

Nishina School RIKEN 4–15/Oct./2011

(Magnetic) Spectrometer

Tomohiro Uesaka <u>uesaka@riken.jp</u> RIKEN Nishina Center

2011年10月5日水曜日

What is a magnetic spectrometer?

A device to measure momentum of charged particles (*p*, HI, *e*. . .) High resolution and/or large acceptance Non-destructive Applicability to high energies

VAMOS spectrometer @GANIL

Alpha magnetic spectrometer

Magnetic spectrometers @ RIBF

Magnetic spectrometers @ RIBF

Framework to describe ion trajectories in magnetic systems

Analogy to "light" optics concepts of "focus", "dispersion", "magnification"

"MUST" knowledge to manipulate charged particles in spectrometers and RI-beam separators

Lorentz force

V

B

ρ

$\frac{p}{q} = B\rho \quad : \text{Magnetic rigidity} \\ \text{Scaling factor in ion-optics}$

Momentum measurement (primitive way)

Calculation of magnetic rigidity

⁷⁸Ni 200 MeV/nucleon ($\beta \sim 0.6$) 1) Momentum/nucleon $m_{\rm N} = 931.5 \text{ MeV/c}^2$ $p_{\rm N} = \sqrt{2m_{\rm N}T_{\rm N}} = 610 \text{ MeV/c}$

2) Total momentum of ⁷⁸Ni *P* = *A* p_N
3) Magnetic rigidity of ⁷⁸Ni Bρ = *P*/*Z* = 78×610 MeV/c / 28 = 1700 MeV/c = 5.7 Tm

$$0.3B
ho~[{
m Tm}]=p~[{
m GeV/c}]/q$$

Dipole magnet

How we can produce a dipole magnetic field?

Ampere's law $\oint \vec{B} \cdot d\vec{\ell} = \mu_0 I$

QUESTION: Why the yoke helps us to produce a higher magnetic field?

Magnetic field strength

QUESTION: How strong is the geomagnetism? $\sim 50 \ \mu T$ How strong is the magnetic field of SRC? $\sim 4 \ T$

Normal conducting magnet with iron core

Superconducting magnet

2011年10月5日水曜日

Calculation of magnetic rigidity

⁷⁸Ni 200 MeV/nucleon ($\beta \sim 0.6$) 1) Momentum/nucleon $m_{\rm N} = 931.5 \text{ MeV/c}^2$ $p_{\rm N} = \sqrt{2m_{\rm N}T_{\rm N}} = 610 \text{ MeV/c}$

2) Total momentum of ⁷⁸Ni $P = A p_N$

3) Magnetic rigidity of ⁷⁸Ni $B\rho = P/Z = 78 \times 610 \text{ MeV/c} / 28 = 1700 \text{ MeV/c}$ = 5.7 Tm $0.3B\rho \text{ [Tm]} = p \text{ [GeV/c]}/q$ Normal-conducting magnet: $B_{max} \sim 1.8 \text{ T}$ $\rightarrow \rho \sim 3.2 \text{ m}$

Momentum measurement (primitive way)

Momentum measurement (sophisticated way)

Concept of "focus" The position doesn't depend on the beam injection angle.

Quadrupole magnet

functions as lens focus charged particles in horizontal or vertical direction

usually used as doublet or triplet

Momentum measurement (sophisticated way)

Concept of "dispersion" position deviation per unit momentum deviation $D = \frac{\Delta x}{\Delta p}$

Momentum measurement (sophisticated way)

Concept of "magnification" Ratio of initial and final image-sizes

Momentum Resolution

2011年10月5日水曜日

Actual example : SHARAQ spectrometer

Actual example : SHARAQ spectrometer

DispersionD=5.85 mMagnificationM=0.397

Momentum resolution $\Delta p/p = 1/14700$ ($\delta x=1 mm$)

More general description

$$\begin{pmatrix} x_f \\ \theta_f \\ y_f \\ \phi_f \\ t_f \\ \delta \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & 0 & 0 & 0 & R_{16} \\ R_{21} & R_{22} & 0 & 0 & 0 & R_{26} \\ 0 & 0 & R_{33} & R_{34} & 0 & 0 \\ 0 & 0 & R_{43} & R_{44} & 0 & 0 \\ R_{51} & R_{52} & 0 & 0 & 1 & R_{56} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_i \\ \theta_i \\ y_i \\ \phi_i \\ t_i \\ \delta \end{pmatrix}$$

*R*₁₁ (horizontal) magnification

R₁₆ dispersion

 $R_{12} = 0$ focus condition

Matrix of SHARAQ

(-	-0.3974	-0.0000	0.0000	0.0000	0.0000	-5.8582
	-0.7727	-2.5164	0.0000	0.0000	0.0000	0.6608
	0.0000	0.0000	-0.0000	-2.3039	0.0000	0.0000
	0.0000	0.0000	0.4340	-0.1971	0.0000	0.0000
-	-0.2948	-0.9073	0.0000	0.0000	1.0000	-0.0279
	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000 /

Further reading

"Optics of charged particles" Hermann Wollnik

Optics of Charged Particles

Hermann Wollnik

Physikalisches Institut Justus Liebig-Universität Giessen, Federal Republic of Germany

1987

ACADEMIC PRESS, INC. Harcourt Brace Jovanovich, Publishers

Orlando San Diego New York Austin Boston London Sydney Tokyo Toronto

If you want to make ion-optics calculations

GIOS, GICOSY <u>http://www-linux.gsi.de/~weick/gios/</u> <u>http://www-linux.gsi.de/~weick/gicosy/</u>

COSY Infinity http://bt.pa.msu.edu/index_cosy.htm

2011年10月5日水曜日

Ion-optical (magnetic) analysis is a versatile technique in nuclear and particle physics experiments.

Once you're familiar with it, you can use it in a variety of occasions as

High-resolution momentum measurement with a spectrometer RI-beam production & tagging with a RI-beam separator Beam acceleration & transport with an accelerator&beam-line

Addendum

Proof of " $heta_{ m bend} \propto q/p = 1/B ho_{ m particle}$ "

L θ

The lower(higher)-momentum particle is bended with a bending radius of ρ (ρ ').

Assumed that the length of arc L is same for the two particles, the bending angles are written for the particles as

$$heta=rac{L}{2\pi
ho} \ heta'=rac{L}{2\pi
ho'}$$

Since magnetic field strength B is common for two particles, the bending angle is inversely proportional to the magnetic rigidity.

$$\frac{\theta'}{\theta} = \frac{B\rho}{B\rho'}$$