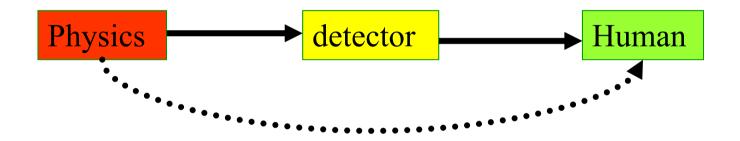
Basic of Detector

Atsushi Taketani 竹谷篤 RIKEN Nishina Center Detector Team RIKEN Brookhaven Research Center

What I worked for detectors

- Electron-Positron collider Experiment at 60GeV
 - Trigger electronics, TRD, EMCAL, Si Sensor
- Proton-Antiproton collider experiment at 1.8TeV
 - Muon detector, Readout electrinics
- Large scale Accelerator control at 8GeV
 - Distributed computing system hardware/software
- Polarize proton-proton/ Heavy Ion collider experiment at 200GeV
 - Muon detector, Si detector


Working higher energy

• Start to work for Detectors for RIBF experiment

Index of this lecture

- 1. Why/How we need detector?
- 2. What do we want to measure?
- 3. Gas Chamber basics
- 4. Scintillator
- 5. PHENIX experiment and Silicon Detector
- 6. Summary

Importance of Detector

- •We need detector to understand physics
- •Detector innovation can arise new physics
 - •Telescope (1590) : Newton mechanics (Late 1600's)
 - •Velocity of light measurement (1873): Relativity (1905, 1916)
 - •High resolution hydrogen spectroscopy : Quantum mechanics (1925)

Discovery of Charm Quark

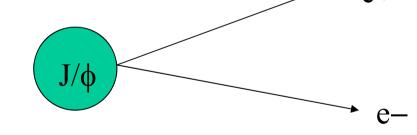
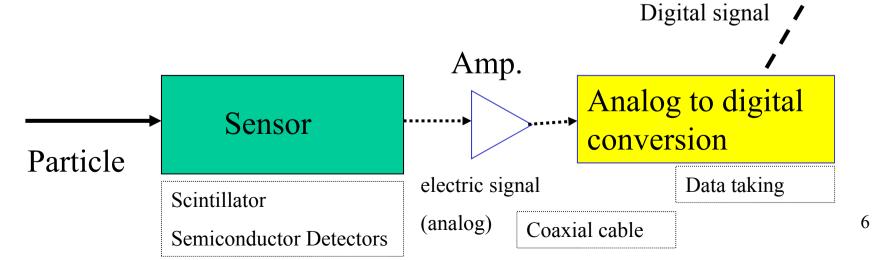


FIG. 2. Mass spectrum showing the existence of J. sults from two spectrometer settings are plotted owing that the peak is independent of spectrometer rrents. The run at reduced current was taken two nths later than the normal run.

On 1974 **丁肇中** and B. Rchiter discovered independtly.

Novel prize in Physic in 1976. Ting:


Energetic proton was bombarded to nuclear target, measure the invariant mass of produced electron and positron e_{e+}

Until Ting's discovery, many experiments saw the sign of the similar phenomena, But their resolution of the mass measurement were not good as Ting's experiment.

Major Detector Principle

- 1. Particle penetrates or stops at detector
- 2. Particle interacts with material of detector
- 3. Generating some signal
- 4. Amplification mechanism
- 5. Analog to Digital conversion
- 6. Getting into computer
- 7. Analyze at digital data ->physics

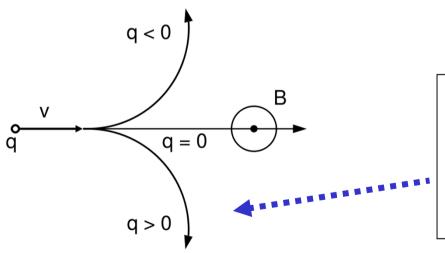
PC

Particle mass

- Particle has its own mass.
 - electron 0.511MeV
 - $-\mu$ 105MeV
 - $-\pi^+, \pi^- 140 \text{MeV}, \pi^0 135 \text{MeV}$
 - Proton 928MeV
 - $-~J/\psi~3069 MeV$ (discovered by S.C.C. Ting and B. Richter)
 - Top quark 172GeV (heaviest particle ever observed)
- If we know the mass of particle, we can identify the particle species.

4-momentum

- Treating the mass at relativity $P^2 = E^2 - |\mathbf{p}|^2 = m^2$
 - Where P:4-momentum
 - E : Energy
 - **p**: 3-momentum (px, py, pz)
 - m : invariant mass


4-momentum

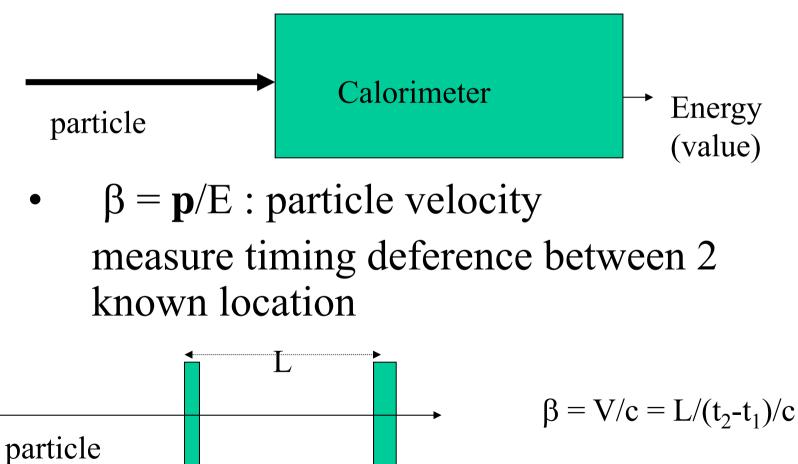
- (E, px, py, pz)
- Invariant mass : $m^2 = E^2 |\mathbf{p}|^2$
- 3-momentum (velocity) $\mathbf{v}/\mathbf{c} = \boldsymbol{\beta} = \mathbf{p}/\mathbf{E}$ Where c is light velocity
- If we can measure 3-momentum \mathbf{p} , and Energy E or 3-momentum β , m can be obtained -> identifying particle.

3-momentum measurement

Momentum can be measured by using Lorentz force
F = q[E + (v × B)],
F: force, q: electric charge, E: electric field

v: particle velocity = **p**/m, **B**: magnetic field

Constant force


- -> Constant curvature
- -> particle track trajectory

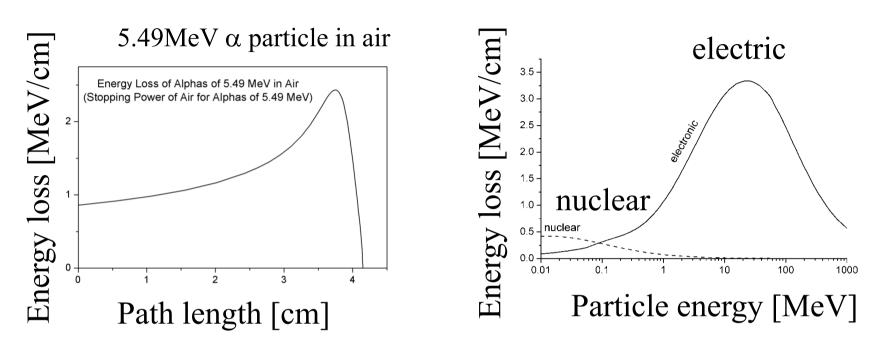
P[MeV/c] = 3 * r[cm] * B[T]

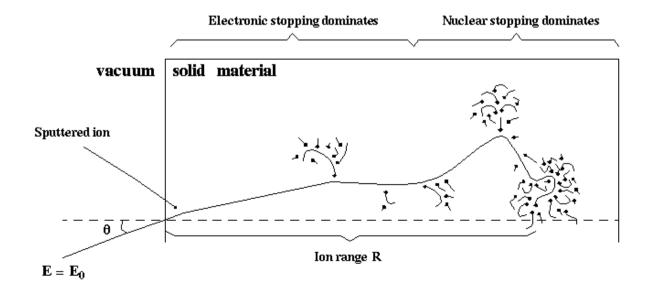
r: curvature radius, B: magnetic field¹⁰

Energy measurement

• Particle stops at the material and measure all deposited energy by energy loss

 t_2

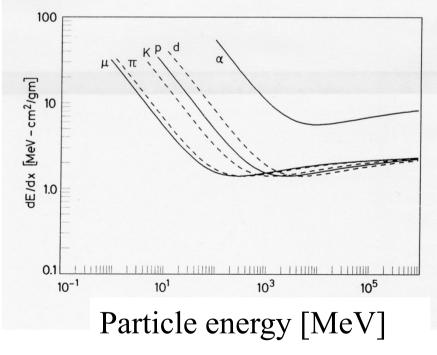

 t_1


11

Particle and material interaction

- Particle will hit, penetrate, or stop at material, including gas, liquid, solid.
- Particle has some interaction with material, then we can detect it. -> Detector
- Energy Loss, Multiple Scattering and So.

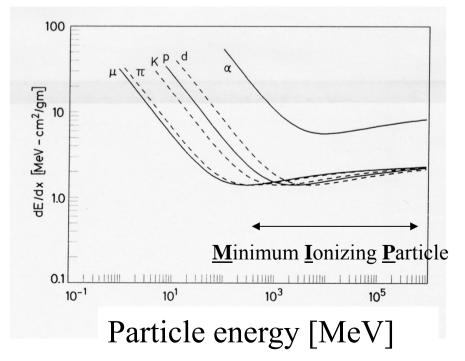
Energy Loss and stopping power

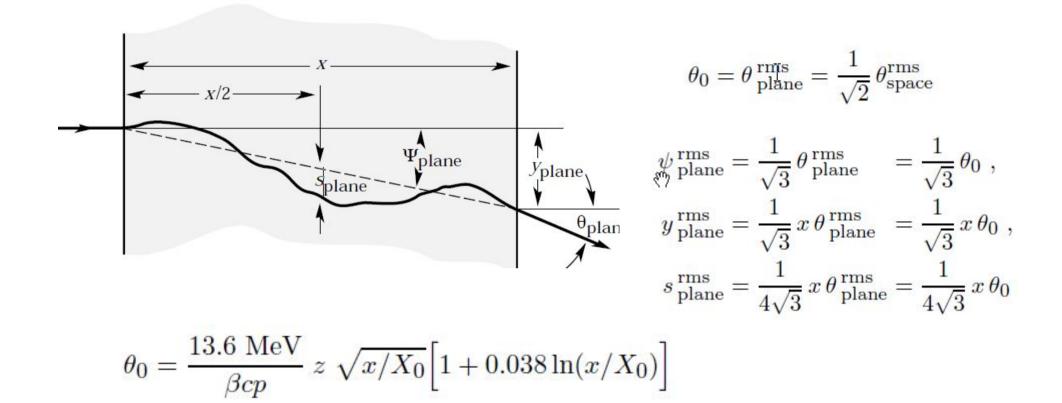

Bethe-Bloch formula

Particle charge

$$-\frac{dE}{dx} = \frac{4\pi}{m_e c^2} \cdot \frac{nz^2}{\beta^2} \cdot \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \cdot \left[\ln\left(\frac{2m_e c^2\beta^2}{I\cdot(1-\beta^2)}\right) - \beta^2\right]$$

Energy loss [MeV cm²/g]


β	= v / c
v	velocity of the particle
E	energy of the particle
x	distance travelled by the particle
С	EnergyLoss.bmpspeed of light
	particle charge
е	charge of the <u>electron</u>
m _e	rest mass of the electron
n	electron density of the target
Ι	mean excitation potential of the target
	$\frac{\text{permittivity}}{\varepsilon_0} \text{ of free space}$


Typical Energy Loss

- dE/dX ~ 1MeV cm²/g for Minimum ionizing particle
- Energy loss / Unit length
- ~ 2 MeV cm²/g * Material density [g/cm³]

For example at Al dE/dX = 1.615MeV cm²/g Aluminum ρ =2.70g/cm³ Energy loss =0.60MeV/cm

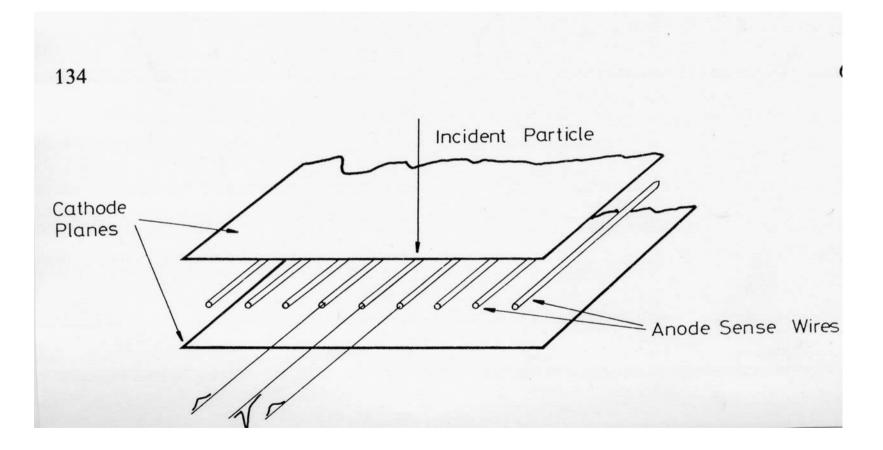
Multiple Scattering for M.I.P.

Z: particle charge

x: material thickness

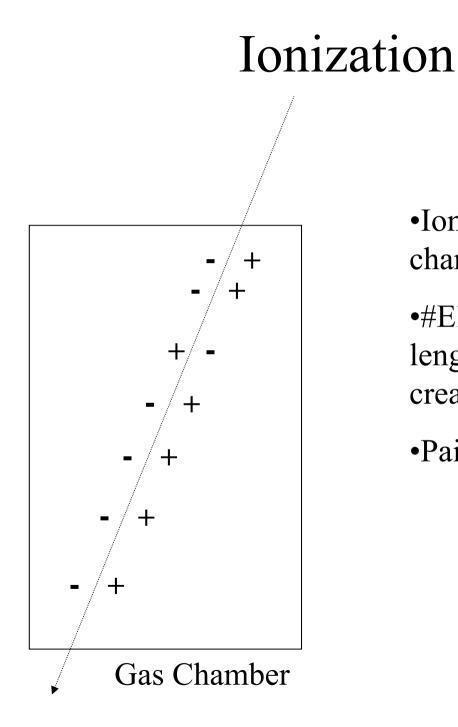
X₀: radiation length

Atomic and Nuclear properties of materials


Material	Ζ	A	$\langle Z/A \rangle$	length λ_T	Nucl.inter. length λ_I $\{g \text{ cm}^{-2}\}$	X_0	${\rm MeV}$	$\{g \text{ cm}^{-3}\}$	Melting point (K)	Boiling point (K)	Refract. index (@ Na D)
H ₂	1	1.00794(7)	0.99212	42.8	52.0	63.04	(4.103)	0.071(0.084)	13.81	20.28	1.11[132.]
D_2	1	2.01410177803(8)	0.49650	51.3	71.8	125.97	(2.053)	0.169(0.168)	18.7	23.65	1.11[138.]
He	2	4.002602(2)	0.49967	51.8	71.0	94.32	(1.937)	0.125(0.166)		4.220	1.02[35.0]
Li	3	6.941(2)	0.43221	52.2	71.3	82.78	1.639	0.534	453.6	1615.	
Be	4	9.012182(3)	0.44384	55.3	77.8	65.19	1.595	1.848	1560.	2744.	
C diamond	6	12.0107(8)	0.49955	59.2	85.8	42.70	1.725	3.520			2.42
C graphite	6	12.0107(8)	0.49955	59.2	85.8	42.70	1.742	2.210			
N2 (m)	7	14.0067(2)	0.49976	61.1	89.7	37.99	(1.825)	0.807(1.165)	63.15	77.29	1.20[298.]
02	8	15.9994(3)	0.50002	61.3	90.2	34.24	(1.801)	1.141(1.332)	54.36	90.20	1.22[271.]
$\tilde{F_2}$	9	18.9984032(5)	0.47372	65.0	97.4	32.93		1.507(1.580)	53.53	85.03	[195.]
Ne	10	20.1797(6)	0.49555	65.7	99.0	28.93	· · · · · · · · · · · · · · · · · · ·	1.204(0.839)	24.56	27.07	1.09[67.1]
Al	13	26.9815386(8)	0.48181	69.7	107.2	24.01	1.615	2.699	933.5	2792.	
Si	14	28.0855(3)	0.49848	70.2	108.4	21.82	1.664	2.329	1687.	3538.	3.95
Cl ₂	17	35.453(2)	0.47951	73.8	115.7	19.28	(1.630)	1.574(2.980)	171.6	239.1	[773.]
Ar	18	39.948(1)	0.45059	75.7	119.7	19.55	(1.519)	1.396(1.662)	83.81	87.26	1.23[281.]
Ti	22	47.867(1)	0.45961	78.8	126.2	16.16	1.477	4.540	1941.	3560.	L
Fe	26	55.845(2)	0.46557	81.7	132.1	13.84	1.451	7.874	1811.	3134.	
Cu	29	63.546(3)	0.45636	84.2	137.3	12.86	1.403	8.960	1358.	2835.	
Ge	32	72.64(1)	0.44053	86.9	143.0	12.25	1.370	5.323	1211.	3106.	
Sn	50	118.710(7)	0.42119	98.2	166.7	8.82	1.263	7.310	505.1	2875.	
Xe	54	131.293(6)	0.41129	100.8	172.1	8.48	(1.255)	2.953(5.483)	161.4	165.1	1.39[701.]
W	74	183.84(1)	0.40252	110.4	191.9	6.76	1.145	19.300	3695.	5828.	
Pt	78	195.084(9)	0.39983	112.2	195.7	6.54	1.128	21.450	2042.	4098.	
Au	79	196.966569(4)	0.40108	112.5	196.3	6.46	1.134	19.320	1337.	3129.	
Pb	82	207.2(1)	0.39575	114.1	199.6	6.37	1.122	11.350	600.6	2022.	
U	92	[238.02891(3)]	0.38651	118.6	209.0	6.00	1.081	18.950	1408.	4404.	
Air (dry, 1 a	tm)		0.49919	61.3	90.1	36.62	(1.815)	(1.205)		78.80	
Shielding co	ncrete		0.50274	65.1	97.5	26.57	1.711	2.300			
Borosilicate	glass (P	yrex)	0.49707	64.6	96.5	28.17	1.696	2.230			
Lead glass			0.42101	95.9	158.0	7.87	1.255	6.220			
Standard ro	\mathbf{ck}		0.50000	66.8	101.3	26.54	1.688	2.650			

Example

- Aluminum 1cm thickness with electron 50MeV
- Estimate the angle deviation at exit, ignore energy loss.
- Radiation length
 X₀=24.01 [g/cm²] / 2.699[g/cm³]=8.9[cm]
 x/X₀=0.11


$$\theta_{0} = \frac{13.6MeV}{\beta cp[MeV]} z\sqrt{x/X_{0}} [1 + 0.038\ln(x/X_{0})]$$
$$= \frac{13.6}{50} * 1 * \sqrt{0.11} [1 + 0.038\ln(0.11)]$$
$$= 0.082[rad] = 4.7[deg]$$
$$= \theta_{plane}^{rms}$$

Typical Wire Chamber

Gas Chamber

- 1. Energetic particle passing through gas.
- Gas molecules are ionized -> electrons and ions.
- 3. Electrons and ions are drifted to electro load with minus and plus voltage
- 4. Avalanche near by wire
- 5. Getting electrical signal

- •Ionization happens along charged particle track
- •#Electorn-Ion pair/unit length = dE/dX / Pair creation energy
- •Pair creation Energy
 - •H2 37eV
 - •Ar 26eV

Ionization

	Excitation potential	Ionization potential	Mean energy for ion-electron pair creation		
	[eV]	[eV]	[eV]		
H ₂	10.8	15.4	37		
He	19.8	24.6	41		
N ₂	8.1	15.5	35		
O ₂	7.9	12.2	31		
Ne	16.6	21.6	36		
Ar	11.6	15.8	26		
Kr	10.0	14.0	24		
Xe	8.4	12.1	22		
CO ₂	10.0	13.7	33		
CH ₄		13.1	28		
$C_{4}H_{10}$		10.8	23		

Table 6.1. Excitation and ionization characteristics of various

Ar: dE/dX = 1.519MeV cm²/g

electron-ion = 97 /cm

density = 1.662 g/L

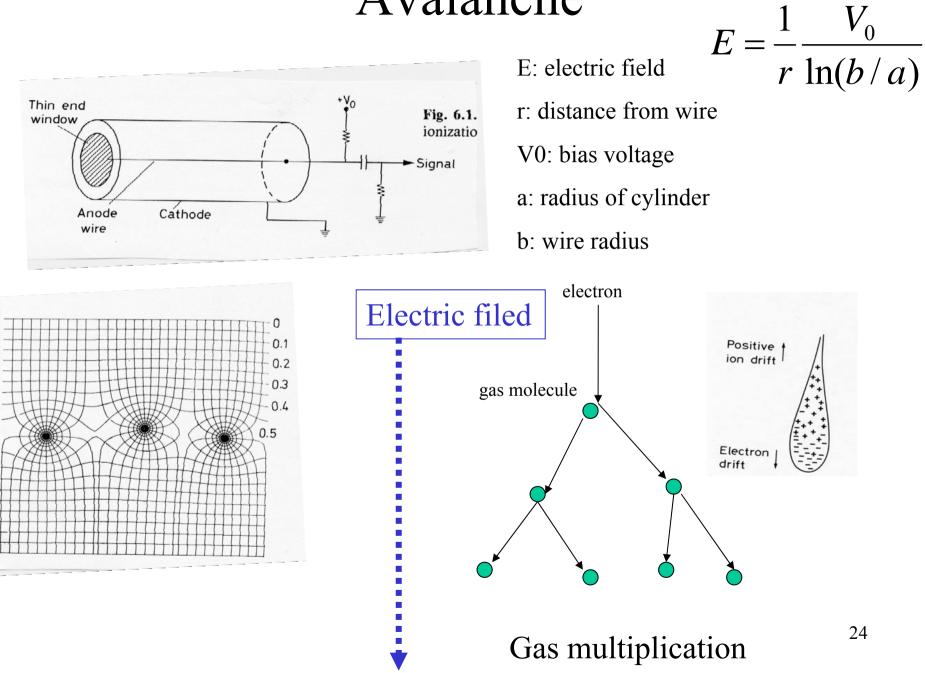
pair creation energy = 26 eV

#electron-ion = 1.519MeV cm²/g * 106 eV/MeV * 1.662g/l*1000cm³/l /26eV₂₂

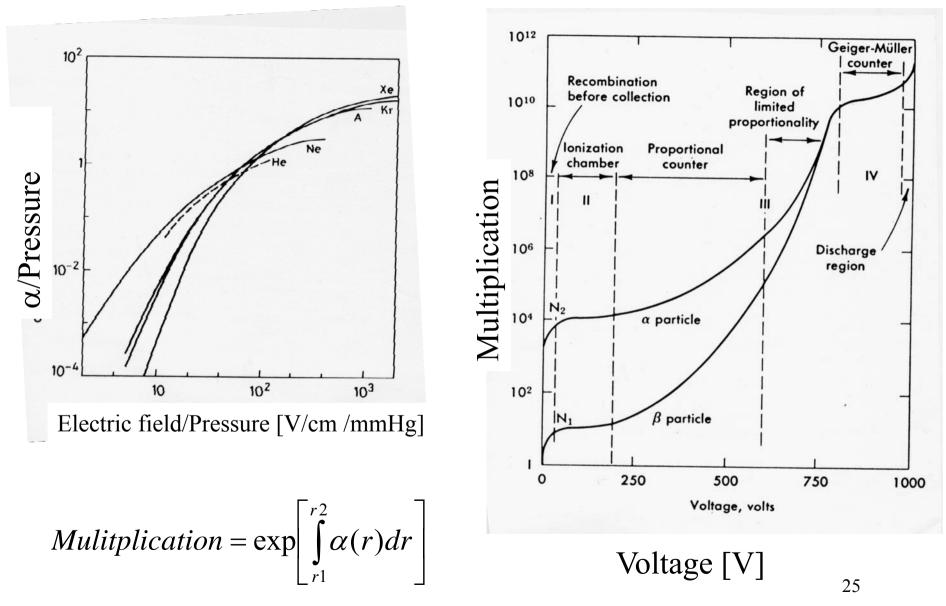
= 97 / cm

Drift

drift velocity = $50 \sim 100 \mu m/nsec$

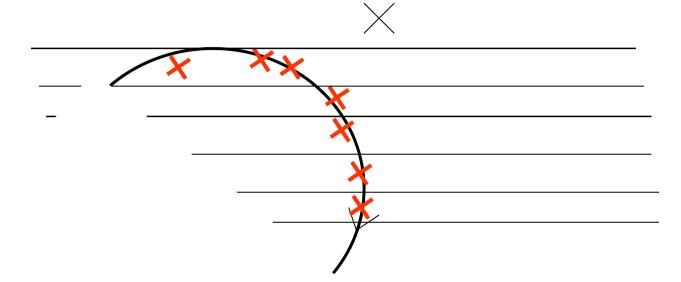

Drift velocity in Argon Methane Drift velocity in Argon Ethylene Mixture 120 60 Mixture 0.4 100 •0 100-0.5 80 .10 90-[µm/nsec] 60 0.6 •0 100 30 .20 80_ 40 0.7 91 20 20 .30 70 W [µm/ns] 0.80 W [µm/ns] 10 40 60 0.85 0.90 0 50 50 Drift velocity 50 50 .60 40 • 70 30 80 20 - 90 10 2 2.5 3 E [kV/cm] 0.5 1.5 2 3.5 4 2 2.5 3 E [kV/cm] 0.5 1 1.5 2 3 3.5 4

Electric field and potential

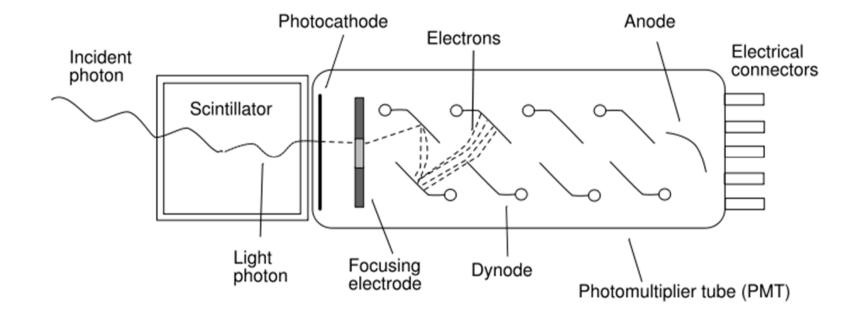

Electric field [KV/cm]

= 5mm~10mm / 100 nsec

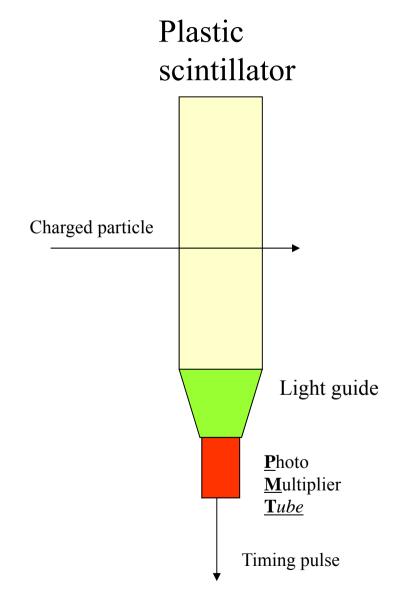
Avalanche



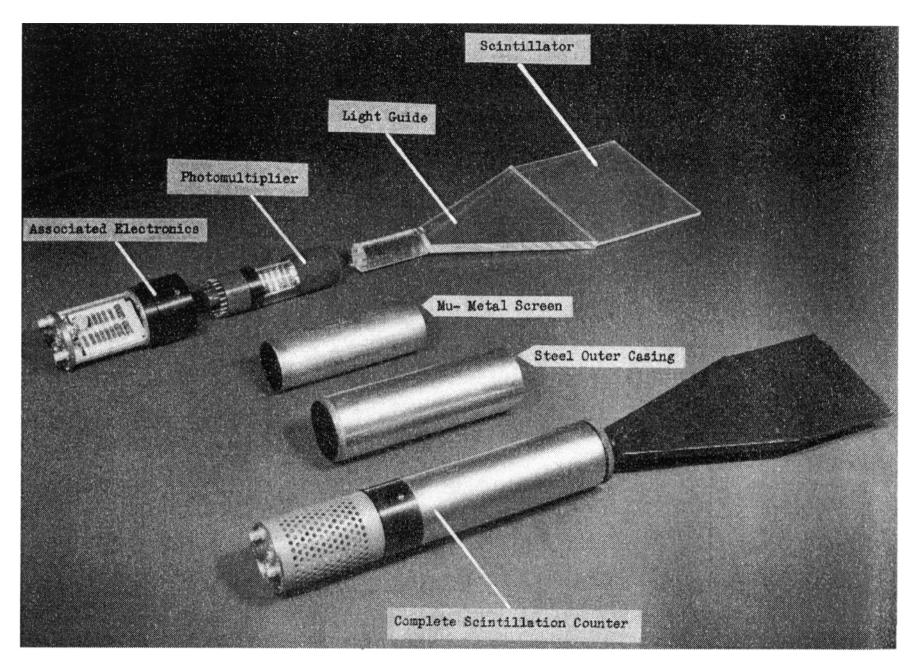
Gas Gain


Measurement of the momentum

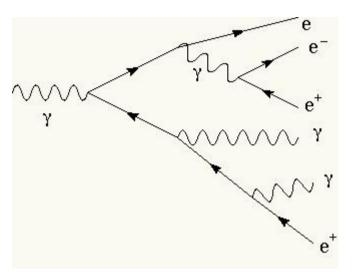
Magnetic filed

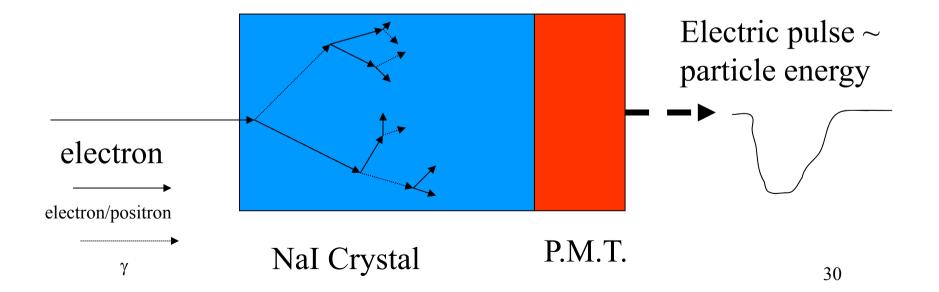


P [MeV/c] = 3 * r[cm] * B[T]
r: curvature radius, B: magnetic field


Photo Multiplier Tube

Precise Time measurement detector

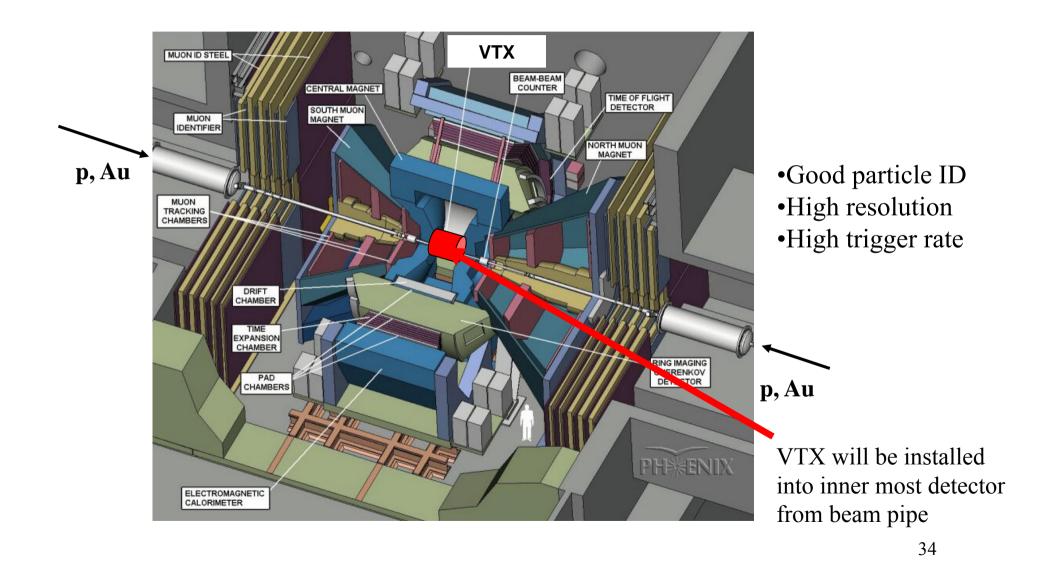



- 1. Charged particle is penetrating
- 2. Lower energy electron is exited to upper state
- 3. Upper state electron drops into lower state and emits a photon
- 4. Propagate to P.M.T.
- 5. P.M.T. generates electric pulse.

Calorimeter

Mass of electron is 511KeV $\gamma \rightarrow e^+ + e^-$ for $E\gamma > 1.02 MeV$

Typical Detector System Magnetic field L: length Calorimeter Energy =EWire Chambers Scitillator Scitillator P[MeV/c] = 3 * r[cm] * B[T]Timing =t2 Timing = t1r: curvature radius, B: magnetic field $\beta = V/c = L/(t_2-t_1)/c$ $E=P/\beta$ $m^2 = E^2 + P^2 \longrightarrow$ Determine 4-momentum 31


Other Major Detectors (include past)

Detector Type	Accuracy (rms)	Resolution Time	Dead Time	
Bubble chamber	$10150~\mu\mathrm{m}$	$1 \mathrm{ms}$	50 ms^a	
Streamer chamber	$300~\mu{ m m}$	$2 \ \mu s$	$100 \mathrm{ms}$	
Proportional chamber	50–300 $\mu \mathrm{m}^{b,c,d}$	2 ns	200 ns	
Drift chamber	$50300~\mu\mathrm{m}$	2 ns^e	100 ns	
Scintillator		100 ps/n^f	10 ns	
Emulsion	$1~\mu{ m m}$	5		
Liquid Argon Drift [Ref. 6]	${\sim}175{-}450~\mu{\rm m}$	$\sim 200~{\rm ns}$	$\sim 2 \ \mu { m s}$	
Gas Micro Strip [Ref. 7]	$3040~\mu\mathrm{m}$	< 10 ns		
Resistive Plate chamber [Ref. 8]	$\lesssim 10 \ \mu { m m}$	1-2 ns		
Silicon strip	pitch/ $(3 \text{ to } 7)^g$	h	h	
Silicon pixel	$2 \ \mu \mathrm{m}^i$	h	h	
Position			Detector de	a
sensitivity	Timi	ng	time after a	h
	sensi	tivity	3:	2

Summary

- We need to have detector to investigate nature since you can not feel particles.
- You have to build and/or be familiar with detector for your own experiments.

PHENIX Where is VTX

