The LHC heavy ion program: results, prospects, and implications

Brian A. Cole Columbia University

Riken High-Energy QCD workshop

The Big Picture

 We know that strong interactions are well described by the QCD Lagrangian:

 $L_{QCD} = -rac{1}{4}F^a_{\mu
u}F^{\mu
u}_a - \sum_n ar{\psi}_n \left(\partial - ig\gamma^\mu A^a_\mu t_a - m_n
ight) \psi_n$

⇒Perturbative limit well studied

- Nuclear collisions provide a laboratory for studying QCD outside the large Q² regime:
 - Deconfined matter (quark gluon plasma)
 - ⇒"Emergent" physics not manifest in L_{QCD}
 - \Rightarrow Strong coupling \Rightarrow AdS/QCD (?)
 - High gluon field strength, saturation
 - ⇒ Unitarity in fundamental field theory

• Only non-Abelian FT whose phase transition & multi-particle behavior we can study in lab.

QCD Thermodynamics on Lattice

Energy Density or pressure

QCD trace anomaly

Lattice thermodynamics from hotQCD group

 Trace anomaly (ε-3p)/T⁴, an "interaction measure"
 ⇒Strong coupling already evident near T_c (?)

QCD Thermodynamics on Lattice

Lattice thermodynamics from hotQCD group

 Trace anomaly (ε-3p)/T⁴, an "interaction measure"
 Strong coupling already evident near T_C (?)

 Can we observe any consequences of the increase of the (initial) temperature between RHIC and LHC?

Heavy Ion Collision Time History

Initial entropy (gluon) production

Rapid Thermalization

Collective Evolution

Hadronization

Conclusions from RHIC program

- ⇒Initial particle production influenced by strong gluon fields in the incident nuclei.
- ⇒Created particles rapidly thermalize into a strongly coupled quark gluon plasma.
- ⇒Quark gluon plasma efficiently attenuates highenergy quarks and gluons.

Heavy Ion Collision Time History

Colle

Initial entropy (gluon) production

 Conclusion Fields in the content nuclei.

oupled quark gluon plasma.

 \Rightarrow Quark gluon plasma efficiently attenuates highenergy quarks and gluons.

ization

RHIC Particle Multiplicities

Multiplicity per colliding nucleon pair

Multiplicity @ RHIC on low end of predicted range, slow growth with N_{part}

- Suppression of expected hard contribution
 - ⇒"Saturation" via gluon recombination?

⇒Test by going to LHC where saturation effects are expected to be stronger.

Charged Particle Multiplicity

Weak variation of dN_{chg}/dη with centrality

 Consistent results between ALICE, ATLAS, CMS

 Same centrality variation @ RHIC and LHC

 ⇒(Naturally) consistent with saturation?
 ⇒Where is the hard contribution?

Charged Particle Multiplicity (3)

Generically, saturation models too flat

 Except for Albacete et al (BK saturation + k_T fact. ++)
 ⇒ role of late entropy production in central (~10%)??

 HIJING: hard + soft can describe central growth

 But then why same shape for RHIC & LHC?

Collective Motion: Elliptic Flow

 Pressure converts spatial anisotropy to momentum anisotropy.

Collectivity: Elliptic Flow

Logarithmic variation of v₂ with √s above 10 GeV

 Change from RHIC to LHC is comparable to change from SPS to RHIC
 ⇒But, beware, integral v₂ can be misleading.
 ⇒Though it may be most directly related to η/s

11

Collectivity: Elliptic Flow (2)

 Identical results for v₂(p_T) @ RHIC & LHC

 Except for peripheral
 ⇒Likely EP vs cumulant

• How?

 Same initial eccentricity + same collectivity?

Or
 Accident?

Collectivity: Elliptic Flow (3)

RHIC (PHOBOS) $v2(\eta)$ LHC (ATLAS) $v2(\eta)$

Weak variation of v₂ with η for p_T > 500 MeV

 In contrast to RHIC results.
 Saturation of v₂ due to longer lifetime @ LHC?

Collectivity: Elliptic Flow (4)

Viscous hydro + hadronic cascade (VISHNU)

- Compare to RHIC and LHC $dN_{chg}/d\eta$, $v_2(p_T)$, $v_2(cent)$ - Using CGC initial conditions (KLN)
- Possibly higher η /s @ LHC
 - But, caveats re: initialization of $\pi^{\mu\nu}$

 Important to remember that longer lifetime of sQGP @ LHC should have consequences for v₂ 14

Collectivity: Elliptic Flow (5)

• Heinz:

 - charged particle v₂(p_T) agreement between RHIC & LHC is largely an accident
 ⇒π, K, p differ between RHIC and LHC in Hydro

Heinz et al:

Hydro + cascade (VISHNU) describes mass (π, K, p) splitting

Higher Flow Harmonics

Major paradigm shift in the field in the last year

 Higher flow harmonics arising from initial-state fluctuations in transverse positions of participants

$$rac{dN}{d\phi dp_T d\eta} = rac{dN}{2\pi dp_T d\eta} \left(1 + \sum_m 2v_m \cos\left[m(\phi - \psi_m)
ight]
ight)$$

Higher Flow Harmonics (2)

 Combination of v₂ and v₃ provide more stringent tests of hydrodynamic calculations

- Heinz et al: (preliminarily)
 - LHC data prefer ordinary "Glauber" initial conditions (MC-Glb) over CGC a la MC-KLN
 - ⇒<mark>η/s ≈ 1/4</mark>π
 - ⇒rules out saturation? or just KLN

Higher Flow Harmonics (3)

• Higher harmonics also studied using 2-particle correlations at large $\Delta\eta$

 Sum of harmonic contributions sufficient to explain the "ridge" and the "mach(?) peaks"

⇒Resolves two important "problems" in the field

Jet Quenching @ RHIC: 1 slide summary

Jet Quenching @ RHIC: 1 slide summary

Jet Quenching

 Key question:

 How do parton showers in hot medium (quark gluon plasma) differ from those in vacuum?

(a) Fragmentation in vacuum
Projectile gluon

From "Jet Quenching in Heavy Ion Collisions", U. Wiedemann, arXiv:0908.2306₁

Light "Jet" Quenching @ RHIC

Indirect measurement of jet quenching via single particles

Indirect measurement of di-jet imbalance via pairs of particles

22

 We do not yet have a unique quantitative understanding of jet quenching @ RHIC
 ⇒Lack of jet measurements a serious limitation

ATLAS: asymmetric dijet in Pb+Pb

Central collision, highly asymmetric dijet

ATLAS: asymmetric dijet in Pb+Pb

Central event, with split dijet + additional activity

Di-jet asymmetry - ATLAS PRL

$$A_{\mathrm{J}}\equiv rac{E_{T\,1}-E_{T\,2}}{E_{T\,2}+E_{T\,1}}$$

• "Holy grail" of jet quenching

– But, due to quenching or underlying event?

ATLAS: Di-jet Asymmetry, R = 0.2

 Strong modification of di-jet asymmetry in R = 0.2 jets (1/4 area of R = 0.4)
 Asymmetry not due to underlying event

26

Dijet asymmetry: Theory comparisons

AMY energy loss with 1 free parameter (α_s)
 Good description of modified asymmetry distribution
 Decisive test of energy loss calculations
 1st step towards quantitative probe of jet + sQGP interactions using jets

Jet Quenching: Inclusive Observables

Vitev, Wicks, Zhang, JHEP 0811 (2008) 093

Armesto, Salgado, *et al*, JHEP 0802 (2008) 048

Key questions:

⇒ (How much) Is the jet yield suppressed?
⇒ How does suppression depend on jet radius?
⇒ Is the fragmentation function D(z) modified?
⇒ Is the hadron angular distribution broadened?

Single Jet Rates, R = 0.4

Single jet spectra

For single jet spectra

 Centrality independent 22% systematic error on normalization due to 4% jet energy scale uncertainty. 29

Jet Suppression via R_{cp}

R = 0.4

• Observe:

⇒Factor of ≈ 2 suppression of jet yield/N_{coll} in central (0-10%) collisions relative to 60-80% collisions.

Jet Suppression via R_{cp} (2)

R = 0.2

• Observe

⇒Suppression E_T independent within errors ⇒Same for R = 0.2 and R = 0.4 within errors

Jet Fragmentation

 No apparent modifications of (longitudinal) jet fragmentation function.

Summary & Comments/Questions

• LHC multiplicity (and E_T) results provide key data on LHC initial conditions \Rightarrow But insight on the physics? Physics of bulk particle production also determines initial state geometry & fluctuations \Rightarrow Possibility for v_n to constrain theoretical descriptions of the initial conditions \Rightarrow But, do we have the correct physical picture? Additional insight from p+A, e+A needed

Summary & Comments/Questions (2)

Collective flow physics qualitatively similar at RHIC and the LHC

 But, longer lifetime of sQGP at LHC results in less sensitivity to hadronic stage.

 For both RHIC, LHC vn physics will revolutionize study of collective flow

⇒Precision determination of transport coefficients?

⇒Constrain descriptions of initial state

Sensitivity to weaker coupling at higher T?

Summary & Comments/Questions (3)

Single/di-hadron measurements replaced by jet measurements on our way to sQGP tomography

Jet Measurements @ RHIC

Both STAR and PHENIX are pursing A+A jet measurements @ RHIC

 ⇒But, neither detector is optimal for jets in A+A
 So, PHENIX has proposed major upgrade (sPHENIX) with goal of performing jet measurements similar to ATLAS & CMS

LHC Heavy Ion Program: prospects

In Nov. 2011, 3 week Pb+Pb run

expect x10 increase in ∫ L dt over 2010 run
Important for jet, γ, γ-jet, b jet, W, Z, J/ψ, Υ

Hopefully, a first low-statistics p+Pb data set

As a test for a high-statistics p+Pb run in 2012

Charged Particle Suppression

Charged particle R_{AA} vs p_T up to 50 GeV/c

 Below ~ 6 GeV, dominated by soft physics
 Gradual reduction in suppression with increasing p_T
 Long sought indications of radiative energy loss?
 Measurements starting to discriminate models?

Backup

Higher Flow Harmonics (2)

Elliptic (v₂) flow dominates except in central collisions where ε₂ = 0 without fluctuations
 - v₃ has much weaker centrality dependence
 ⇒ consistent with participant fluctuations

Jet Fragmentation (Transverse)

• Measure distribution of fragment p_T normal to jet axis: $j_T \equiv p_T^{
m had} \sin \Delta R = p_T^{
m had} \sin \left(\sqrt{\Delta \eta^2 + \Delta \phi^2} \right)$

Compare central (0-10%) to peripheral (60-80%)
 ⇒No substantial broadening observed.