# Lecture 5 Nuclear Theory

#### Microscopic description of nuclear structure

# Kengo Ogawa(小川建吾)

1. Introduction

- 2. Magic numbers and shell structure in nuclei
- 3. One- and two-particle nuclei
- 4. Effective interaction between identical particles
- 5. Proton-neutron interaction and isomers
- 6. Summary



from  $\gamma$ -ray, we can know the energy levels.



2. Magic numbers

Energy spectra of Ti-isotopes



## Energy spectra of Fe-isotopes



Stability of N = 28!!

## Nuclear Binding Energy

$$\mathcal{B}(Z,N) = ZM_p + NM_n - \mathcal{M}(Z,N)$$

Comparison of  $\mathcal{B}_{exp}$  and  $\mathcal{B}_{theory}$ (liquid dro

#### $\Downarrow$

obvious discrepancy at  $N, Z = 20, 28, 50, \cdots$ 



# Magic Numbers

Z = 2, 8, 20, 28, 50, 82

N = 2, 8, 20, 28, 50, 82, 126

We needed 40 years for understanding these magic numbers !! Hint: noble gas in atomic system  $Z = 2, 10, 18, 36, 54, \cdots$ 

shell structure in nuclei!!(1949 M.G.Mayer and J.H.D.Jensen)



# Spin-orbit Splitting





3. One- and Two-particle nuclei

Magic numbers provide us inert core nuclei,

e.g.  ${}^{4}_{2}\text{He}_{2}, {}^{16}_{8}\text{O}_{8}, {}^{40}_{20}\text{Ca}_{20}, {}^{48}_{20}\text{Ca}_{28}, {}^{208}_{82}\text{Pb}_{126}$ 

# • one-particle nuclei ${}^{209}_{83}\text{Bi}_{126} \implies {}^{208}_{82}\text{Pb}_{126} + p$ ${}^{209}_{83}\text{Bi}_{126} \implies {}^{208}_{82}\text{Pb}_{126} \qquad \frac{1/2^+ 2.43}{13/2^+ 1.508} \frac{1}{0} \frac{1}{13/2^+ 1.508} \frac{1}{0} \frac{1}{13/2^+ 1.508} \frac{1}{0} \frac{1}{13/2^+ 1.508} \frac{1}{0} \frac{1}{1} \frac{1}{1}$

 $9/2^{-}$  $-0 0h_{9/2}$ 

#### • two-particle nuclei

 $_{22}^{50}\mathrm{Ti}_{28} \implies _{20}^{48}\mathrm{Ca}_{28} + 2p$ 



Possible spin-states J in  $(0f_{7/2})^2$ -configuration  $\implies J_p = 0^+, 2^+, 4^+, 6^+$ 

 $\vec{J} = 7\vec{/}2 + 7\vec{/}2$ 

classical mechanic  $J = 0.0 \sim 7.0$ quantum mechanics J = 0, 1, 2, 3, 4, 5, 6, 7fermion statistics J = 0, 2, 4, 6

#### m-scheme for fermion system

Example  $(d_{3/2})^2$ 

#### m-scheme for boson system

Example  $(d)^2$ 

| m=3/2 | 1/2 | -1/2 | -3/2 | М  |
|-------|-----|------|------|----|
| ×     | ×   |      |      | 2  |
| ×     |     | ×    |      | 1  |
| ×     |     |      | ×    | 0  |
|       | ×   | ×    |      | 0  |
|       | ×   |      | ×    | -1 |
|       |     | ×    | ×    | -2 |

$$M = 2, 1, 0, -1, -2 \implies J = 2^+$$

 $M = 0 \implies J = 0^+$ 

| 2  | 1  | 0  | -1 | -2              | Μ  |
|----|----|----|----|-----------------|----|
| ×× |    |    |    |                 | 4  |
| ×  | ×  |    |    |                 | 3  |
| ×  |    | ×  |    |                 | 2  |
| ×  |    |    | ×  |                 | 1  |
| ×  |    |    |    | ×               | 0  |
|    | ×× |    |    |                 | 2  |
|    | ×  | ×  |    |                 | 1  |
|    | ×  |    | ×  |                 | 0  |
|    | ×  |    |    | ×               | -1 |
|    |    | XX |    |                 | 0  |
|    |    | ×  | X  |                 | -1 |
|    |    | ×  |    | ×               | -2 |
|    |    |    | XX |                 | -2 |
|    |    |    | ×  | ×               | -3 |
|    |    |    |    | $\times \times$ | -4 |

Problem: Derive all possible J in the  $f_{7/2}^2$ -configuration.

| m = 7/2 | 5/2 | 3/2 | 1/2 | -1/2 | -3/2 | -5/2 | -7/2 | M |
|---------|-----|-----|-----|------|------|------|------|---|
|         |     |     |     |      |      |      |      |   |
|         |     |     |     |      |      |      |      |   |
|         |     |     |     |      |      |      |      |   |
|         |     |     |     |      |      |      |      |   |
|         |     |     |     |      |      |      |      |   |
|         |     |     |     |      |      |      |      |   |
|         |     |     |     |      |      |      |      |   |
|         |     |     |     |      |      |      |      |   |
|         |     |     |     |      |      |      |      |   |
|         |     |     |     |      |      |      |      |   |
|         |     |     |     |      |      |      |      |   |
|         |     |     |     |      |      |      |      |   |
|         |     |     |     |      |      |      |      |   |
|         |     |     |     |      |      |      |      |   |
|         |     |     |     |      |      |      |      |   |
|         |     |     |     |      |      |      |      |   |
|         |     |     |     |      |      |      |      |   |

Problem: Derive all possible J in the  $f_{7/2}^3$ -configuration.

| m=7/2 | 5/2 | 3/2 | 1/2 | -1/2 | -3/2 | -5/2 | -7/2 | M |
|-------|-----|-----|-----|------|------|------|------|---|
|       |     |     |     |      |      |      |      |   |
|       |     |     |     |      |      |      |      |   |
|       |     |     |     |      |      |      |      |   |
|       |     |     |     |      |      |      |      |   |
|       |     |     |     |      |      |      |      |   |
|       |     |     |     |      |      |      |      |   |
|       |     |     |     |      |      |      |      |   |
|       |     |     |     |      |      |      |      |   |
|       |     |     |     |      |      |      |      |   |
|       |     |     |     |      |      |      |      |   |
|       |     |     |     |      |      |      |      |   |
|       |     |     |     |      |      |      |      |   |
|       |     |     |     |      |      |      |      |   |
|       |     |     |     |      |      |      |      |   |
|       |     |     |     |      |      |      |      |   |
|       |     |     |     |      |      |      |      |   |
|       |     |     |     |      |      |      |      |   |



Problem: Derive experimental values of  $\langle 0f_{7/2}^2|V_{pp}|0f_{7/2}^2\rangle_J$  for  $J=0^+,~2^+,~4^+,~6^+$ 

$$\langle 0f_{7/2}^2 | V_{pp} | 0f_{7/2}^2 \rangle_{J=0^+} = \langle 0f_{7/2}^2 | V_{pp} | 0f_{7/2}^2 \rangle_{J=2^+} = \langle 0f_{7/2}^2 | V_{pp} | 0f_{7/2}^2 \rangle_{J=4^+} = \langle 0f_{7/2}^2 | V_{pp} | 0f_{7/2}^2 \rangle_{J=6^+} =$$



#### Pairing property of effective interaction between identical particles

Strong attractive force  $\langle j^2 J = 0^+ | V | j^2 J = 0^+ \rangle_{T=1}$ 

Large matrix element  $\langle j^2 J = 0^+ | V | j'^2 J = 0^+ \rangle_{T=1}$ 

- Such property is reproduced by short-range force like  $-V_0\delta(r)$
- Application of BCS theory to nuclear system



# Structure of $^{90}\mathrm{Zr}$



 $-f_{5/2}$ 



Proton:  $Z = 40 \ (g_{9/2}, p_{1/2})_p^{-10} = \ (g_{9/2}, p_{1/2})_p^2$ Neutron: N = 50 (closed shell)  $J_n = 0^+$ 

$$(g_{9/2})^2 \to J =$$
  
 $(g_{9/2}p_{1/2}) \to J =$   
 $(p_{1/2})^2 \to J =$ 

# Structure of ${}^{90}Zr$



 $----f_{5/2}$ 



Proton:  $Z = 40 \ (g_{9/2}, p_{1/2})_p^{-10} = \ (g_{9/2}, p_{1/2})_p^2$ Neutron: N = 50 (closed shell)  $J_n = 0^+$ 

$$(g_{9/2})^2 \rightarrow J = 0^+, 2^+, 4^+, 6^+, 8^+$$
  
 $(g_{9/2}p_{1/2}) \rightarrow J = 4^-, 5^-$   
 $(p_{1/2})^2 \rightarrow J = 0^+$ 



#### Eigen-value problem

#### 5. Proton-neutron interaction and isomer



 $\langle (0g_{9/2})_p (0g_{9/2})_n^{-1} : J | V_{pn} | (0g_{9/2})_p (0g_{9/2})_n^{-1} : J \rangle$ 





 $(0g_{9/2}^2)_p J_p = 8^+ \times (1d_{5/2})_n J_n = \frac{5}{2}; J = 21/2^+$ 

## High spin isomers in nuclei near drip-line

Direct One-Proton Emission

First observation:

 ${}^{53}_{27}\text{Co}_{26}({}^{19}_{2}^{-}) \rightarrow {}^{52}_{26}\text{Fe}_{26}(0^{+})$ 



Figure 30. (a) Proton energy spectrum from the decay of  $^{53m}$ Co produced by the  $^{54}$ Fe(p, 2n) reaction. (b) Decay scheme of <sup>53m</sup>Co.

Shell-model calculations of high-spin ispmers in neutron-defficient  $1g_{9/2}$ -shell nuclei K. Ogawa: Phys. Rev. C28(1983)958



FIG. 1. Calculated energy levels of  $^{95}$ Pd. The lowest levels with each spin-parity state below 3 MeV are shown by solid lines for positive-parity states and by dashed lines for negative-parity states. The transitions from the isomeric states are indicated by arrows.



FIG. 3. Calculated energy levels of  $^{96}$ Cd. The lowest levels with each spin-parity state below 6 MeV are shown.

 $^{96}Cd$ 

 $^{95}Pd$ 

|                 |                   |                                | <sup>91</sup> Si                                  | n <sup>92</sup> Sn <sup>93</sup> Sr                           | ı <sup>94</sup> Sn <sup>95</sup> Sn                                                 | <sup>96</sup> Sn <sup>97</sup> Sr                                                                                                | $^{98}\mathrm{Sn}$ $^{99}\mathrm{Sn}$                                                 | <sup>100</sup> Sn <sup>101</sup> S                       | n                                         |                                   |                  |
|-----------------|-------------------|--------------------------------|---------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|-----------------------------------|------------------|
|                 |                   |                                | <sup>90</sup> In<br><sup>89</sup> Cd <sup>9</sup> | $^{91}$ In $^{92}$ In $^{0}$ Cd $^{91}$ Cd                    | $^{93}$ In $^{94}$ In $^{92}$ Cd $^{93}$ Cd                                         | $\begin{array}{r} 95 \text{In} & 96 \text{In} \\ 21/2+ & & \\ 94 \text{Cd}_{23/2} & & \\ 14 \text{Cd}_{23/2} & & \\ \end{array}$ | $\frac{97}{25/2+}$ $\frac{98}{9+}$<br>$Cd_{16+}$ $\frac{96}{26}$ $2+$ $\frac{97}{2+}$ | n <sup>99</sup> In <sup>10</sup><br>'Cd <sup>98</sup> Cd | <sup>θ</sup> In<br><sup>99</sup> Cd       |                                   |                  |
|                 |                   |                                | <sup>88</sup> Ag <sup>89</sup>                    | ${ m Ag} ^{90}{ m Ag} ^{90}{ m Ag} ^{90}{ m Ag} ^{90}{ m Ag}$ | <sup>91</sup> Ag <sup>92</sup> Ag<br><sup>0</sup> Pd <sup>91</sup> Pd               | <sup>93</sup> Ag <sup>94</sup>                                                                                                   | $A^{2g/2-95}Ag$<br>Pd $^{14+} 9^{21/2+}$                                              | $^{96}{ m Ag}$ $^{97}{ m Ag}$                            | g <sup>98</sup> Ag<br>Pd <sup>97</sup> Pd |                                   |                  |
|                 |                   | 86]                            | Rh <sup>87</sup> Rh                               | <sup>88</sup> Rh <sup>89</sup>                                | Rh <sup>90</sup> Rh                                                                 | <sup>91</sup> Rh <sup>92</sup>                                                                                                   | Rh <sup>93</sup> Rl                                                                   | n <sup>94</sup> Rh <sup>9</sup>                          | <sup>95</sup> Rh <sup>96</sup> F          | th                                |                  |
|                 |                   | <sup>85</sup> Rı               | 1 <sup>86</sup> Ru                                | <sup>87</sup> Ru <sup>88</sup> I                              | Ru <sup>89</sup> Ru                                                                 | <sup>90</sup> Ru <sup>9</sup>                                                                                                    | <sup>1</sup> Ru <sup>92</sup> F                                                       | <sup>93</sup> Ru                                         | <sup>94</sup> Ru <sup>9</sup>             | <sup>5</sup> Ru                   |                  |
|                 |                   | <sup>83</sup> Mo <sup>84</sup> | $^{4}$ Mo $^{85}$ N                               | <u>лс <sup>86</sup>М</u>                                      | $^{\circ}c^{\circ}C^{\circ}C^{\circ}C^{\circ}C^{\circ}C^{\circ}C^{\circ}C^{\circ}C$ | <sup>-89</sup> Tc                                                                                                                | <sup>89</sup> Mo <sup>90</sup>                                                        | <sup>0</sup> Mo <sup>-91</sup>                           | $c = \frac{33}{1c}$<br>Mo $^{92}$ N       | <u>этгс</u><br>Іо <sup>93</sup> М | о                |
|                 | 82                | Nb <sup>83</sup> N             | $\mathrm{Nb}^{-84}\mathrm{N}$                     | b <sup>85</sup> Nb                                            | • <sup>86</sup> Nb                                                                  | <sup>87</sup> Nb                                                                                                                 | <sup>88</sup> Nb                                                                      | <sup>89</sup> Nb <sup>9</sup>                            | <sup>0</sup> Nb <sup>91</sup>             | Nb <sup>92</sup>                  | Nb               |
| <sup>80</sup> Z | r <sup>81</sup> Z | r <sup>82</sup> Zı             | : <sup>83</sup> Zr                                | <sup>84</sup> Zr                                              | <sup>85</sup> Zr                                                                    | <sup>86</sup> Zr                                                                                                                 | <sup>87</sup> Zr                                                                      | <sup>88</sup> Zr                                         | <sup>89</sup> Zr                          | <sup>90</sup> Zr                  | <sup>91</sup> Zr |

#### Stability of $^{95}_{49}$ In



High-spin isomers in unstable nuclei

## 6. Summary

- Using  $\gamma$ -spectroscopy, we know the energy levels of each nucleus.
- Magic numbers provide us a simple description of nuclei.
- From nuclei near magic number, we know the effective interactions between nucleons.
- Effective interaction between identical particles ( pp or nn)  $\rightarrow$  pairing property
- Effective interaction between proton and neutron  $\rightarrow$  high-spin state  $\rightarrow$  isomers
- $\bullet$  Isomers  $\rightarrow$  new stability and new decay modes