinal Double Spin Asymmetry in SIDIS

Future Directions in High Energy QCD, Wako, Japan

Quark Gluon Correlations

Carry one unit of orbital angular momentum

Couple to a gluon

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \overline{g}_2(x,Q^2)$$

a twist-2 term (Wandzura & Wilczek, 1977):

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int^1 g_1(y,Q^2) \frac{dy}{y}$$

a twist-3 term with a suppressed twist-2 piece (Cortes, Pire & Ralston, 92):

$$\overline{g}_{2}(x,Q^{2}) = -\int_{x}^{1} \frac{\partial}{\partial y} \left(\frac{m_{q}}{M}h_{T}(y,Q^{2}) + \xi(y,Q^{2})\right) \frac{dy}{y}$$
transversity
quark-gluon correlation 18

Average Color Lorentz Force (M. Burkardt)

$$\int dx x^2 \bar{g}_2(x) = \frac{1}{3} d_2 = \frac{1}{6MP^{+2}S^x} \langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^+ q(0) \right| P, S \rangle$$

 \hookrightarrow d_2 a measure for the color Lorentz force acting on the struck quark in SIDIS in the instant after being hit by the virtual photon

 $\langle F^y(0) \rangle = -M^2 d_2$ (rest frame; $S^x = 1$) Interpretation of d_2 with the transverse FSI force in DIS also consistent with $\langle k_{\perp}^y \rangle \equiv \int_0^1 dx \int d^2 k_{\perp} k_{\perp}^2 f_{1T}^{\perp}(x, k_{\perp}^2)$ in SIDIS (Qiu, Sterman)

$$\langle k_{\perp}^{y} \rangle = -\frac{1}{2p^{+}} \left\langle P, S \left| \bar{q}(0) \int_{0}^{\infty} dx^{-} g G^{+y}(x^{-}) \gamma^{+} q(0) \right| P, S \right\rangle$$

semi-classical interpretation: average k_{\perp} in SIDIS obtained by correlating the quark density with the transverse impulse acquired from (color) Lorentz force acting on struck quark along its trajectory to (light-cone) infinity

Projected results for g2n and d2n

Theoretical Framework in QCD

- Generalized Parton Distributions
 - Matrix elements of non-local operators with quarks and gluon field

 $\langle p|\mathcal{O}|p\rangle$

Depend on two longitudinal momentum fractions

$$x, \xi \text{ and } t = (p - p')^2$$

- For unpolarized quarks we have two distributions:
 - *H^q* conserves proton helicity
 - **E**^q flips proton helicity

$$= p' \Longrightarrow \qquad H^q(x,0,0) = \left\{ egin{array}{cc} q(x) & ext{for } x > 0 \ -ar q(x) & ext{for } x < 0 \end{array}
ight.$$

р

s'

$$\int dx \, x^n \operatorname{GPD}(x,\xi,t) \to \text{local operators} \to \text{form factors}$$
$$\sum_q e_q \int_{-1}^1 dx \, H^q(x,\xi,t) = F_1(t) \quad \text{Dirac}$$
$$\sum_q e_q \int_{-1}^1 dx \, E^q(x,\xi,t) = F_2(t) \quad \text{Pauli}$$

Nucleon Angular Momentum Sum Rule

$$\frac{1}{2} = J^q(\mu) + J^g(\mu)$$

Ji Sum rule (1997)

 $J^{q}(\mu) = \frac{1}{2}\Delta\Sigma + L^{q}(\mu) \qquad J^{q} = \int dxx \left[H^{q} + E^{q}\right]$ Spin of quarks contribution
Orbital angular momentum of quarks
October 20-22, 2011
Orbital angular momentum
of gluons
Utility of the provided of the prov

3D imaging of the nucleon

Tool: Generalised Parton Distributions

Generalized Parton Distributions, Deeply Virtual Compton Scattering

GPDs: 3D quark/gluon imaging of nucleon

Fourier transform of GPDs :

simultaneous distributions of quarks w.r.t. longitudinal momentum × P and transverse position b (M. Burkardt)

theoretical parametrization needed :

double distributions, dual param. (Guzey), conformal param. (Müller)

What can we do with the GPDs?

evaluate parton angular momenta from Ji's sum rule
$$J^{u} = 0.25 \pm 0.03$$
 $J^{d} = 0.02 \pm 0.03$ $J^{s} = 0.02 \pm 0.03$ $J^{g} = 0.21 \pm 0.06$

work out transverse localization of partons

for d quarks

$$q_v^X(x, \mathbf{b}) = q_v(x, \mathbf{b}) - \frac{b^y}{m} \frac{\partial}{\partial \mathbf{b}^2} e_v^q(x, \mathbf{b})$$

PK 21

Peter Kroll

Large phase space (ξ, t, Q^2) and High luminosity required

Extraction of GPD's

global analysis : cross sections, asymmetries, (p,n), (Y,M)

 $ep \longrightarrow ep \mathbb{C}$

Cleanest process: Deeply Virtual Compton Scattering

$$\mathbf{A} = \frac{\mathbf{f}^+ - \mathbf{f}^-}{\mathbf{f}^+ + \mathbf{f}^-} = \frac{\otimes \mathbf{f}}{2\mathbf{f}}$$

 $\xi = x_{\rm B} / (2 - x_{\rm B})$ k = -t/4M²

Polarized beam, unpolarized target:

$$\otimes (_{LU} \sim sin) \{F_1 H + \xi (F_1 + F_2) H + kF_2 E \} d$$

 $\widetilde{H}(\xi,t)$

 $E(\xi,t)$

Unpolarized beam, longitudinal target:

$$\otimes (_{UL} \sim \sin) \{F_1 \widetilde{H} + \xi (F_1 + F_2) (H + \xi/(1 + \xi)E)\} d$$

Unpolarized beam, transverse target:

$$\otimes \int_{UT} \sim \sin \left\{ k(F_2 H - F_1 E) \right\} d$$

Future Directions in High Energy QCD,

Exclusive DVCS on *transverse* target @ JLab 12 GeV

$$e p^{\dagger} \rightarrow ep^{\odot}$$

E = 11 GeV

Projected results

 $Q^2=2.2 \text{ GeV}^2$, $x_B = 0.25$, $-t = 0.5 \text{GeV}^2$

exclusive p⁰ production on *transverse* target

October 20-22, 2011

Future Directions in High Energy QCD, Goeke, Polyakov, Vdh (2001) Wako, Japan

Quark Angular Momentum

$$J^{q}(t) = \int_{-1}^{+1} dx x [H^{q}(x,\xi,t) + E^{q}(x,\xi,t)]$$

→ Access to quark orbital angular momentum

Total angular momentum of gluons

October 20-22, 2011

Future Directions in High Energy QCD,

Wako, Japan

Transverse Spin Structure: Leading Twist TMDs

Nucleon Spin

→ Quark Spin

Quark /Nucleo n		Quark polarization		
		Un-Polarized	Longitudinally Polarized	Transversely Polarized
Nucleon Polarization	U	<i>f</i> ₁ = •		$h_1^{\perp} = \begin{array}{c} \bullet \\ \bullet \\ Boer-Mulder \end{array}$
	L		$g_1 = - + - + +$ Helicity	$h_{1L}^{\perp} = \checkmark - \checkmark$
	т	$f_{1T}^{\perp} = \bullet - \bullet$ Sivers	$g_{1T}^{\perp} = $	$h_{1T} = \begin{array}{c} & & - & \\ & & - & \\ & & Transversity \\ h_{1T}^{\perp} = \begin{array}{c} & & - & \\ & & - & \\ & & \\ & & Pretzelosity \end{array}$

Transversity and the Tensor Charge

• Quark transverse polarization in a transversely polarized nucleon:

$$h_{1T} =$$
 $h_{1T} =$ h_{1

- Can be probed in Semi-Inclusive DIS, Drell-Yan processes.
- Does not mix with gluons, has valence like behavior.
- Nucleon tensor charge can be extracted from the lowest moment of h_1 and compared to LQCD calculations

Tensor Charge

Intrinsic property Like axial or vector charge

$$\langle PS\bar{\psi}\sigma^{\mu\nu}\psi PS\rangle = \int_0^1 dx \left[\delta q(x) - \delta\bar{q}(x)\right]$$

$$\int_{thr}^{\infty} \left[\frac{\sigma_{3/2} - \sigma_{1/2}}{\nu} \right] d\nu = \frac{2\pi^2 \alpha}{M^2} \kappa^2$$

October 20-22, 2011 GDH sum rule Future Directions in High Energy QCD, Wako, Japan Bjorken Sum rule 35

 $\int_{0}^{1} \left[g_{1}^{p}(x,Q^{2}) - g_{1}^{n}(x,Q^{2}) \right] dx = \frac{1}{6} g_{A}$

Tensor charges

$$\begin{split} \delta_T q &= \int_0^1 dx \, (h_{1q} - h_{1\bar{q}}) = \int_0^1 dx \, h_{1q} \\ \delta_T u &= 0.54^{+0.09}_{-0.22}, \, \delta_T d = -0.23^{+0.09}_{-0.16} \text{ at } Q^2 = 0.8 \text{ GeV}^2 \end{split}$$

- Quark-diquark model: Cloet, Bentz and Thomas PLB 659, 214 (2008), Q² = 0.4 GeV²
- CQSM: M. Wakamatsu, PLB 653 (2007) 398. Q² = 0.3 GeV²
- 3. Lattice QCD: M. Gockeler et al., Phys.Lett.B627:113-123,2005 , $Q^2 = 4 \text{ GeV}^2$
- QCD sum rules: Han-xin He, Xiang-Dong Ji, PRD 52:2960-2963,1995, Q² ~ 1 GeV²
- 5. Constituent quark model: B. Pasquini, M. Pincetti, and S. Boffi, PRD72(2005)094029 and PRD76(2007)034020, $Q^2 \sim 0.8 \text{ GeV}^2$
- Spin-flavour SU(6) symmetry L. Gamberg, G. Goldstein, Phys.Rev.Lett.87:242001,2001 Q² ~ 1 GeV²

Allorentin

October 20-22, 2011

Alexei Prokudin.

TMDs program @ 12 GeV in Hall B and Dynamical Imaging

PAC approved experiments & Lol

- Complete program of TMDs studies for pions and kaons
- Kaon measurements crucial for a better understanding of the TMDs "kaon puzzle"
- Kaon SIDIS program requires an upgrade of the CLAS12 detector PID RICH detector to replace LTCC
 Project under development

Neutron Collins Asymmetry Projected Data Using SOLID

Total 1400 bins in x, Q², P_T and z for 11/8.8 GeV beam.
 z ranges from 0.3 ~ 0.7, only one z and Q² bin of 11/8.8 GeV is shown here. π⁺ projections are shown, similar to the π⁻.

October 20-22, 2011

Wako, Japan

3-D momentum structure the nucleon: Dipole pattern due to Sivers effect

(Plot from Prokudin; red: positive effect, blue: negative effect)

Future Directions in High Energy QCD, Wako, Japan

Summary

An exciting scientific opportunity

- Explore the physical origins of quark confinement (GlueX)
- New access to the spin and flavor structure of the proton and neutron
- Reveal the quark/gluon structure of nuclei
- Probe potential new physics through high precision tests of the Standard Model

Construction is well underway !

- MOLLER
- **Opportunities** SoLID A' searches

 - RICH detectors for CLAS12 and GlueX •

New Proposals and collaborations are most welcome!