Recent Results in Particle and Nuclear Physics from Lattice QCD

5

T. Hatsuda (Univ. Tokyo / RIKEN) THE UNIVERSITY OF TOKYO

Lattice by Delorfirith

Recent Selected Results in Particle and Nuclear Physics from Lattice QCD

5

1. LQCD basics
 2. Precision LQCD
 3. Thermal LQCD
 4. Nuclear LQCD
 5. Summry

Lattice by Delorfirith

Current challenges in QCD

Primordial form of matter quark-gluon plasma, hadron structure Origin of heavy elements in explosive astrophysical phenomena Super dense matter neutron star, exotic matter, ... Inputs for "new physics" search dark matter, ...

Lattice QCD provides (1) precision calculations & (2) qualitative pictures

Lattice QCD basics

$$\mathcal{L} = -\frac{1}{4}G^a_{\mu\nu}G^{\mu\nu}_a + \bar{q}\gamma^\mu(i\partial_\mu - \mathbf{g}t^aA^a_\mu)q - \mathbf{m}\bar{q}q$$

$$\mathcal{L} = -\frac{1}{4}G^a_{\mu\nu}G^{\mu\nu}_a + \bar{q}\gamma^\mu(i\partial_\mu - \mathbf{g}t^a A^a_\mu)q - \mathbf{m}\bar{q}q$$

$$\mathcal{L} = -\frac{1}{4}G^a_{\mu\nu}G^{\mu\nu}_a + \bar{q}\gamma^\mu(i\partial_\mu - \mathbf{g}t^a A^a_\mu)q - \mathbf{m}\bar{q}q$$

$$Z = \int [dU] [dq d\bar{q}] \exp\left[-\int d\tau d^3 x \mathcal{L}_{\rm E}\right]$$

Monte Carlo method Observable =O(g, m, a, L)

$$\mathcal{L} = -\frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a + \bar{q} \gamma^\mu (i\partial_\mu - \mathbf{g} t^a A^a_\mu) q - \mathbf{m} \bar{q} q$$

What can be done

- hadron properties & interactions
- hot plasma in equilibrium

What is difficult

- cold plasma
- phenomena far from equilibrium

$$Z = \int [dU] [dqd\bar{q}] \exp\left[-\int d\tau d^3 x \mathcal{L}_{\rm E}\right]$$

Monte Carlo method Observable =O(g, m, a, L)

original plot by A. Ukawa

Three Important limits

| -1

 $m_{\scriptscriptstyle ud}$

Three Important limits

 $L^{-1} \rightarrow 0$ (thermodynamics limit) : finite size scaling $a \rightarrow 0$ (continuum limit) $m \rightarrow 0$ (chiral limit)

: asymptotic freedom

: chiral pert. theory

-1

"Techniques"

Fermions:

Staggered, Wilson, Domain-wall, Overlap different ways of handling chiral symmetry

Improved actions:

stout, HEX, asktad, HISQ, clover, different ways of reducing the discretization error

Advanced algorithms:

RHMC, DDHMC, LMA, techniques to make the simulations fast and reliable

Three Important limits

 $L^{-1} \rightarrow 0$ (thermodynamics limit) : finite size scaling $a \rightarrow 0$ (continuum limit) $m \rightarrow 0$ (chiral limit)

: asymptotic freedom

: chiral pert. theory

Fermions:

Staggered, Wilson, Domain-wall, Overlap different ways of handling chiral symmetry

Improved actions:

stout, HEX, asktad, HISQ, clover, different ways of reducing the discretization error

Advanced algorithms:

RHMC, DDHMC, LMA, techniques to make the simulations fast and reliable 2-flavor 3-flavor (2+1)-flavor (1+1+1)-flavor

 $m_{\scriptscriptstyle ud}$

-1

Precision Lattice QCD

Hadron masses @ 2009

PACS-CS Collaboration, Phys.Rev.D79(2009)034503

(2+1)-flavor, Wilson L =2.9 fm, a =0.09 fm $m_{\pi}(min)$ =156 MeV BMW Collaboration, Science 322 (2008) 1224.

(2+1)-flavor, Wilson L =(2.0- 4.1) fm, a =0.065, 0.085, 0.125 fm $m_{\pi}(min)$ =190 MeV

Hadron masses @ 2011 Physical point simulations in (2+1)-flavor QCD

 PACS-CS Coll.:
 Phys. Rev.D81 (2010) 074503

 BMW Coll.:
 Phys. Lett. B701 (2011) 265

QCD running coupling

Bethke, Eur. Phys. J C(2009)64:689

QCD running coupling

Light quark masses (MSbar, @2GeV)

Summary by FLAG working group arXiv:1011.4408[hep-lat]

Light quark masses (MSbar, @2GeV)

Summary by FLAG working group arXiv:1011.4408[hep-lat]

QCD(simulation)+QED(estimate)

N_{f}	m _u [MeV]	m _d [MeV]	m _{ud} [MeV]	m _s [MeV]	m _s /m _{ud}
2+1	2.19(15)	4.67(20)	3.42(11)	94(3)	27.4(4)

QCD+QED simulation has also been started Blum et al., Phys. Rev. D82 (2010) 094508

Low energy constants

$$[-\langle \bar{q}q \rangle_{_{2 \text{GeV}}}]^{1/3} = (250 - 275)[\text{MeV}]$$

$$L_{4-8}, f_+(0), f_K/f_\pi, B_K, \text{etc}$$

More in arXiv:1011.4408 [hep-lat] (FLAG working group)

strangeness content of the proton

Takeda [JLQCD Coll.], Phys.Rev. D83 (2011) 114506

DM – Nucleon Interaction

Giedt, Thomas, Young Phys. Rev. Lett. 103 (2009) 201802

XENON100 Coll.: Phys.Rev.Lett. 105 (2010) 131302 arXiv:1104.2549 [astro-ph.CO] arXiv:1107.2155 [astro-ph.IM]

Thermal Lattice QCD

Fukushima and Hatsuda, Rep. Prog. Phys.74 (2011)014001

Thermal QCD transition at µ=0

Columbia plot

Thermal QCD transition at µ=0

Columbia plot

Finite size scaling

Budapest group, Nature 443 (2006) 675 Staggered, (2+1)-flavor, physical mass

Thermal chiral condensate at m_{π} =135 MeV

Pseudo-critical temperature T_{pc}

Chiral susceptibility peak (max. fluctuation) $\Rightarrow T_{pc}=150-160 MeV$

Equation of state (EOS) : p(T), $\epsilon(T)$

$$\frac{p(T)}{T^4} - \frac{P(T_0)}{T_0^4} = \int_{T_0}^T \frac{dT'}{T'} \frac{\epsilon(T') - 3p(T')}{T'^4}$$

LQCD-EOS applied to RHIC

Wuppertal-Budapest's LQCD EOS JHEP 1011 (2010) 77

ε(T)/T⁴

Akamatsu, Hamagaki, Hirano, Hatsuda arXiv:1107.36[nucl-th]

Heavy QQbar in QGP

LQCD + Bayesian analysis \Rightarrow spectral function \Rightarrow dilepton rate

Asakawa, Nakahara, Hatsuda, Prog. Part. Nucl. Phys.46 (2001) 469

Y spectral function on the lattice

Y in pp and PbPb collisions at LHC

Matsui & Satz, PLB (1986)

 $N_f=2$, $a_s=0.162$ fm, $\xi=6$, L=1.94 fm Aarts et al., arXiv:1109.4496 [hep-lat]

CMS Coll., arXiv:1105.4894[nucl-ex] Wyslouch (for CMS), arXiv:1107.2895[nucl-ex]

Nuclear Lattice QCD

Nuclear Force from LQCD

- 1. Low energy NN int. \Leftrightarrow NN potential $V(\vec{r}, \nabla) = V_{\rm C}(r) + S_{12}V_{\rm T}(r) + \vec{L} \cdot \vec{S} V_{\rm LS}(r) + \{V_{\rm D}(r), \nabla^2\} + \cdots$
- 2. NN potential from NN "wave function"

 $\overline{\phi(\vec{r})} = \langle 0 | N(\vec{x} + \vec{r}) N(\vec{x}) | 6q \rangle$

Ishii, Aoki, Hatusda, Phys.Rev.Lett. 99 (2007) 022001

repulsive core

- + attractive well
- + <u>tensor force</u> from LQCD

HAL QCD Coll., arXiv:1004.0405[hep-lat]

Inner core of neutron star -- role of 2-body and 3-body forces --

Radius ~ 10 km Mass ~ solar mass Central density ~ 10^{12} kg/cm³

Schaffner-Bielich, Nucl. Phys.A 835, 279 (2010)

YN interaction \Leftrightarrow onset of hyperon mixture NNN (BBB) interaction \Leftrightarrow large max mass (e.g. 1.97(4) M_{\odot})

BB interactions in 3-flavor LQCD

- 1. Numerical experiments of YN & YY interactions (not easily accessible in laboratory experiments)
- 2. Physical origin of the short range NN repulsion
- 3. Fate of H-dibaryon

Six independent potentials in the flavor-basis

BB potentials in flavor-basis

Inoue et al. [HAL QCD Coll.] Phys. Rev. Lett. 106 (2011) 162002

BB potentials in flavor-basis

Inoue et al. [HAL QCD Coll.] Phys. Rev. Lett. 106 (2011) 162002

BB potentials in flavor-basis

Inoue et al. [HAL QCD Coll.] Phys. Rev. Lett. 106 (2011) 162002

Short range BB int. ⇔ Quark Pauli principle

- 1 : allowed,
- 27 : partially blocked, 8_s : blocked

c.f. constituent quark model (Oka, Yazaki, Shimizu, ...)

H-dibaryon from LQCD -- binding energy vs. size --

Jaffe, Phys. Rev. Lett. 38 (1977) 195

Inoue et al. [HAL QCD Coll.] Phys. Rev. Lett. 106 (2011) 162002

H dibaryon from LQCD

Jaffe, Phys. Rev. Lett. 38 (1977) 195

Inoue et al. [HAL QCD Coll.] Phys. Rev. Lett. 106 (2011) 162002 Beane et al. [NPLQCD Coll.] Phys.Rev.Lett. 106 (2011) 162001

"Constituent quark model" from LQCD ?

Quenched QCD: Coulomb gauge L = 3.3 fm, a = 0.104 fm(2+1)-flavor QCD: Coulomb gauge L = 3 fm, a = 0.09 fm

Ikeda & Iida,1102.2097 [hep-lat]

Kawanai & Sasaki,1102.3246 [hep-lat] Kawanai @ Lattice2011

<u>J^P=1⁻ channel</u>

"Constituent quark model" from LQCD ?

Quenched QCD: Coulomb gauge L = 3.3 fm, a = 0.104 fm (2+1)-flavor QCD: Coulomb gauge L = 3 fm, a = 0.09 fm

Ikeda & Iida,1102.2097 [hep-lat]

Kawanai & Sasaki,1102.3246 [hep-lat] Kawanai @ Lattice2011

J^P=0⁻ channel

J^P=1⁻ channel

Coulomb+linear+spin-dep. potential between dynamical quarks

"Summary"

- 1. LQCD provides precision computations (2+1)-flavor, L=6fm, a=0.05fm, m_{π} =135MeV α_s , $m_{u,d,s,}$ low energy constants, ...
- 2. LQCD provides inputs for PAN phenomenology
 - dark matter (e.g. ssbar in the nucleon)
 - quark-gluon plasma (EOS, spectral function,...)
- 3. LQCD provides qualitative pictures
 - nucleon and hyperon forces
 - the constituent quark model

"Future" (10 Pflops era from 2012)

At next PANIC (2014), we would (like to) hear

- 1. Physical point simulations for <u>many</u> observables no more chiral extrapolation
- Simulations with "better" fermions staggered, Wilson → domain wall, overlap
- 3. Realistic BB, BBB forces & light nuclei

Yamazaki et al. [PACS-CS Coll.], Phys.Rev.D81(2010)111504

T. Doi [HAL QCD Coll.], arXiv:1106.2276[hep-lat]

Backup slides

"Conclusion"

"The Scientist as Rebel" by Freeman J. Dyson

It often happens that the understanding of the mathematical nature of an equation is impossible without a detailed understanding of its solutions. The black hole is a case in point.

One could say without exaggeration that Einstein's equations of general relativity were understood only at a very superficial level before the discovery of the black hole.

The progress of science requires the growth of understanding in both directions, downward from the whole to the parts and <u>upward from the parts to the whole</u>.

Chiral condensate

$$f_{\pi}^2 m_{\pi}^2 = -(m_u + m_d) \langle \bar{q}q \rangle_0 + O(m_{u,d}^2)$$

Tohoku Univ. Univ. Tsukuba RIKEN Nihon Univ. Tokyo Inst. Tech. CNS, Univ. Tokyo

H. Nemura
S. Aoki, N. Ishii, K. Sasaki
K. Murano, T. Hatsuda
T. Inoue
Y. Ikeda
T. Doi

Phenomenological NN potentials (~40 parameters to fit 5000 phase shift data)

One-pion exchange by Yukawa (1935)

Multi-pions by Taketani et al. (1951)

Repulsive core by Jastrow (1951) Key channels in NN scattering $(^{2s+1}L_J)$

LO LO NLO NNLO

 S_0 Central force \iff nuclear BCS pairing

Bohr, Mottelson & Pines, Phys. Rev. 110 (1958)

³S₁-³D₁ Tensor force \iff deuteron binding Pandharipande et al., Phys. Rev. C54 (1996)

³P₂-³F₂ LS force \iff neutron superfluidity in neutron stars

Tamagaki, Prog. Theor. Phys. 44 (1970)

Density profile of the deuteron with $S_z = \pm 1$

Equal-time NBS amplitude $\phi(\mathbf{r})$ in lattice QCD

 $\phi(r > R) \rightarrow phase shift :$ Luscher, Nucl. Phys. B354 (1991) 531 $\phi(r < R) \rightarrow potential :$ Ishii, Aoki & Hatsuda, PRL 99 (2007) 022001

Luscher, Nucl. Phys. B354 (1991) 531

[1] <u>Temporal</u> correlation : $E_{NN}(L) \rightarrow NN$ phase shift

$$\frac{2\mathcal{Z}_{00}(1,q)}{L\pi^{1/2}} = k \cot \delta_0(k)$$

• quenched QCD: CP-PACS Coll. (1995)

• full QCD: NPLQCD Coll. (2006-)

[2] <u>Spatial</u> correlation : BS wave function

BS wave function \rightarrow NN potential \rightarrow observables

$$(E - H_0)\phi(\mathbf{r}) = \int U(\mathbf{r}, \mathbf{r}')\phi(\mathbf{r}')d\mathbf{r}'$$

π-π system : CP-PACS Coll. (2005)
 NN system (quenched QCD) : Ishii, Aoki & T.H., PRL 99, 022001 (2007).
 NN, YN systems (full QCD): HAL QCD Coll. (2008-)

Systematic procedure to define the NN potential in lattice QCD

Full details, see Aoki, Ishii & Hatsuda, 0909.5585 [hep-lat]

(i) Choose your favorite operator: e.g. $N(x) = \epsilon_{abc}q^a(x)q^b(x)q^c(x)$ observables do not depend on the choice yet the local operator is useful Nishijima, Haag, Zimmermann (1958)

(ii) Measure the NBS amplitude: $\phi(\vec{r}) = \langle 0 | N(\vec{x} + \vec{r}) N(\vec{x}) | 6q \rangle$

(iii) Define the non-local potential: $(E - H_0)\phi(\vec{r}) = \int U(r, \vec{r'})\phi(\vec{r'})d^3r'$

(iv) Velocity expansion :
$$U(\vec{r}, \vec{r'}) = V(\vec{r}, \nabla)\delta^3(\vec{r} - \vec{r'})$$

$$V(\vec{r}, \nabla) = V_{\rm C}(r) + S_{12}V_{\rm T}(r) + \vec{L} \cdot \vec{S} \ V_{\rm LS}(r) + \{V_{\rm D}(r), \nabla^2\} + \cdots$$

Okubo-Marshak (1958), Tamagaki-Watari (1967)

(v) Calculate observables : phase shifts, binding energies etc

Properties of lattice NN potential U(r,r')

$$U(\vec{r},\vec{r}') = V(\vec{r},\nabla)\delta^3(\vec{r}-\vec{r}')$$

[1] U(r,r') is N(x)-dependent

QM : $(\psi, V) \rightarrow$ observables QFT : (asymptotic field, vertices) \rightarrow observables $(N(x), U(r, r')) \rightarrow$ observables

[2] U(r,r') is *E*-independent

non-locality can be determined order by order

[3] U(r,r') has minor volume dependence

Wave function is <u>sensitive</u> to the volume Potential is <u>insensitive</u> to the volume remember the deuteron !

Central & tensor potentials : $V_{C}(r) \& V_{T}(r)$

Aoki, Ishii & Hatsuda, 0909.5585 [hep-lat]

Central & tensor potentials : $V_{C}(r) \& V_{T}(r)$

Aoki, Ishii & Hatsuda, 0909.5585 [hep-lat]

Central & tensor potentials : $V_C(r) \& V_T(r)$

Aoki, Ishii & Hatsuda, 0909.5585 [hep-lat]

Rapid quark-mass dependence of V_T(r)
 Evidence of the one-pion-exchange

$$\begin{aligned} V_T(r) &= b_1 (1 - e^{-b_2 r^2})^2 \left(1 + \frac{3}{m_\rho r} + \frac{3}{(m_\rho r)^2} \right) \frac{e^{-m_\rho r}}{r} \\ &+ b_3 (1 - e^{-b_4 r^2})^2 \left(1 + \frac{3}{m_\pi r} + \frac{3}{(m_\pi r)^2} \right) \frac{e^{-m_\pi r}}{r}, \end{aligned}$$

ΛN interaction

- Repulsive core + attractive well
- Weak tensor force
- Overall attraction

Nemura et al. (HAL QCD Coll.)

irreducible BB source operator

BB wave functions in flavor-basis

Iwasaki + clover (CP-PACS/JLQCD config.) L=1.9 fm, a=0.12 fm, 16^3x32 m_{π}=835 MeV, m_B=1752 MeV

Inoue et al. (HAL QCD Coll.) Prog. Theor. Phys. 124 (2010) 591

Origin of the short range BB int. ⇔ Quark Pauli principle !

1 : allowed, 27 : partially blocked, 8_s : blocked

c.f. constituent quark model (Oka, Yazaki, Shimizu, ...)

BB phase shifts in flavor-basis (¹S₀ channel)

