核子構造の物理の将来

核子構造 WG¹

大谷宗久(杏林大),川村浩之(KEK),熊野俊三(KEK), 小池裕司(新潟大),後藤雄二(理研),近藤薫(山形大),
Ralf Seidl(理研),齋藤晃一(東京理科大),齊藤直人(KEK),
澤田真也(KEK),田中和廣(順天堂大),谷田聖(ソウル大),
堂下典弘(山形大),中川格(理研),中野健一(東工大),
八田佳孝(筑波大),平井正紀(東京理科大),深尾祥紀(KEK),

Wolfgang Bentz (東海大), 宮地義之(山形大), 若松正志(大阪大)

1 序章

1.1 核子構造研究の目的と意義

核子構造研究を通して我々は何を知ろうとしているのか。

核子は、閉じ込められたクォーク、グルーオンの力学を研究できる最も単純な(無限)多体系であ る。我々はこの多体系に対して、強い相互作用の基礎理論である量子色力学(QCD)による理解を 目指し、高エネルギー実験を手段とした研究を行っている。

多くの目的に対し、互いに独立(incoherent)なクォーク、グルーオンから成る核子という単純な 描像が十分良い記述を与えている。ここで、核子中のクォーク、グルーオン(合わせてパートンと呼 ぶ)の分布はパートン分布関数(PDF)という関数で表される。PDFは、粒子のビーム軸、衝突 軸を表す "縦"方向に対して定義され、その方向の核子の運動量に対してパートンが担う運動量の比 である x という変数で表される。このPDFが誤差付きで与えられれば、核子をクォーク、グルーオ ンの単純なソースとして用いる高エネルギー実験では十分であると考えられている。

もし核子が相互作用しない3つのクォークだけから成り立っているとすると、クォークのPDFは x = 1/3にデルタ関数的なピークをもつことになる(図1.1 a))。実際はクォーク間はグルーオンを媒 介として相互作用をしており、ピークは幅を持つことになる(図1.1 b))。さらにグルーオンがクォー ク、反クォークの対に分裂すると、小さいxの成分が出てきて(図1.1 c))、これが実験データとして 得られるクォークのPDFの形となる。

しかし、この「互いに独立なパートンから成る核子」という描像では理解できない多くの現象も我々 はすでに知っている。核子のスピンの理解、偏極現象に対して、この描像は十分な記述を与えない。 そのひとつは横偏極現象である。現象については後に述べるが、これを説明するためには、核子内部 のパートン間の相互作用、量子多体相関の理解が必要となる。パートンは核子内部で運動(軌道角運 動)をしている。また、核子スピンの1/2はクォークのスピンとグルーオンのスピンだけでは説明で きない。クォークとグルーオンの軌道角運動量も含めないと辻褄が合わないことがわかりつつある。

¹e-mail address: nucleon-structure-wg@riken.jp

図 1: 互いに独立なパートンから成る核子の描像。*x* はいわゆる Bjorken の *x* で、縦(ビーム軸、衝 突軸)方向のパートンの運動量の割合を表す。

このどちらのためにも核子に対する新たな記述とその確立が求められている。それは、核子の構造 を x 方向だけでなく、3次元で記述する方法である。これは既存の P D F による記述を拡張、一般化 することにより行われており、ビーム軸、衝突軸に垂直な "横 "方向の分布を表す。図2に、横方向 の分布をトモグラフィー的に表した例を示す。拡張、一般化した P D F の測定は始まっていて、先駆 的な結果は得られているが、それを確立することが核子構造研究の将来計画の柱となっている。

また、非偏極の現象に対しても、パートンの量子多体相関は新たな核子構造、そして原子核構造の理 解をもたらす。特に注目されているのは小さいx領域の核子および原子核構造で、この領域ではパー トン(主にグルーオン)の密度が飽和する描像が議論されている。さらに、大きいx領域の構造や、 パートンからハドロンへの破砕に対してもQCDに基づく理解を目指している。

1.2 歴史と概観

核子の内部構造に関する研究は,1960年代のSLACにおける形状因子の測定に始まる。散乱される電子からの4元運動量移行qの2乗 $Q^2 = -q^2(>0)$ の関数として測定された形状因子は,広がりを持った核子中の電荷分布と磁気能率分布を露わにした。核子の内部構造は,1969年のMIT-SLACによるレプトン核子深非弾性散乱(DIS=Deep Inelastic Scattering)実験, $ep \rightarrow eX$,によりさらに明らかにされていった。DIS過程の断面積は、 $Q^2 \ge \nu = P \cdot q$ (Pは核子の4元運動量)の2変数を用いて、

$$\frac{d^2\sigma}{dQ^2d\nu} = \sigma_{\text{Mott}} \left[W_2(Q^2,\nu) + 2W_1(Q^2,\nu)\tan^2\frac{\theta}{2} \right]$$
(1)

図 2: 核子内部のパートン分布を横方向の空間分布としてトモグラフィー的に表した PDFの拡張の 例。紙面を貫く方向が縦方向であり、b_x軸方向に偏極した核子内部の分布を表す。a) 一般化された分 布関数を用いた現象論的模型、b) Lattice QCD による計算で、それぞれ左図はアップクォークに対す る分布、右図はダウンクォークに対する分布を示す。

のように、電子と点状の粒子との弾性散乱を表す Mott 散乱の重ねあわせとして書かれる。そしてここ で、 $Q^2 と \nu$ がともに数 GeV² 以上の領域では,両者の比 $x_{Bj} = Q^2/2\nu$ のみの1 変数関数のように振 る舞い, Q^2 への依存性は極めて弱いことが明らかにされた。この Bjorken scaling は,電子の核子か らの散乱が,互いに相互作用をしていない点状の粒子からのインコヒーレントな散乱として引き起こ されている結果であり,この点状の粒子は「パートン」と名づけられた。しかも,構造関数の間に成り 立っている関係(Callan-Grossの関係)から,パートンもまたスピン 1/2の粒子であることが明らか になった。ここに至って,パートンはハドロンの構成子として提案されていた「クォーク」と同一視 されるようになり,高エネルギー過程を記述する Bjorken-Feynman の「クォーク・パートン模型」が 確立した。さらに,1973年に発見された非可換ゲージ理論の「漸近的自由性」が Bjorken scaling に相応しいことから,クォークの動力学をSU(3)ゲージ理論で記述する研究が始まった。ここに現れ るクォーク間の力を媒介するゲージ粒子はグルーオンと呼ばれ,この理論は量子色力学(QCD)とし て発展していった。漸近的自由性のため高エネルギー(短距離)でのクォーク・グルーオンの相互作 用は強結合定数に関する摂動として計算が可能となるが,この摂動 QCD(pQCD)により構造関数に 見られた弱い Q^2 依存性(「スケーリング則の破れ」)は見事に説明され,強い相互作用の基礎理論と しての QCD の地位は揺るぎないものとなった。

このパートン模型と pQCD を組み合わせた枠組みでは,核子の内部構造は各パートンのパートン分 布関数 (PDF=Parton Distribution Functions) $f^a(x,\mu^2)$ ($a = u, \bar{u}, d, \bar{d}, \cdots, g$) で表される。ここ で, x はパートンの縦運動量割合, μ^2 はその PDF が測定されるエネルギースケールである。 μ^2 依存 性は DGLAP (=Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)発展方程式により記述される。197 0年代以降には, SLAC, CERN, DESY などでより広範な運動学領域で DIS 実験が行われ, PDF に関 する知識が蓄積されていった。また, DIS 実験のみならず,終状態に π 中間子などのハドロンも捕獲す るセミインクルーシヴ DIS (SIDIS)の実験や陽子ー(反)陽子衝突における High- P_T ジェット生成, ハドロン生成 ($pp \rightarrow hX$),直接光子生成 ($pp \rightarrow \gamma X$), Drell-Yan レプトン対生成 ($pp \rightarrow \ell^+\ell^-X$), さらには Weak Boson 生成 ($p\bar{p} \rightarrow W^{\pm}(Z^0)X$) などの各プロセスもパートン模型と pQCD により記 述され,同時に PDF はより高い精度で決められていった。これらによると, クォーク・反クォークと グルーオンは数 GeV のエネルギースケールで,核子の運動量をそれぞれ50% つつ運んでいること、 xの大きな領域 (x > 0.1)では核子の運動量はヴァレンスクォークにより運ばれているが,小さな領域では海クォークやグルーオンの密度が増し,特に, $x \to 0$ ではグル オン密度が極めて高い状態になっているこことなどが明らかにされた。また、反クォーク分布のフレーバー対称性は破れており、反アップクォークと反ダウンクォークの分布は大きく異なっている。そして,パートン間のハード断面積に対する pQCD による高次補正項の計算もすすめられた。 $x \to 0$ や $x \to 1$ などのx領域や,終状態に観測する粒子の横運動量の小さい領域など,位相空間の端で起こる(対応する運動学変数についての)大きな対数的寄与については,摂動論の全次数で足し上げる再足し上げ理論(Resummation)が発展した。これら精密化された PDF と pQCD の計算技術は,QCD に基づいた現象の定量的説明を与えると同時に,LHC などで進行している New Physics 探索のための必要不可欠な道具にもなっている。

一方,実験技術の進歩により,スピン偏極したレプトンと核子を用いた実験も行われるようになっ た。こうしたスピン依存過程には、核子内で各パートンが担っている「スピンの分布」を表す偏極 PDF が寄与する。1988年には, CERNのEMCグループが核子のスピン依存構造関数に関するデー タを報告し,その後の多くの実験に基づき、核子中のクォークのスピンが担う核子のスピンの割合は 25%程度にすぎないことが示された。これは,バリオンの磁気能率等の多くのハドロンの性質を上 手く説明してきたクォーク模型に基づいた核子の描像から大きくはずれた結果であり,核子の「スピ ンの起源」を探る研究へと発展していった。核子は,クォークとグルーオンの束縛状態なので,残り の75%はグルーオンのスピンあるいはクォークやグルーオンの軌道角運動量によって運ばれている はずである。一方で,そもそも,QCDから核子のスピンをこのように各成分に分解できるのか,ま た,できるとしたら各成分は実験的にどのように測定されるかについて研究がすすめられた。最近の 研究によると、核子のスピンはクォークとグルーオンのそれぞれについてゲージ不変なスピンと軌道 角運動量に分解され、しかも、各成分が実験観測量と結び付けられることが明らかになった。グルー オン・スピンの寄与を表す偏極グルーオン分布 $\Delta G(x)$ については , 偏極 DIS 実験のみならず , 終状 態に大きな横運動量を持ったハドロン対や重いクォークを含む中間子の生成を伴う SIDIS 過程 (i.e., $ec{ep}
ightarrow eh_1h_2 X$ や $ec{ep}
ightarrow eJ/\psi X$ など),偏極陽子同士の散乱におけるジェット生成($ec{pp}
ightarrow \mathrm{jet} X$)やパ イオン生成($ec{pp} o \pi X$)過程などの実験を通じて研究がすすめられている。クォークの軌道角運動量 の寄与は, DVCS(=Deeply Virtual Compton Scattering) 過程や電子散乱におけるベクトル中間子の 排他的生成過程に現れる一般化されたパートン分布関数(GPD=Generalized Parton Distribution) の測定を通じて知ることができる。GPD が提供する核子の3次元構造の解明と合わせ今後の大きな 課題である。

スピン偏極現象は,核子スピンの起源のみならず,QCDの動力学と核子構造の新側面を切り開いて いる。横偏極核子と無偏極な電子もしくは核子との衝突におけるハドロン生成過程で見られている大 きなシングルスピン非対称(SSA=Single Spin Asymmetry)は,これまでに大きな成功を治めてきた pQCD とパートン模型ではほとんどゼロになるスピン非対称である。SSAは,従来のパートン模型に は含まれていないパートンの「固有横運動量」やパートン間の「量子的多体相関」を直接反映してい るからである。高エネルギー過程におけるこれらの効果の解析は,理論的には「TMD(=Transverse Momentum dependent)因子化」や「高次ツイスト効果」の定式化を必要とし,ハードプロセス研究 の中で一大潮流を形成している。SSAはSIDIS過程や核子核子衝突過程の断面積に様々な方位角非対 称として現れるため,その起源を明らかにすべく,世界各地で測定が進行している。

1.3 この文書の構成

このような QCD ハード過程および核子構造研究の現状と将来を記述すべく,本文書は以下のよう な構成をとっている。2章では,現在の研究の目標と対象について,研究に用いられている理論的枠 組みを解説しつつ,実験的測定の現状を説明し,我々の理解の現状を報告する。これを受けて,3章 では,将来の目標を設定する。4章では,将来の目標を達成すべく計画されている実験計画を述べる。 5章では,各実験計画のタイムラインとリソースの評価について述べる予定である。

2 現在の目標、対象

2.1 スピンパズルの解明

2.1.1 因子化とパートン分布関数

ここでは,まず高エネルギー包含過程を解析する枠組みである「因子化定理」について述べる。この定理は「パートン模型」にQCDからの基礎を与え,QCDの高次補正を取り込んだ系統的解析を可能にする。この定理によると,高エネルギーハドロンはパートン(クォークとグルーオン)のビームとみなされ,反応は個々のパートンからのインコヒーレントな散乱の重ね合わせとして記述される。終状態にもハドロンを観測する場合には,ハドロンはパートンから破砕した結果としてみなされる。このとき,散乱断面積は,摂動QCD(pQCD)で計算可能な「短距離部分(ハードパート)」と,と閉じ込めなどの非摂動力学を反映した「長距離部分(ソフトパート)」とに分離され散乱断面積はこれらの因子の積として記述される。レプトン核子散乱において終状態に1100を抑えるセミ・インクルーシブ深非弾性散乱(SIDIS), $ep \rightarrow ehX$, (hはパイオンなど終状態に観測されるハドロン,X は観測されないハドロン群全体)を例にとって因子化定理を見てみよう。終状態ハドロンの入射ビーム方向に対する横方向の運動量が観測されないか、大きい値で観測される場合には,パートンの運動として重要なのはハドロンの運動方向に沿った(collinear な)成分のみであり,この過程の反応断面積は,

$$\sigma^{ep \to ehX} \sim \sum_{a,b=q,g} \int \frac{dz}{z} \int \frac{dx}{x} f_a(x,\mu) D_{h/b}(z,\mu) \hat{\sigma}^{\gamma^* a \to b}(x,z,Q,\mu) , \qquad (2)$$

のように表される。ここで $f_a(x,\mu)$ は核子中でのパートン a (フレーバー q のクォーク、あるいはグ ルーオン g)の運動量割合 x についての「分布関数」、 $D_{h/b}(z,\mu)$ は、パートン b からハドロン h が 運動量割合 z を受け取って生成される「破砕関数」であり、上記反応の長距離部分である。 $\hat{\sigma}^{\gamma*a \rightarrow b}$ は パートン間のハード断面積を表し短距離部分である。 μ は長距離部分と短距離部分の分離スケール、 Q は関与する高運動量移行を象徴的に示した。x, z などは、パートンが運ぶ"縦運動量割合"²である。このため,上のような因子化は Collinear 因子化と呼ばれている。Collinear 因子化は,仮想光子の運動量移行や終状態ハドロンの衝突軸に対する横運動量が同じオーダーのハードスケールとみなされる ときに有効であり,この枠組みでは,終状態ハドロンの横運動量 P_{hT} はパートン間のハードな散乱に より生成される。分布・破砕関数は分離スケール μ に対数的に依存し,その依存性は斉次のくりこみ 群方程式(発展方程式)によって記述される。以下この報告書では,分布・破砕関数の μ 依存性は必

²パートンの運動量については、ハドロンの運動量の方向を"縦",それと垂直方向を"横"と呼ぶ。

図 3: SIDIS 過程

要な場合を除いて省略する。また,(2)のような畳み込みを

$$\sigma^{ep \to ehX} \sim \sum_{a,b} f_a(x) \otimes D_b(z) \otimes \hat{\sigma}^{\gamma^* a \to b}(x, z, Q)$$
(3)

のように略記する。

分布関数や破砕関数はハドロンやパートンの種類およびそれらのスピンの状態に依存するが,各ハ ドロンごとにそれらのスピン状態に基づいて分類された完全系が定義される。それらは,クォーク・ グルーオン場のゲージ不変な積のハドロンによる行列要素として表現される。また,Collinear 因子化 に表れる分布・破砕関数は物理的過程によらない「普遍性」を持っているため,pQCD で計算された ハードパートと組み合わせた実験データのグローバル解析をすることでそれら関数を決めることがで き,同じ関数が表れる他の過程に対する予言が可能となる。

一般に,八ード・プロセスの断面積に $(M/Q)^{t-2}$ (Mは核子の質量)のオーダーで寄与する分布・ 破砕関数は「ツイストt」の関数と呼ばれる。高エネルギーで主要項として効くツイスト2の分布・破 砕関数は,1体の確率分布関数としての意味を持ち,対応する短距離部分をpQCDの最低次(LO)で 計算したものが,ファインマンの「パートン模型」である。ツイストが3以上の分布・破砕関数の寄与 は「高次ツイスト効果」と呼ばれる。それらは,パートン間の量子的多体相関の効果であり,確率解釈 を持った1体のパートン分布関数の寄与とは本質的に異なる。このように,断面積に対するパートン 模型の寄与へのQCDからの補正としては、Next-to-leading-order(NLO)以上の摂動的補正と,M/Qの逆冪で効く運動学的な標的質量補正と高次ツイスト補正がある。

高エネルギーで重要になるのはツイスト2の寄与であるが,核子中のクォークの Collinear ツイスト2・パートン分布関数としては,各フレーバー $q(q = u, d, s, \bar{u}, \bar{d}, \bar{s}, \cdots)$ に対して定義される無偏極核子中の無偏極クォークの分布関数q(x)(あるいは $f_1^q(x)$ とも書く),縦編極核子中における縦編極クォークのスピン非対称(ヘリシティ非対称)の分布 $\Delta q(x)$ (あるいは $g_1^q(x)$),横編極核子中における横編極クォークのスピン非対称の分布(トランスヴァーシティ 分布) $\delta q(x)$ (あるいは $h_1^q(x)$)の3個で完全系をなす。ツイスト2・グルーオン分布としては,無偏極核子中の無偏極グルーオン分布 G(x),縦編極核子中のヘリシティ非対称分布 $\Delta G(x)$ の2つで完全系をなす。

短距離効果の pQCD 計算では、端的に言って、LO(パートン模型)が断面積のオーダーの評価を 与え、NLO が断面積の定量的評価を、NNLO が断面積の誤差の評価を可能にする。Collinear 因子化 に基づく多数のハード・プロセスは、ツイスト2の寄与に対しては,スピンに依存する場合も含め、 NLO 以上で扱われている。高次ツイスト効果に対してはほとんどがLO で扱われているのが現状で ある。

高次ツイスト効果は,ツイスト2の寄与の存在下では,相対的にQの逆べきで抑制されるため無視できるが,g2構造関数やシングルスピン非対称(SSA)のように,ツイスト3の寄与が主要項となる場合がある。このような過程は,QCDでハードプロセスを記述する上で新たな挑戦であり,またハドロン中のパートン間多体相関を露わにするという点で核子構造研究に新たな側面を提供している。近年,SSAとの関連でツイスト3効果の研究が飛躍的に進展した。これについては4.1節で詳述する。

このように, Collinear 因子化の枠組みで記述される反応断面積や構造関数だけをとって見ても,非 常に多くの実験データが蓄積されており,それらは QCD の力学や核子中における運動量分布・スピ ン分布・パートン間相関などについて多様な情報を提供している。

2.1.2 Inclusive DIS とスピンパズル

Collinear 因子化の枠組みで解析可能な最も簡単な過程は,序章で述べた DIS, $ep \rightarrow eX$, である。 これは,終状態に電子のみを捕える過程であるため,(2)において破砕関数は寄与しない過程(ある いは, $D_b(z) \rightarrow \delta(1-z)$ とした)である。非偏極の核子とレプトンを用いた DIS には,核子のq(x)とG(x)が寄与する。この過程には多くの実験データが存在するが,それらは pQCD でにより非常に よく記述され,これらパートン分布関数も高い精度で決められている。

縦偏極した核子とレプトンを用いた DIS で測定される核子の $g_1(x_{bj}, Q^2)$ 構造関数には, $\Delta q(x)$ と $\Delta G(x)$ が寄与し、クォークやグルーオンのスピンの核子スピンへの寄与に関する情報を運んでいる。 特にそれらの 1 次モーメント $\Delta q = \int_0^1 dx \Delta q(x)$, $\Delta G = \int_0^1 dx \Delta G(x)$ は、核子スピンに対するクォー クやグルーオンのスピンの割合を示す指標となる。1998年には, CERN の EMC グループが陽子の構 造関数 $g_1^p(x_{bj}, Q^2)$ に関する測定を行い、クォークスピンの和 $\Delta \Sigma = \sum_i \Delta q_i$ が 0.120 ± 0.094 ± 0.138 である事を報告した [1, 2]。これは、実験誤差の範囲内で『クォークは陽子スピンに寄与していな い』事を示し、核子のスピンの起源について大きな話題を引き起こした (スピンパズル)。「スピンパ ズル」の提起をうけ、CERN、SLAC、DESY、JLab で偏極 DIS 実験がすすめられてきた。陽子に加 え、重陽子、中性子のスピン構造関数の測定も行われ、陽子・中性子の間での構造関数の積分値の差 (Bjorken 和則)から軸性結合定数 $|g_A/g_V| = 1.28 \pm 0.07 \pm 0.10$ が決定されている [4]。これは β 崩壊 による測定結果 1.2694 ± 0.0028 [5] とよい一致を示している。さらにフレーバー SU(3)対称性の元で は、 β 崩壊等から求められる軸性行列要素を利用し、クォークスピンの和 $\Delta \Sigma$ に加え、アップ、ダウ ン、ストレンジクォークからの寄与を独立に決定できる。HERMES によると、重陽子構造関数の測 定結果から $\Delta \Sigma = 0.330 \pm 0.04$ が得られている [3]。SU(3)対称性の仮定の下、フレーバー毎の成分 $\Delta u + \Delta \overline{u} = 0.842 \pm 0.013, \Delta d + \Delta \overline{d} = 0.427 \pm 0.013, \Delta s + \Delta \overline{s} = 0.085 \pm 0.0018$ が得られた [3]。

2.1.3 Semi-Inclusive DIS(SIDIS)

DIS はレプトン測定により運動学的に明確という性格を持つ一方、レプトンとクォーク間の電磁相 互作用を利用するため散乱レプトンのみの測定(包括的測定)では「クォーク・反クォーク」を区別出 来ない。異なる標的による測定等からフレーバーに関する情報は得られるが、荷電対称性、SU(3)対称 性等の仮定を必要とする。フレーバー情報を得る手段として、散乱レプトンに加え、散乱により生成さ れるハドロンの同時測定(準包括的測定、Semi-Inclusive DIS: DIS)がある。固定標的による深非弾 性散乱で生成されるハドロンは数 GeV/c~十数 GeV/cの運動量をもつ。準包括的測定では、この運 動量領域での π 中間子、K中間子、陽子識別が必要とされ、リングイメージングチェレンコフ検出器 等の実験技術の発展により実現に至った。HERMES・COMPASS は、SIDIS でのハドロン生成断面積 スピン非対称度より、クォークフレーバー毎に陽子スピンへの寄与を明らかにした[6,7]。COMPASS による測定結果は $\Delta u = 0.69 \pm 0.04$, $\Delta d = -0.33 \pm 0.05$, $\Delta \bar{u} = 0.02 \pm 0.02$, $\Delta \bar{d} = -0.05 \pm 0.04$, $\Delta s = \Delta \bar{s} = -0.01 \pm 0.01$ を示した [7]。アップ・ダウンクォークの結果が、包括的測定との良い一致 を見せる反面、海クォーク、特にストレンジクォークの値は有意な違い、陽子スピンの方向に対しほ ぼ無偏極状態である事、を示している。SIDIS の測定結果に基づく解析はフレーバー SU(3) 対称性を 必要としないため、その違いは核子内部での対称性の破れを示唆しているとも考えられる。一方で、 解析に利用するハドロン破砕関数、測定領域外からの寄与等の系統的不定性もあり、陽子衝突実験で の W[±] 生成、ドレル・ヤン反応によるレプトン対生成等のハドロン破砕を含まない別過程による検証 が求められる。

DISでは入射レプトンをプローブとするために、電荷を持たないグルーオンと直接散乱する事ができない。しかし終状態のハドロンを測定する事で、グルーオンが散乱に寄与する過程の測定ができる場合がある。大きな横運動量を持ち生成されるハドロン対やチャームクォークを価クォークとして構成されるメソン生成では、グルーオンにより対生成されたクォークと入射レプトンとの散乱として理解される。SMC、HERMES、COMPASSで上記過程に関する測定が行われた。その結果たとえばそれぞれの過程について $\Delta G/G(0.22, 1.35 \text{ GeV}^2) = 0.049 \pm 0.034 \pm 0.010^{+0.126}_{-0.099}$ [8]、 $\Delta G/G(0.11, 13 \text{ GeV}^2) = -0.49 \pm 0.27 \pm 0.11$ [9] が報告されている。

2.1.4 pp 衝突

陽子散乱による核子構造の研究は、歴史的に核子の構造、相互作用の理解に重要な役割を果たして 来たが、ここで行われてきたのは主に非偏極の実験であった。偏極実験は、より詳しい理解を得るた めに必要であるが、これまで技術的困難からできなかった。しかし近年、偏極ビーム、偏極ターゲッ トの進歩により、BNLのRHIC実験においては偏極陽子衝突実験が行われ、核子の偏極構造に対し て新たな知識が得られるようになった。

縦偏極陽子衝突では、double-helicity asymmetry (A_{LL}) を測定する。偏極陽子衝突実験の第一の目的は、グルーオンのヘリシティー分布関数 $\Delta G(x)$ の測定である。そのための 2 つの最も優れたチャンネルは光子の直接生成過程と重いフレーバー生成過程である。光子の直接生成はグルーオン Compton 散乱過程 ($q+g \rightarrow q+\gamma$)、重いフレーバー生成過程はグルーオン融合過程 ($g+g \rightarrow Q+\bar{Q}$)と、これらの過程は寄与するチャンネルがはっきりしているが、生成断面積が小さく、統計的に制限される。RHIC では、 π^0 やジェットの非対称を測定し高統計で $\Delta G(x)$ を調べる。これらのチャンネルは g+g, g+q, q+q 散乱の混合であるが、割合は断面積測定からわかっている。Mid-rapidity における、PHENIX 実験の

 π^0 の A_{LL} 測定と、STAR 実験のジェットの A_{LL} 測定から $\Delta G = \int_0^1 \Delta G(x, Q^2 = 1 \,\text{GeV}^2) = 0.4$ の GRSV-standard 計算は、 3σ 以上で却下され、グルーオンスピンの寄与に対しておおきな制限が与えられた。同様の結果は QCD グローバル解析からも与えられ、0.05 < x < 0.2の範囲で $\Delta G(x)$ に大きな制限が与えられている。

 $\Delta G(x)$ だけでなく、海クォーク分布、反クォーク分布も不確定性が大きい。W ボソン生成過程では、W ボソンのパリティーの破れを利用して、フレーバーを選択したクォーク、反クォークの偏極の測定を行うことができる。これは偏極陽子、中性子標的を用いた DIS 実験によるフレーバー選択(2.1.2節)や、終状態の異なるハドロンの同時検出による Semi-inclusive DIS 実験によるフレーバー選択(2.1.3節)とは独立な測定結果をより高いエネルギースケール(m_W^2)で与える。さらに Semi-inclusive DIS 実験にあるような破砕関数の不確定性の影響を受けない理想的な方法である。2009年、 $\sqrt{s} = 500$ GeVで、最初の測定が行われ、その結果は [Ref] に発表されている。2011年より本格的データ収集が開始された。

2.1.5 QCD グローバル解析

図 4: QCD グローバル解析の結果得られている偏極クォーク、反クォーク、グルーオン分布関数。

PDF のもつ普遍性を基礎に、様々な散乱過程の実験データの総合的な解析を通じ、非摂動論的な物 理量である PDF を決定する事ができる(グローバル解析)。例えば、グルーオンは DIS での構造関数 に対し pQCD 高次補正を通じて寄与する。非偏極 PDF のグローバル解析では、電子・陽子衝突実験 と固定標的実験からの広範な運動学的領域にわたる DIS データ等によりグルーオン分布 G(x) が定め られている。偏極電子・陽子衝突実験は未だ実現しておらず、現在測定されている $g_1(x_{bj}, Q^2)$ のみか ら得られる $\Delta G(x)$ の不定性は極めて大きく、その符号すら明らかでない。

陽子・陽子衝突の場合、比較的小さい横運動量 p_T の領域における π^0 中間子生成やジェット生成で は、グルーオン・グルーオン散乱が主な過程となる。これらに対する RHIC での測定結果を含める事 により、グローバル解析での $\Delta G(x)$ 決定精度が向上した。しかしこれらの過程では微分断面積に対 してグルーオン分布の積が寄与するため、 ΔG の符号の決定は難しい。そのため、クォーク・グルー オン散乱が主な寄与となる直接光子生成過程や中間子生成過程における $\pi^+ - \pi^-$ のスピン非対称度を 用いた解析が必要とされている。現時点の実験値で決定できる $\Delta G(x)$ の x 領域は狭く、特に小さい x 領域の振る舞いを正確に決定しなければ 1 次モーメントの確定は難しい。例えば偏極電子・陽子衝 突実験のようなより広い x 領域をカバー出来る実験が求められている。

反クォーク分布 $\Delta \bar{q}(x)$ のフレーバー依存性についてもいまだ明らかにされていない。DIS の構造 関数にはクォークと反クォーク分布が常に和の形でしか現れないため,SIDIS のデータを取り入れた 解析の結果では、 $\Delta \bar{u}(x)$, $\Delta \bar{d}(x)$ がフレーバー SU(3) 対称性を仮定の元で DIS データのみから得られ た結果と異なる振る舞いを示した。SIDIS データの解析には破砕関数を必要とする。 π 中間子に比べ て K 中間子の破砕関数の不定性が大きいために、 $\Delta \bar{s}(x)$ の明確な決定は未だに難しい状況にある。反 クォークに関する情報を直接得るために、破砕過程に依らない RHIC での W ボソン生成や、J-PARC 等でのドレル・ヤン散乱に関する測定が求められている。

2.2 横偏極現象の解明

2.2.1 シングルスピン非対称の物理

スピンが(進行方向に対し)横偏極した核子と無偏極な電子あるいは核子との衝突において,終状態 にハドロン(π , K, η , D, J/ψ 中間子等)や(仮想)光子を生成する反応で,生成断面積が入射核子の スピンの向きに依存する現象をシングルスピン非対称(SSA)と呼ぶ。これまでにFNAL, BNL-RHIC が核子ー核子衝突において, DESY, CERN などが電子ー核子衝突で最大30%もの大きなSSAを報 告している。高エネルギー包含過程の記述に成功してきたパートン模型(「ツイスト2」のpQCD)で は,SSA は $\alpha_s m_q/Q$ (α_s は強結合定数, m_q はu, d 7 7 -7 0 g d 1 GeV 以上の高エネルギー スケール)程度の無視できるSSA しか与えないので,大きなSSA の記述には無力である。現象とし ては極めて単純なSSA が起こる機構をQCDから解明するためは,高エネルギー過程を解析する理 論的枠組みの拡張が必要であり,それにより単純なパートン描像を超えたハドロン構造が明らかにな る。SSA の解明に向けた理論研究は,90年代から始められ,最近10年程の間に飛躍的な進歩を遂 げたが,未だ,未解決な問題も多く発展途上である。

これまでの研究により,大きな SSA を可能にする2つのメカニズムが明らかにされている。その 1つは,TMD 因子化(TMD=Transverse momentum dependent)の枠組みで定義される"T-odd"分 布・破砕関数により SSA を記述するものである。もう1つは,Collinear 因子化の枠組みで、パート ンの量子的多体相関の結果現れるツイスト3観測量として SSA を記述する(ツイスト3機構)もので ある。以下,これらについて説明する。

2.2.2 TMD 因子化

終状態ハドロンの横運動量 P_{hT} が小さい領域 ($\Lambda_{\text{QCD}} \leq P_{hT} \ll Q$)では,パートンの縦運動量成分のみならず,横運動量成分も観測される効果をもたらす。このような過程では,断面積に対する畳み込みの公式 (3) はパートンの固有横運動量 k_{\perp} を含めた形

$$\sigma^{ep \to ehX} \sim \sum_{a,b} f_a(x,k_\perp) \otimes D_b(z,k'_\perp) \otimes \hat{\sigma}^{\gamma^* a \to b}(x,z,Q) \tag{4}$$

に一般化される。ここで, \otimes は固有横運動量 k_{\perp} などを含めた畳み込みを表す。このような因子化公式は TMD 因子化 (TMD=Transverse-Momentum-Dependent) と呼ばれ, その正当性は e^+e^- 衝突における back-to-back 2-jets 生成過程における方位角非対称,ドレル・ヤン過程, SIDIS 過程について示されている。(4) に表れる, TMD 関数のうち核子中のクォーク分布関数は, z-軸の正の方向に運動している核子に対して

$$\Phi_{ij}^q(x,\vec{k}_\perp,\vec{S}) = \int \frac{dz^- d^2 z_\perp}{(2\pi)^3} e^{ik \cdot z} \left\langle PS | \bar{\psi}_j^q(0) \mathcal{W}_\eta(0,z) \psi_i^q(z) | PS \right\rangle \Big|_{z^+=0}$$
(5)

のように表される。ここで*i*, *j* は、フレーバー *q* のクォーク場 ϕ^q のスピノール添字を表す。 $\mathcal{W}_{\eta}(0, z)$ は、0 と z を結ぶ経路 (η) に沿ってのゲージリンク演算子で、 $\Phi_{ij}^q(x, \vec{k}_{\perp}, \vec{S})$ をゲージ不変に定義して いる。光円錐座標は 4 元ベクトル a^{μ} に対して $a^{\mu} = (a^+, a^-, \vec{a}_{\perp}), a^{\pm} = \frac{1}{\sqrt{2}}(a^0 \pm a^3)$ と定義される。 4 × 4 行列 Γ_{ji} の完全系を用いて $\Phi_{ij}^q(x, \vec{k}_{\perp}, \vec{S})$ のスピノール添字と縮約をとったものから TMD 分布関 数の完全系が得られる。 $\int d^2 \vec{k}_{\perp} \Phi_{ij}^q(x, \vec{k}_{\perp}, \vec{S})$ を作ると、2.1.1 で導入された Collinear なパートン分布 関数を定義する。

このようにして得られるツイスト2のTMD分布関数を表1に示した。 $\Gamma = \gamma^+$ との縮約はクォークが無偏極の分布関数 $f_1(x,k_\perp), f_{1T}^\perp(x,k_\perp)$ を射影する。 $\Gamma = \gamma^+\gamma_5$ との縮約はクォーク・スピンの縦偏極非対称に対応する分布関数 $g_1(x,k_\perp), g_{1T}(x,k_\perp)$ を射影する。 $\Gamma = i\sigma^{\perp+}\gamma_5$ との縮約は, クォーク・スピンの縦偏極非対称に対応する分布関数 $h_1^\perp(x,k_\perp)$ を射影する。 $\Gamma = i\sigma^{\perp+}\gamma_5$ との縮約は, クォーク・スピンの横偏極非対称に対応する分布関数 $h_1^\perp(x,k_\perp), h_{1L}(x,k_\perp), h_1(x,k_\perp), h_{1T}^\perp(x,k_\perp)$ を射影する。このように, クォークのスピンが, 無偏極, 縦偏極, 横偏極に対応して分布関数は, f, g, hで区別される。分布関数の下付き添字"1"は, それらが 1/Qで抑制されない(ツイスト2)こと, 下付き添字の"L","T"はそれぞれ親の核子が縦偏極と横偏極であることを示す。上付き添字の"⊥"はそれらの定義が露わに固有横運動量に依存することを示す。テーブル中,太字で書いた f_1, g_1, h_1 は, Collinear パートン分布を $k_\perp \neq 0$ に一般化したものであり,前節に導入した Collinear PDFと $q(x) = \int d^2 \vec{k}_\perp f_1^q(x,k_\perp), \Delta q(x) = \int d^2 \vec{k}_\perp g_1^q(x,k_\perp), \delta q(x) = \int d^2 \vec{k}_\perp h_1^q(x,k_\perp)$ の関係がある。これら3個以外のものは, $\Phi_{ij}^q(x,\vec{k}_\perp,\vec{S}) \in \vec{k}_\perp$ で積分したときにゼロになる。また,これらはすべて,クォークもしくは核子のスピンと固有横運動量との相関を表している。

表中の f_{1T}^{\perp} は,横偏極核子中での無偏極クォークの横運動量分布の核子スピンの向きに関する非対称分布を表している。この関数は,発見者の名にちなんで Sivers 関数とよばれており,(4)の中で通常のパイオンの破砕関数と対をなすことで,SSA を記述することができる。しかしながら,このような関数がゲージ不変に,かつ,QCD の時間反転不変性と無矛盾に存在し得るためには,ゲージリンク $W_{\eta}(0,z)$ の存在が不可欠であることが知られている。このため,Sivers 関数はしばしば,"T-odd"分布関数と呼ばれている。そのことは,Sivers 関数の「過程依存性」など大きな問題を引き起こし,近年活発に研究がおこなわれている。たとえば,SIDIS 過程と Drell-Yan 過程に対する Sivers 関数は互

		クォークの偏極		
		U	L	Т
核子の 偏極	U	f_1		h_1^\perp
	L		g_1	h_{1L}^{\perp}
	Т	f_{1T}^{\perp}	g_{1T}	$h_1 h_{1T}^\perp$

表 1: ツイスト2のクォーク TMD

いに逆符号であることが知られており、このことを実験的に検証することは、TMD 因子化のテスト として極めて重要である。表中において Sivers 関数と同様な過程依存性を持つ他の"T-odd"分布関数 としては、無偏極核子中における横偏極クォークの横運動量のクォークスピンの向きについての非対 称度を表す Boer-Mulders 関数 *h*[⊥] がある。

表中他の TMD 分布関数は "T-even"である。 h_{1T}^{\perp} は, クォークの横運動量の互いに垂直な方向に偏極した核子の横偏極スピンとクォークの横偏極スピンとの相関を表し, "Pretzelocity"分布と呼ばれている。 g_{1T}^{\perp} と h_{1L}^{\perp} は, 核子とクォークのスピンの偏極が縦と横の組み合わせなので "Worm gear"分布と呼ばれている。

TMD 破砕関数も場の相関関数として定義される。特に重要なのは,(4)において transversity 分布 $\delta q(x)$ と対をなすことで SSA を引き起こす終状態相互作用を記述する Collins 関数 $H_1^{\perp}(z,k_{\perp})$ である。 これは,横偏極したクォークから,パイオンなどの(無偏極)ハドロンがクォークスピンと垂直方向 の横運動量を伴って生成される際の,クォークスピンと横運動量との相関を表している関数である。 これも "T-odd"の関数であるが,これまでの解析によると, f_{1T}^{\perp} や h_1^{\perp} などの "T-odd"な分布関数と 異なり,過程には寄らないと考えられている。

上で述べた, Sivers 関数 $f_{1T}^{\perp}(x,k_{\perp})$ と Collins 破砕関数 $H_1^{\perp}(z,k_{\perp})$ は,終状態に生成される粒子の 横運動量が小さな領域($\Lambda_{\text{QCD}} \leq p_T \ll Q$)での SSA を効率よく記述し,ほぼ, ~ P_T/M_N のように 振る舞う SSA を引き起こす。

核子中のパートンの運動は本来3次元的であるはずなので、TMD分布・破砕関数は, Collinear な パートン分布・破砕関数の自然な拡張としてかなり古くからその存在が認識されていた。しかしなが ら,特に注目されるようになったのは比較的最近あり,その背景には,上述した大きなシングルスピ ン非対称(SSA)の発見がある。因子化の可能性やTMD 関数の過程依存性などについてまだ理論的 な研究の余地があるが,TMD 分布関数は,核子中におけるクォーク分布の運動量空間における3次 元構造を表している点でおおきな関心を集め,その測定が進行している。

2.2.3 ツイスト3機構による SSA と TMD 因子化との関係

終状態ハドロンの横運動量 p_T が大きな領域 ($P_T \sim Q \gg \Lambda_{QCD}$) では, Collinear 因子化が有効であ り, この領域では SSA はツイスト 3 物理量として現れるため, SSA は $\sim M_N/Q$ ($Q = P_T$, \sqrt{s} など) のように振る舞う。ハドロンから放出された余分なグルーオンが, パートンレベルの散乱に直接関与す るため, ソフトパート (ハドロンの行列要素)としては, パートンの多体相関関数が寄与する。それら は、「ツイスト 3 相関関数」と総称されるが, 代表的なものとして, 横偏極核子中の「クォーク・グルーオ ン相関関数」や純粋にグルーオン間の相関を表わす「3グルーオン相関関数」, 及びパートンからハド ロンへの破砕過程に現れる「ツイスト3破砕関数」などである。ツイスト3相関関数は,縦運動量割合2個の関数として $G^{(3)}(x_1, x_2)$ などと表現され,すべて過程によらないハドロンに固有な普偏的な関数である。例えば,核子中のクォーク・グルーオン相関関数は $G^{(3)}(x_1, x_2) \sim \mathcal{FT}\langle \bar{\psi}(0)gF^{+\perp}(\eta^-)\psi(\xi^-)\rangle$ といった,核子中におけるクォーク場 ψ とグルーオンの強度テンソル $F^{\alpha\beta}$ の光円錐上における相関関数のフーリエ変換という形に書け, $x_1, x_2 - x_1$ はそれぞれ核子から出る,クォーク,グルーオンの縦運動量割合を表している。

上記 2 つの機構は,異なる運動学領域の SSA を記述する点で互いに相補的である一方で,互い に深い関係がある。まず,分布関数の関係として、Sivers 関数の k_{\perp} についての特定のモーメント (= $\int dk_{\perp}k_{\perp}^2 f_{1T}^{\perp}(x,k_{\perp})$)がクォーク・グルーオン相関関数の対角成分 $G^{(3)}(x,x)$ と関係づけられるこ とが知られており,このことは 2 つの機構が関係していることを示唆する。両者がともに有効な P_T の中間領域 ($\Lambda_{\text{QCD}} \ll P_T \ll Q$)では,SIDIS 過程における特定の構造関数と Drell-Yan 過程につい て,横偏極核子中の Sivers 関数とクォーク・グルーオン相関関数による SSA の記述が等価であること が示されている。しかも,Sivers 関数がこれら 2 つの過程で互いに符号が逆であることともコンシス テントである。

TMD 因子化における Collins 関数と同様に,ツイスト3機構においても,破砕過程における SSA を引き起こすクォーク・グルーオン相関がある。これは「ツイスト3破砕関数」として表現され,カ イラル奇であるため,横偏極核子中の Transversity 分布と対をなして SSA を引き起こす。このツイス ト3破砕関数と Collins 関数の関係も研究されており,たとえば,SIDIS 過程で Collins 関数が主要項 となる構造関数については, P_T の中間領域においてツイスト3破砕関数が等価な SSA を与えること が示されている。

これらのことは、2つの機構が *P*_T の全領域で SSA を記述する QCD に基づいた唯一の枠組みであることを意味している。SIDIS に現れる他の構造関数や他の過程における 2 つの機構の関係を明らかにすることは今後の課題である。

ッイスト2のレベルの Collinear 因子化(パートン模型とpQCD)による高エネルギー包含過程の グローバル解析が,核子中の「パートン密度」についての知見を与えたのと同様,SSAのグローバル 解析はSSAの発現機構を解明し,パートンの「固有横運動量分布」や「パートン間多体相関」といっ たハドロン構造の新側面を切り拓いている。

これまでに, SIDIS 過程について HERMES や COMPASS が, $P_T < 1$ GeV 領域で多くの SSA デー タを報告しており, それを基に Sivers 関数について一定の知見が得られている。また, これら SIDIS の データと KEK-Belle で得られた Collins 関数を組み合わせ核子中のトランスヴァーシティー分布につ いても情報が得られている。COMPASS, RHIC, J-PARC における Drell-Yan 実験, 及び EIC による SIDIS 過程の SSA は、より広い運動学領域におけるこれら関数の決定と普遍性の検証を可能にする。

RHIC が報告した $p^{\uparrow}p \rightarrow hX$ ($h = \pi, K, \eta, D, J/\psi$)における多くのデータは $P_T \gtrsim 1$ GeV にあり, ツイスト 3 機構による解析に適している。横偏極核子中のクォーク・グルーオン相関関数と 3 グルー オン相関関数の寄与は得られているが,ツイスト 3 破砕関数の寄与はまだ不完全である。SIDIS 過程 についても,同様な事情である。完全な理論公式をそろえ,進行している RHIC や EIC 実験による SIDIS のデータのグローバル解析をすることで,核子中におけるパートンの多体相関に関する詳細な 情報を提供することであろう。

2.2.4 pp 衝突

横偏極現象は「互いに独立なパートンからなる核子」という描像では理解することができない未 解決な問題である。この現象が最初に大きな注目を集めたのはFNAL-E704 実験が測定した、横偏極 した陽子からの前方の粒子生成に対する大きなシングルスピン非対称性(SSA)である。この実験は 200-GeVの垂直方向に偏極した陽子(および反陽子)ビームを陽子標的に衝突($\sqrt{s} = 19.4$ GeV)させ た実験で、その結果、前方に生成される荷電および中性 π 中間子が最大で 30%に達する大きな左右非 対称性を持つことが示された。同様な結果は低エネルギーでの実験では示されていたが、FNAL-E704 実験のような高エネルギーの衝突においては、単純なパートン模型(ツイスト2の pQCD)に基づき このような大きな非対称性は消えると考えられていた。これを説明するために、単純なパートン模型 からの拡張が QCD を基にして発展した。この発展により示された核子構造で重要な要素は、パート ンの核子内部での他のパートンとの間の相互作用、パートンの量子多体相関である。パートンは核子 内部で運動(軌道角運動)をしており、軌道角運動量を含めなくては核子のスピンの理解も不可能で あることは、この章を通して述べてきていることである。

RHIC でのより高いエネルギーでの衝突 ($\sqrt{s} = 200 \text{ GeV}$)においても、この横偏極した陽子から の前方の粒子生成に対する大きな非対称性は、同様に示された。STAR 実験、PHENIX 実験は中性 π 中間子に対する結果を示し、BRAHMS 実験は荷電 π 中間子、K 中間子、陽子および反陽子に対する 結果を示し、その複雑な構造が示された。これらの結果は Sivers 効果、Collins 効果、高次ツイスト効 果などによる説明が行われているが、これらの効果を分離した測定を行うことが課題である。

Sivers 効果の測定においては、始状態効果と終状態効果が重要な役割りを果たすことが指摘されて いる。pp 衝突では一般的に始状態も終状態もともに複雑な効果を持つ。終状態効果を含まない過程 として注目されているのは Drell-Yan 過程である。これはクォークと反クォークが対消滅し、そこか らレプトン対が生成するという単純な理解が可能な過程である。この過程を用いて様々な新たな測定 を行うことができる。SSA や角分布の測定過程からは、TMD 分布関数として Sivers 分布関数以外に Boer-Mulders 分布関数を得ることが可能であり、同時に Transversity 分布関数を得る。またこれは、 TMD 分布関数の理論的フレームワークの評価としても重要である。非偏極の pp 衝突においても、角 分布測定から Boer-Mulders 分布関数を得ることができる。しかし、この過程は反応断面積が比較的 小さいため、高精度での測定は将来の大きな目標となっている。偏極陽子ビームや偏極標的を用いた 多くの偏極 Drell-Yan 実験の計画が世界中で提案されている。

Collins 効果は横方向の核子構造である Transversity 分布関数を、Collins 破砕関数をアナライザー として測定するものである。これはジェット内部の粒子生成の非対称性を測定することにより分離 することができる。同様の手段として、ハドロン対への破砕を記述する Interference Fragmentation Function (IFF) と呼ばれる破砕関数をアナライザーとして Transversity 分布関数を導く方法もある。 また、RHIC での高い p_T での非対称性の測定は、高次ツイスト効果であるツイスト3効果による解 析に適している。

2.2.5 SIDIS

横偏極 SIDIS 過程の微分断面積は,仮想光子と核子の運動量が Collinear な座標系において,レプトン平面とハドロン平面の間の方位角 ϕ_h とレプトン平面から測定した核子のスピンベクトルの方位角 ϕ_s への依存性により 5 個の異なる構造関数に分解される。各構造関数は,特定の TMD 分布・破砕関

数のたたみ込みとして表されるためそれらに関する情報が得られる。特に, Sivers 関数が $\sin(\phi_h - \phi_S)$ 成分に,核子の Transversity 分布が Collins 関数と対をなし $\sin(\phi_h + \phi_S)$ 成分に、pretzelocity 分布 が Collins 関数と対をなし $\sin(3\phi_h - \phi_S)$ 成分に寄与する。他の 2 つの構造関数はツイスト 3 の寄与となる。

横偏極陽子・重陽子標的を利用した、シングルスピン非対称度(SSA)測定による TMD 研究が HERMES、COMPASS 実験で進められた。HERMES で得られた Sivers 非対称度が π^+ 中間子が正、 π^0 中間子が小さいながらも若干正の値を示しているのに対し、 π^- 中間子については測定誤差の範囲 内で有意な非対称度が得られなかった。また、K⁺中間子が π^+ 中間子と同等かさらに大きな非対称度 を示しており、陽子スピンの方向に対し、海クォークがより大きな相関をもって存在する可能性を示 唆している [11]。Collins 非対称度は π^+ , π^- 中間子がそれぞれ正,負の非対称度を示す一方、 π^0 中間 子については有意な非対称度が得られなかった。また K⁺中間子はどちらも π^+ と同程度の正の非対 称度が得られた。K⁻中間子は有意な非対称度を示していない。特に負の大きな π^- 中間子の非対称 度は、Collins 破砕過程において、unfavored 破砕関数が favored と逆符号で大きな値を持つ可能性を 示した [10]。COMPASS は粒子識別されていない正・負の電荷を持つ八ドロンについて、同様な測定 結果を報告している [12]。COMPASS では横偏極重陽子標的による測定も行われたが、重陽子標的に よる測定ではどの中間子でも測定精度内では有意な Sivers・Collins 非対称度が得れていない。フレー バー間で非対称度が相殺されたものと推測されている。

 $sin(3\phi_h - \phi_S)$ 成分も大きな非対称を示しており、Pretzelocity がゼロでない事が明らかになって きた。それらは分布関数と破砕関数のたたみ込み積分であり、直接それぞれの関数に関する情報を得 ることは単純ではない。二つのハドロンが生成される破砕過程では、例えば Interference 破砕関数と Transversity 分布関数の単純積としてフーリエ係数に現れる。これは特に Transversity の研究をすす める上で、Collins 非対称度の測定と相補的な役割をもつ。非偏極散乱や、縦偏極散乱のフーリエ係数 解析も HERMES、COMPASS、JLab で行われてきた。

2.2.6 偏極破砕関数の測定

カイラル奇であるクォークの Transversity 分布関数 $\delta q(x)$ を求めるためには、他のカイラル奇の関 数と組み合わせて、測定可能なカイラル偶の関数を作る必要がある。Transversity は Inclusive-DIS 実 験では測定できず、カイラル奇の破砕関数と組み合わせた Semi-inclusive DIS (SIDIS) 実験を行わな ければならない。同様に横偏極した pp 衝突実験では、カイラル奇の破砕関数と組み合わせるか、もし くはクォークの Transversity と反クォークの Transversity を結びつける Drell-Yan 過程での二重スピ ン非対称度の測定を行う必要がある。

カイラル奇の破砕関数は、クォークの始状態の横スピンを観測される終状態のハドロンに対する何 らかの依存性に関連付ける。最も単純な場合としては、横偏極した Λ 粒子への破砕関数 $H_1(z,Q)$ に 対するスピン依存性があるが、この破砕関数はまだ測定されたことがない [13]。もっと顕著な例とし ては、Collins 破砕関数 [14] や Interference 破砕関数 (IFF) [15] がある。ここでは、スピン依存性は スピンとクォークの始状態での運動量に対する方位角依存性に結びつけられる。

二つの未知の関数が組み合わさって測定される SIDIS 実験や pp 衝突実験とは異なり、e⁺e⁻ 消滅実 験では、破砕関数のみのスピン依存性を研究するためのきれいな方法が与えられる。ただし、カイラル 奇のクォークに対する破砕関数と反クォークに対する破砕関数を同時に測定しなければならない。そ

図 5: 一般化パートン分布とパートン分布・形状因子

のような測定は Collins 破砕関数に対しては Boer[16] により、IFF に対しては Artru、Boer ら [17, 18] により提案された。

Collins 破砕関数は始状態のクォークのスピンと運動量の方向に対する、観測される終状態のハドロ ンの一様でない方位角の変調として記述される。変調は正弦変調として記述されるが、 e^+e^- 実験の 場合は反対方向に生成された二つのハドロンの、レプトン軸とクォーク軸で張られる生成平面(ほぼ スラスト軸に等しい)に対する二つの角の和の余弦変調となる。荷電 中間子対に対する最初の結果 として、Collins 破砕関数がゼロでない値を持つことが Belle 実験で示され [19]、後に、より大量の統 計により高精度化され [20]、ごく最近、Babar 実験によっても確認が行われた [21]。Belle 実験の結果 は、HERMES 実験による陽子標的の Collins モーメント [22] と COMPASS 実験による重陽子標的の Collins モーメント [23] とともに、グローバル解析が行われ、まだモデル依存ではあるが、最初の u-クォークと d-クォークの Transversity 分布が得られている [24]。

二つめのカイラル奇の破砕関数は IFF である。これもまた e^+e^- 消滅によりきれいに得ることがで き、SIDIS 実験や pp 衝突実験で Transversity 分布を測定するために用いられる。終状態ハドロンの 横運動量依存性を持つ Collins 破砕関数とは異なり、IFF は異なる電荷を持つ二つの終状態ハドロン で張られる平面の方位角方向に対して感度が高く、横運動量に対しては積分される。このため、IFF は QCD 発展が知られていて扱いやすい。Belle 実験は荷電パイ中間子対に対する IFF を測定し [25]、 これと HERMES 実験の結果 [26] を合わせて同様に Transversity 分布が導出されており [?]、その結果 は Collins 破砕関数による結果と一致しているようである。

2.3 核子の3次元構造と軌道角運動量

2.3.1 一般化されたパートン分布関数と Ji のスピン和則

核子構造は,包含過程のみならず,排他的過程においてもプローブされる。包含過程に対するパートン分布関数は,(5)に表されているように,対応する場の積の核子による前方行列要素であった。これは,因子化が断面積に対して行われたことによる。これに対し,核子の形状因子がそうであるように,排他的過程の記述に現れる核子の行列要素は非前方行列要素である。仮想光子による核子からのコンプトン散乱(DVCS=Deeply Virtual Compton Scattering, $ep \rightarrow e' \gamma^{(*)} p$)や中間子の生成

(HEMP=Hard Exclusive Meson Production, $ep \rightarrow e'Mp$)には,次式で定義される一般化されたパートン分布関数(GPD=Generalized Parton Distribution) $H_q(x, y, \Delta^2), E_q(x, y, \Delta^2)$ が寄与する。

$$\int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P'S' | \bar{\psi}^{q}(-\frac{z^{-}}{2}) \gamma^{+} \psi^{q}(\frac{z^{-}}{2}) | PS \rangle$$

= $\frac{1}{\bar{P}} \bar{U}(P',S') \left(\gamma^{+}H_{q}(x,y,\Delta^{2}) + i \frac{\sigma^{+\nu}\Delta_{\nu}}{2M} E_{q}(x,y,\Delta^{2}) \right) U(P,S).$ (6)

ここで, $U(P,S) \geq U(P',S')$ は散乱前後の核子に対するスピノール, $\Delta = P' - P$ は核子の運動量移行, $\bar{P} = (P + P')/2$ は散乱前後の平均運動量で $y = -\Delta^+/(2\bar{P}^+)$ である。これより, GPD は $\Delta \to 0$ の極限で Collinear な PDF に移行する量である。すなわち, $H_q(x,0,0) = q(x)$ である。また, x で積分すると,核子の形状因子へと移行する。すなわち, $\int_{-1}^1 dx H_q(x,y,\Delta^2) = F_1^q(\Delta^2)$ (Dirac 形状因子) $\geq \int_{-1}^1 dx E_q(x,y,\Delta^2) = F_2^q(\Delta^2)$ (Pauli form 形状因子)の関係が成立している。このように, GPD は形状因子とパートン分布関数統一し一般化した関数といえる。

古くからその存在が認識されていた TMD に比べると GPD が高エネルギー散乱の物理に登場した のはだいぶ後になってからである。GPD の原型は、仮想コンプトン散乱の解析に関連して、1980 年 代の Watanabe や Leipzig group の論文などに現れているが,その重要性が認識され広い関心を呼ぶ ようになったのは,1997 年の Ji の論文によるところが大きい。Ji はこの論文で,GPD の 2 次のモー メント $J_q = \frac{1}{2} \int_0^1 dx x \left[H_q(x,0,0) + E_q(x,0,0) \right]$ が,クォークのスピンと軌道角運動量を合わせた核子 スピンへのクォークの全寄与を表していることを示し「、核子スピンの謎」を解明する上で,GPD が 極めて重要な情報を運んでいることを示した。この関係により, $J_q - \int_0^1 dx \Delta q(x)$ は,クォークの軌 道角運動量の核子スピンへの寄与を表していることになる。

もちろん、核子のスピン・コンテンツの情報と関係するのは、2次のモーメントという GPD の1 側面に過ぎず、GPD 自体は、TMD と同様に、パートンの3次元的情報を含むより豊富な物理量であ る。上述した,パートン分布関数や形状因子との関係の他,GPD の空間座標へのフーリエ変換であ る衝突係数依存パートン分布は、空間座標における確率密度としての解釈を有し、通常の PDF の自 然な3次元的拡張になっていることが Burkardt によって示されている。また,GPD は Colinear 因子 化の枠組みで解析可能であり、摂動論的 QCD の最低次で既に因子化が証明されているなど,様々な 原理的な問題が残されている TMD に比べると、GPD の理論は既に成熟したレベルにある。

2.3.2 DVCSとHEMP

DVCS 断面積は HERA 等での測定が行われてきた。断面積には GPD 中の H 関数が主な役割を果たす。一方で、固定標的による実験では DVCS と同じ終状態を持つ Bethe-Heitler 過程 (入射または散乱電子による実光子輻射, BH 過程) がより支配的となるため、直接的な DVCS 断面積測定は現実的ではない。スピン非対称度やビーム電荷非対称度には、BH-DVCS 干渉項が電子散乱平面と実光子生成平面のなす方位角 ϕ への依存性を持ってあらわれるため、これらの非対称度測定に基づく GPD 研究が可能となる。SIDIS による TMD 研究と同様に、非対称度方位角分布のそれぞれのフーリエ係数に対し、対応する核子形状因子と GPD との積が知られている。

2001 年に HERMES と CLAS 実験により主に $H(x, y, \Delta^2)$ に依存する DVCS ビームスピン非対称度 $A_{LU}^{\sin\phi}$ の存在が報告された [35, 36]。以来、Ji 和則によるクォーク全角運動量の決定を目指し、HERMES や JLab での実験で DVCS 測定が精力的に行われてきた。特に HERMES はビーム粒子に電子、陽電

図 6: 核子内でのアップクォーク・ダウンクォーク全角運動量 [42]。

子を利用できるため、 $H(x, y, \Delta^2)$ の情報をビーム電荷非対称度 $A_{\rm C}^{\cos\phi}$ 測定からも得る事が出来る。Ji 和則の決定には $E(x, y, \Delta^2)$ が必要である。 $E(x, y, \Delta^2)$ の情報は横偏極標的による DVCS 測定、例 えば標的スピンの方位角 $\phi_{\rm S}$ に対する依存性から標的スピン非対称度 $A_{\rm UT}^{\sin(\phi-\phi_{\rm S})\cos\phi}$ の測定から得ら れる。例えば、HERMES からは上記の非対称度について、 $A_{\rm LU,I}^{\sin\phi} = -0.224 \pm 0.028 \pm 0.020$ [37]、 $A_{\rm C}^{\cos\phi} = 0.055 \pm 0.009 \pm 0.004$ [37]、 $A_{\rm UT}^{\sin(\phi-\phi_{\rm S})\cos\phi} = -0.164 \pm 0.039 \pm 0.023$ [38] が報告されて いる。HERMES、JLab で測定された非対称度から、陽子内でのアップ、ダウンクォークのもつ全角 運動量の推定も行われ、GPD に対する理論的模型の仮定のもとで $J_u + J_d/2.8 = 0.49 \pm 0.17$ [38]、 $J_u + J_d/5.0 = 0.18 \pm 0.14$ [39] が得られている。

実光子の代わりに中間子を終状態に持つ中間子生成過程 (HEMP) に関する測定も平行してすすめら れてきた。中間子の同定により、関連する GPD をヘリシティ依存性、そして散乱に寄与するパート ンの種類 (クォークフレーバー、クォーク・グルーオン)により選別する事が可能となり、GPD のよ り詳細な情報を得る事が出来る。縦偏極標的、横偏極標的等による HEMP は HERMES、JLab 等で 積極的に行われている。横偏極陽子標的による ρ 中間子生成で得られる標的スピン非対称度は、アッ プ・ダウンクォークの E 関数が直接関与するため、それらの全角運動量決定に重要な役割を果たす。 HERMES は $A_{\rm UT}^{\rm LL,sin(\phi-\phi_S)} = -0.035 \pm 0.103$ を報告している [40]。いくつかの GPD 模型による J_u 、 J_d 依存性が計算されており、今後の精密測定が望まれる。横偏極陽子標的による π^+ 中間子の HEMP では $A_{\rm UT}^{\sin(\phi-\phi_S)}$ が GPD の $\tilde{H} \geq \tilde{E}$ の積に関係する事が知られている。HERMES での横陽子標的によ る測定結果は、運動量移行の小さい領域 ($-t \sim 0.1 \text{ GeV}^2$)で有意に負の値 $A_{\rm UT}^{\sin(\phi-\phi_S)} \sim 0.3$ を持つこ とを示しており \tilde{E} の存在を示唆するものであった [41]。

2.3.3 核子スピンの分解

GPD の物理に関係して最近大きな進展があったのが、「核子スピンの完全分解は可能か?」という問題である。核子スピンをクォークとグルオンの固有スピンと軌道角運動量の寄与に完全分解できるか否かという問題は、EMC グループによる「核子スピンの謎」の提出直後に出版された Jaffe と Manohar

の有名な論文における問題提起以来、ずっと未解決の難しい問題であった。世の中に広く知られた核 子スピン分解に、Jaffe-Manohar 分解とJi 分解という2つがあって、その優劣について長い間論争が 続いて来た。Jaffe-Manohar の分解の短所は、分解の各項が別々にゲージ不変性を満たしていないこ とであり、観測量はゲージ不変でなければならないというゲージ原理の立場からいうとこれは大変不 満足なことであった。一方、Ji の分解の各項はゲージ変換の下で不変であるという望ましい性質を満 たしているのであるが、グルオンの全スピンを、その固有スピンと軌道角運動量の寄与に分解するこ とは不可能であるとされていた。中でも次の事実は、長い間この分野の研究者を困惑させてきた。す なわち、2つの分解で、クォークの固有スピンの部分 $\frac{1}{2}\Delta\Sigma$ は共通なのであるが、クォークの軌道角 運動量部分が異なるので、Jaffe-Manohar の分解のグルオンの固有スピンの寄与 Δg と軌道角運動量 の寄与 \mathcal{L}^g を足したものは、Ji の分解におけるグルオンの全角運動量 J^g とは一致しないという事実で ある (図7参照)。

図 7: Jaffe-Manohar 分解と Ji 分解

最近、Chenらは、核子スピンのゲージ不変な完全分解が可能であると主張して論争を引き起こした。その後、Chenらの論文に啓発されたWakamatsuの一連の仕事によって核子スピンの完全分解の問題は肯定的に解決された。これによると、核子スピンのクォークとグルオンの固有スピンと軌道角運動量へのゲージ不変な分解は確かに存在する。ただし、この分解は一意的ではなく、Chenらの分解とは異なるもう一つのゲージ不変な分解(これはJiの分解を含んでいる)が存在する。後者は、Chenらの分解とは、軌道角運動量部分が本質的に異なり、その分解の著しい利点は、分解の各項の寄与が全て、高エネルギー深部非弾性散乱の観測量(具体的には非偏極GPDの2次のモーメントと縦偏極分布関数の1次のモーメント)に対応づけられることである。これによって、相対論的複合粒子である核子のスピンの内訳(起源)を、純粋に実験的に決定するための理論的基盤が得られたことになる。したがって、残る問題は、実験に関するもので、GPDとグルオン偏極を如何に精度よく引き出せるか否かだけになった。複合粒子のスピン分解が、純粋に観測量のみを通じて可能であるということが如何に稀有のことであるかは、例えば、原子核のスピンに果たす構成子の軌道角運動量という概念が根本的に模型に依存する概念であり、いかなる直接の観測量にも対応しないことを思い出せば明らかである。

2.4 非偏極測定

2.4.1 反クォーク分布のフレーバー非対称性

ドレル・ヤン反応は、クォークと反クォークが対消滅して仮想光子となり、それがレプトン対に崩壊 する過程である。非偏極の実験であっても、ドレル・ヤン実験のような生成断面積の小さな反応に対 しては、大強度ビームを必要とする。FNAL-E866 実験は Tevatron 加速器から取り出された大強度陽 子ビームを用い、ドレル・ヤン反応によるミューオン対の測定を陽子標的と重陽子標的を用いて行い、 反クォーク分布のフレーバー非対称性を高統計で得た。そこでは反アップクォークと反ダウンクォー クの分布は著しく異なることが示された。FNAL-E906 実験が Tevatron 加速器より低いエネルギーの Main Injector 加速器から取り出される大強度陽子ビームを用いて開始される。陽子標的と重陽子標 的を用いて反クォーク分布のフレーバー非対称性をより高い運動学的領域で高精度で測定する。また 角分布測定により TMD 分布関数のひとつである Boer-Mulders 関数を得る。

2.4.2 小さい *x* 領域の構造関数

核子の深非弾性散乱において、小さなブジョルケン \mathbf{x} の領域はマンデルスタム変数では $1 \ll s/t$ の超前方散乱の領域に相当し、そこでは構造関数が $x^{-\lambda(Q)}$ のような \mathbf{x} の逆べきで急激に上昇するこ とが HERA などの実験で観測されている。そういった振る舞いの起源として、ソフトな QCD ダイナ ミクスをよく記述する Regge 理論に現れるソフト・ポメロンの寄与や、ハードなグルーオン交換に由 来するハード・ポメロンの寄与などが議論されている。特に後者については BFKL 方程式やその改 良など、この領域で重要となる $\log(x)$ の対数補正を全次数にわたって足し上げる試みがなされている が、HERAの運動学的領域では非対数補正も無視できないために現象論的にはあまり成功していると は言えない。また、偏極深非弾性散乱などの偏極過程においては $\left(\left(lpha\ln^2 x
ight)^n$ の二重対数補正が現れ ることが知られており、高エネルギー発展方程式による足し上げが議論されている。一方で small-x での構造関数の急激な上昇は、いずれ核子中のパートン(おもにグルーオン)密度が飽和することに よって抑えられると考えられる。そのような領域ではパートンは互いに重なり合い、個別のパートン による非コヒーレントな散乱という従来のパートン描像は成立しなくなる。パートン飽和を実現する モデルとしてパートンの再結合効果を取り入れた非線形方程式(BK 方程式)や、より一般的な有効 理論であるカラー・グラス凝縮(CGC)、それらのモデルと従来のコリニア因子化に基づく摂動論的 QCD との関係などが議論されている。それらのモデルによると、xとQ2の組み合わせとして表さ れる(パートンの重なり度を表す) という量のみで深非弾性散乱の断面積が表される(幾何学的ス ケーリング:GS)と考えられ、実際に HERA 等の実験結果でよく成立している。一方でこの GS は 従来の DGLAP 方程式でも説明がつくことが最近わかり、どちらのダイナミクスがより重要かは一般 に運動学的領域によると考えられる。いずれにせよ理論・実験の両方でより広範囲で精密なスタディ が必要である。また、small-x における構造関数の振る舞いはそれ自体興味深いだけでなく、構造関数 のモーメントと実験データや格子 QCD の結果を比較する際などに重要となる。このように、small-x の物理は摂動計算の足し上げ、Regge 理論に基づく非摂動 QCD、摂動領域ではあるが CGC などの新 しい枠組みを必要とするパートン飽和などの豊富な物理を含んでいる。それらの物理の探索には、深 非弾性散乱のみでなく Diffractive 過程やジェット生成過程などと組み合わせることが重要で、LHC、

LHeC、EIC などにおける広い運動学的領域をカバーする実験により QCD と核子構造の新たな側面が理解できると期待される。

2.4.3 大きい x 領域の構造関数

深非弾性散乱による核子構造関数の研究は、摂動論的量子色力学 (pQCD)の確立と核子構造の非摂 動論的側面の理解に寄与してきた。大きい x 領域の構造関数は主に JLab で研究されているが未だに 十分大きい不変質量のデータは得られておらず、12 GeV 電子加速器完成後の主要研究課題の一つで ある。x=1 はレプトン・核子弾性散乱を意味し、この過程を記述する理論的指針として pQCD に基づ く計数則の描像がある。弾性散乱は、3 つのクォーク間のハード・グルーオン交換により記述できる と考えれば、構造関数およびクォーク分布関数の x 依存性は $q(x) \sim (1-x)^{2n-3}$ となる。ここで、n は 価クォーク数である。JLab 実験の場合、例えば不変質量 $W^2 > 4(3)$ GeV² 領域は x < 0.6(0.7) に対 応し、まだ非常に大きい x 領域まで到達していない。また、d クォークの分布を決定するために中性 子の構造関数が必要であるため重陽子標的を用いた実験を行う。重陽子実験から中性子の構造関数を 取り出すには原子核補正を行う必要があり、短距離相互作用を含む重陽子構造の詳細が必要になる問 題がある。この原子核補正の問題の研究とともに、構造関数における計数則の検証が進められている。

2.4.4 破砕関数の測定

ジェット測定を除けば少なくともひとつの終状態ハドロンの観測を行う SIDIS 実験や pp 衝突実験 は、非偏極な破砕関数の精密な知識を必要とする。他のいくつかの e^+e^- 実験もあるが、主な破砕関 数の知識は 90-GeV スケールの LEP 実験から得られている [44]。比較的精度のよい中間 x 領域の非偏極分布関数の知識により、SIDIS 実験や pp 衝突実験のハドロン生成断面積をグローバル解析に用いて 最近、破砕関数の導出が行われた [45, 46]。しかしながら、重要な欠けている情報は、核子のスピン構 造を得るための偏極測定に近いスケール、特に高いエネルギー比、z > 0.7 付近での破砕関数の知識 である。これらの領域は、大部分が高いz の粒子を選択する RHIC におけるグルーオンスピンの測定 にとって特に重要である。 e^+e^- 実験からのグルーオン破砕関数は、大きな Q スケールのレバーアー ムを必要とする DGLAP 発展方程式を通した方法で得られる。~10-GeV のスケールの Belle 実験は これを与え、グルーオン破砕関数の不確定性を減少させる。 π 中間子、K 中間子、陽子への破砕関数 の測定は現在行われており、もうすぐ結果が得られる。さらに Belle 実験と Babar 実験はいくつかの チャームハドロンへの破砕関数の測定を行っており [47]、それらはチャームハドロンを用いた構造関 数の測定に対してとても重要である。

2.4.5 形状因子の測定

核子の弾性電磁形状因子の研究は電子加速器のエネルギーの拡張と供に、より高い移行運動量領域 での測定が行われ、核子-中間子の描増からクォークグルーオンの自由度による記述へと幅広いスケー ルで核子構造の理解が試みられてきている。80~90年代頃には入射エネルギー50 GeVのSLAC 実験により陽子の弾性形状因子測定のQ2は30 GeV2に達し、pQCDによる記述に期待が高まっ た。一方加速器の強度や測定技術の向上により、Jlab が立ち上がった90年代から精密測定による再 評価の側面も顕著になった。 精密測定により、SLACの測定では見落としていた現象も見つかっている。陽子の電荷分布と磁化 分布の比GE/GMがQ2と供に1からずれていくという興味深い現象が高精度のJlab実験により明 らかになった。この現象は高いQ2で電子が散乱される際に、1光子交換近似が成り立つか疑問を呈 した。

また、中性子電磁形状因子の測定も精度の向上とともに、より高いQ2へ測定範囲も広がっている。 そもそも広範囲のQ2を統一的に記述する手だてがない事と、さらに中性子と陽子の4つの電磁形状 因子を同時に矛盾なく記述するのは現状では非常に難しい。Meson Cloud、VMD、クォークモデル 等複数のフリーパラメータを調整する形でフィットしているのが現状であり、決定的な知見を得られ る程には理論の成熟度が不足している。

2.5 QCD 非摂動論

2.5.1 格子 QCD

核子の電荷分布等の情報を担う形状因子は、クォークの局所演算子を、異なる運動量を持つ核子状 態ではさんだ非前方行列要素として定義される。一方、深非弾性散乱 (DIS) などの過程において、核 子の非摂動的側面を記述するパートン分布関数 (PDF) は、非局所演算子の前方行列要素として定義 される。(6) 式のように、この両者の概念を包含し、より詳細な核子構造の情報を担う非局所演算子 の非前方行列要素として定義される量が、一般化パートン分布 (GPD) である。

格子 QCD シミュレーションは、強い相互作用の非摂動的動力学を時空の離散化によって第一原理 から計算する手法であり、これを用いて GPD のモーメント (一般化形状因子) が計算できる。核子の 形状因子より、荷電半径や異常磁気能率などが得られ、その前方極限値から、軸性結合定数 g_A やテ ンソル結合定数 g_T 、クォークのスピン $\Delta\Sigma$ といった諸量が算出される。また、 2.3.1 節で述べた Ji の スピン和則と呼ばれる関係式により、GPD の 2 次のモーメントからクォークが担う全角運動量が計 算できるため、スピンの情報を勘案すれば、クォークの軌道角運動量の寄与も格子 QCD によって評 価できる。

格子上でのクォークの定式化にはいくつか方法があり、計算量の違いやカイラル対称性との整合性、 考慮する動的なクォークの数などに差がある。核子構造の計算には、国内外の異なる研究グループが、 様々なクォークの定式化を用いて、シミュレーションが行われている。

格子 QCD シミュレーションを用いた核子構造に関する研究として、クォークのエネルギー運動量 テンソルと擬ベクトル流演算子の核子行列要素の計算が代表的な例として挙がられる。この結果に上 述の Ji のスピン和則を適用することにより、クォーク角運動量の寄与を格子上のパイ中間子質量の関 数として示したものが、図8 である。現段階では、アイソスカラーチャンネルに対して非結合ダイア グラムからの寄与が取り入れられていないため、この寄与を考慮したときにフレーバー分解に対して どの程度の影響が生じるかについては、今後慎重に検討する必要がある。

近年の進展としては、場の境界値に複素位相などを乗じるといった境界条件に工夫をして、前方極 限値の系統誤差を抑制する試みや、運動量移行に対するフーリエ変換による、パートン分布の衝突径 数依存性などの評価、格子上で非局所演算子を直接構成し、その行列要素を計算することで、横運動 量依存パートン分布 (TMD)を算出する試みなどがなされている。ただし、格子上における非局所演 算子に定義に際しては、リンク変数の積分路の取り方などに問題があり、定量的な評価には至ってい

図 8: 核子におけるクォーク角運動量のパイ中間子質量依存性 [48]。スピンの寄与 Δ∑ および軌道角 運動量 L を、フレーバー毎に表示。非結合ダイアグラムからの寄与が取り入れられていない点に注意 が必要。

ないのが現状である。また、確率的因子を利用した非結合ダイアグラムからの寄与の評価や、核子ス ピンに対するグルーオンからの寄与を評価する試みなどもなされつつある。これらの寄与の評価には、 通常の GPD のモーメントの計算と比べて、膨大な計算コストが必要となり、系統誤差を抑えた有意 な値を得るには、さらなる計算手法の開発が望まれる。

GPD のモーメントに関しては、擬スカラー中間子の質量が重い領域でしか格子計算がなされてお らず、カイラル摂動論によるカイラル外挿の妥当性を注意深く検討する必要がある。また、連続極限 をとる際の系統誤差や、有限体積効果を抑制するためにも、カイラル対称性との整合性の高いフェル ミオンの定式化を用いた、現実的なパイ中間子質量を再現するような設定で、 多数の格子点と十分な 統計量を用いた大規模な計算が、GPD の評価にあたって不可欠である。

このような観点からも、汎用京速計算機をはじめとするスーパーコンピュータの開発と効率的な運 用が、長期的な視点を持って計画・実行されることが望まれる。

2.5.2 有効理論、有効模型

高エネルギー深部非弾性散乱過程を扱うための基本的理論枠組みである摂動論的 QCD の基礎をな すのが、因子化定理であり、それは、散乱断面積を、摂動論的に扱えるハード部分と、非摂動論的な 核子の内部構造(パートン構造)を含むソフト部分の積に因子化できることを主張する。このソフト 部分に含まれるのが、核子中のクォーク分布関数やグルオン分布関数である。純粋に摂動論的 QCD の立場に立つならば、この部分は理論的予言の対象ではなく、深部非弾性散乱の断面積の解析から引 き出す量と考えるのであるが、我々が知りたいパートン分布を引き出すために必要十分な情報を実験 が提供できない状況はしばしば起きる。また、実験的にパートン分布の形が決められたとしても、な ぜそれがそのような形をとるのかを理解することも重要な物理的課題である。ここで出番となるのが、 QCD の有効理論、有効模型や、格子ゲージ理論である。今でこそ、高エネルギー深部非弾性散乱の 物理においてそれが果たす役割の重要性が認められている低エネルギー有効理論であるが、初めから

そうではなかったことは強調しておきたい。摂動論的 QCD の立場では、核子中の海クォークは、発 展方程式 (Altarelli-Parisi 方程式) で記述されるスケール発展の過程で輻射的に生成される。そこで は、核子中の海クォークは、親となるクォークからのグルオン輻射を通じて常にクォーク・反クォー クの対として生成される。ところが、グルオンはフレーバー量子数をもたない粒子(または、flavor blind な粒子)なのでここで生成されるクォークと反クォークは同じフレーバーを持つことになる。し たがって、QCD のスケール発展の機構によって核子中の海クォーク分布にフレーバー非対称性が生じ ることはあり得ない。高エネルギー深部非弾性散乱は摂動論的 QCD で記述できるという考えに過度 に支配されていたために、本来ソフト部分であるパートン分布は、摂動論的 QCD の守備範囲を超え る対象であるにもかかわらず、核子中の海クォーク分布はフレーバー対称であろうと信じられていた のである。この理由のない神話を打ち破ったのが1991年のNMCグループの実験であり、この実験に より、陽子中の $ar{u}$ -クォークと $ar{d}$ -クォークの分布の明らかな非対称性が確立された。この非対称性は、 少なくても定性的にはパイ中間子雲の効果として説明できることが知られている。それがなぜ重要か というと、低エネルギー領域の QCD ではその本質的重要性が認識されていたにもかかわらず、高エ ネルギー領域の散乱現象とはあまり関係がないものと思われていた QCD のカイラル対称性とその自 発的破れが、深部非弾性散乱の物理においても極めて重要な役割を果たすことをはっきりと認識させ てくれたからである。これを契機として、未だ実験的な情報が少ない縦偏極海クォーク分布のフレー バー非対称性、核子中のストレンジ・クォーク分布と反ストレンジ・クォークの非対称性、核子のス ピン構造に関して縦偏極分布とは独立の情報を含む transversity と呼ばれる分布関数、核子スピンの 内訳等々対する低エネルギー有効模型の予言に対して、深部非弾性散乱の物理の専門家らも強い関心 を寄せるようになった。

ここでは、低エネルギー有効模型の予言能力の高さを示す一つの例をあげる。図9に示したのはフレーバーSU(3)のカイラル・クォーク・ソリトン模型で予言された核子中のs-クォーク分布と \bar{s} -クォーク分布の非対称性である。一方、エラー・バンドの形で示された曲線(NNPDF2.1 NNLOと書かれた方)は、neural networkという枠組みに基づいて、パートン分布のglobal analysisを精力的に行っているイタリアのForteらのグループによる最新結果である。 $s - \bar{s}$ 非対称性の実験的決定には、未だ不定性は多いが、現段階でのglobal analysisの結果と理論の予言の一致は印象的である。

ソフト部分を調べるのに有効模型に頼らざるを得ない理由は、我々が、QCD を非摂動論的に扱え る解析的手法を知らないからである。現在、格子ゲージ理論で扱えるのはパートン分布や一般化パー トン分布の低次のモーメントのみであり、分布関数自体(つまりその Bjorken 変数 x 依存性)は計算 不可能なのである。モーメントは分布関数の重要な情報の一つではあるが、この x 依存性にこそ非常 に豊富な物理が含まれていることが上に与えた $s - \bar{s}$ 非対称性の図からも類推できる。その x 依存性 について興味深い予言ができることが、有効模型の格子ゲージ理論に対する大きな優位性と言える。 さらに、現段階の格子ゲージ理論には、現実的なパイ中間子質量でのシミュレーションの困難、有限 体積の効果から来る不定性等、まだまだ問題も多い。また、得られた結果の物理的解釈が容易ではな いことなどを考えると、有効理論、有効模型の果たす役割は非常に大きい。

有効模型は、核子中のクォーク分布だけでなく、原子核内のクォーク分布についても、スピンに依存 する分布関数を含めて、有用な予言を与えて来た。例えば、原子核内の核子の内部構造が単独の核子 のそれから変化する可能性を取り入れることで、通常の EMC 効果を定量的に説明することが可能で あり、またそれと同時に、スピンに依存する「偏極 EMC 効果」に対する予言が与えられている [49]。 これまでに述べたのは、終状態のハドロンを観測しない包括深部非弾性散乱を通じてその情報が引

図 9: 核子中の s-クォーク分布と s-クォーク分布の非対称性

き出せる Bjorken 変数 x のみに依存する通常のパートン分布関数(縦運動量分布関数)に関わる話で あった。終状態の1個、または2個のハドロンを観測する semi-inlusive 深部非弾性散乱を行うことに より、核子の内部構造に対する更に詳しい知識を得ることができる。ただし、軽粒子、あるいは、仮 想光子に叩き出されたクォークやグルオンは、カラー閉じ込めのために、単独で飛び出すことはなく、 複雑な相互作用を経てハドロンとなって飛び出す。パートンがハドロンに転化するこの過程を記述す る量は破砕関数と呼ばれ深部非弾性散乱の過程の記述において、パートン分布とともに基本的な役割 を果たす量である。これらの関数も量子色力学(QCD)の非摂動論的な効果を含んでいるので、その 理論解析を行うために QCD の有効模型は有力な道具である。例えば、多重破砕プロセスを取り入れ たジェット模型の考えに基づき、生成されたハドロンの縦運動量分布関数が求められ、semi-inclusive 反応の実験データの解析から得られた経験的な破砕関数との比較も行われている。このような背景の 元に、QCD の有効模型の適用範囲を次のように拡張することが考えられる:

核子標的に対する破砕過程の記述:

破砕過程で生成されたハドロンの(光子の運動量方向に対する)横運動量分布関数を記述するために、 次の2つの効果を取り入れる:

(i) 核子中のクォークの横運動量分布。それを先ず有効模型を使って求め、その予言を準包含散 乱過程および Drell-Yan 過程から得られたデータの解析結果と比較する。

(ii) クォークの破砕過程から生じるハドロンの横運動量分布。ジェット模型の考えに基づいて、
 破砕するクォークの運動量方向に対するハドロンの横運動量分布関数を求め、最近の実験データの解析で得られたガウス正規分布の parametrization と比較する。

最後に、(i) および(ii) 両方の効果を取り入れ、破砕過程で生成されたハドロンの(光子の運動量 方向に対する)横運動量分布関数を求め、特にその二乗の平均値を詳しく調べる。

原子核標的に対する破砕過程の記述:

最近、HERMES および JLab (CLAS)の実験で、レプトン・原子核の semi-inclusive 散乱過程にお

けるハドロンの縦運動量分布が測定され、より詳しい測定は現在計画中の Electron Ion Collider (EIC) での重要な研究課題として取り上げられている。そのデータを解析および予言するために有効模型の 範囲内で次の計算を行うことができる:

(i) 媒質中のハドロン生成の平均行程,

(ii) 媒質中のクォークおよびハドロンのエネルギー損失,

(iii) 媒質中の平均場の影響。それらの計算の一部は既にルンド模型を使って行われてきたが、分 布関数の媒質効果 (EMC 効果) も再現できる模型の枠組み内での解析はまだ存在しない。

以上の研究の次のステップとしてレプトン・原子核の semi-inclusive 散乱過程におけるハドロンの 横運動量分布関数の解析を行うことも可能である。それに関する重要な観測量は、生成されたハドロ ンの横運動量分布幅の増加 (transverse momentum broadening) であり、主に媒質中のクォークの多 重散乱の効果に対する重要な知見を与えるものと期待される。

2.5.3 AdS/CFT からのアプローチ

1998年にMaldacenaによって提唱されたAdS/CFT対応は、AdS(アンチドジッター)空間にお ける超弦理論と共形なゲージ理論との間の双対性(等価性)に関するものである。これは共形対称性 を持つゲージ理論の様々な物理量が弦理論、重力理論を用いて非摂動的に計算できるという画期的な 提案であり、現在の素粒子論における大きな流れの一つとなった。近年ではQCDのように閉じ込め を持つ理論への拡張も議論され、強く結合したクォークグルオンプラズマなどの現象論への応用も積 極的になされている。核子構造、高エネルギーハドロン衝突に関しても、分布関数のように本質的に 非摂動的な量や散乱振幅の計算にAdS/CFTが新たな知見を与えることが期待できる。実際これまで に、深非弾性散乱(DIS)、電子陽電子消滅(e+e- annihilation)、DVCS、陽子衝突、原子核衝突等さま ざまな過程がAdS/CFTを用いて解析されており、予言を含むいくつかの結果(ポメロン、オデロン などのレッジェ粒子や、陽子スピンの分解など)は実験の観点からも大変興味深い。今後の課題は定 性的から定量的に移行することである。このためにはAdS空間を変形した(閉じ込め、カイラル対称 性の破れの効果や現実的なフレーバーの導入など)よりQCDに近い弦理論から出発し、超重力近似 を超えた計算を行うことが必要である。DISに関してはいくつかの仕事で実験との比較がなされてい るが、まだ改良の余地が大きい。構造関数、破砕関数、陽子スピンの分解、一般化パートン分布関数 など将来計画に沿った物理量への応用が望まれる。

3 将来の目標

3.1 横偏極現象の解明

横偏極現象の解明は、今後5年から10年の間の核子構造研究分野の中心課題である。pp衝突における前方の粒子生成に対する大きな横スピン非対称度(SSA)はSivers効果、Collins効果、Higher-twist 効果等による説明がなされているが、これらの効果の寄与を分離して理解する必要がある。

Sivers 効果を表す Sivers 分布関数は HERMES 実験や COMPASS 実験の SIDIS 測定による測定結 果がある。ここで、Sivers 効果と Transversity と Collins 破砕関数に起因する Collins 効果は、異なる 方位角分布を持つことにより区別される。どちらの実験においても、パートンの核子に対する運動量 比で 0.005 < x < 0.3 の範囲で 1%以下の精度のレベルの値が複数点で測定されている。そしてその測 定値を基にした QCD グローバル解析がいくつかの理論グループにより行われ、Sivers 分布関数が得 られている。

Drell-Yan 過程は核子中のパートン分布を調べるために理想的な過程のひとつである。この過程は クォークと反クォークが対消滅して、そこからレプトン対が生成するという簡単な理解が可能な過程 である。SIDIS 過程や pp 衝突でのハドロン生成過程は、比較的悪い精度でしか知られていないハド ロンへの破砕過程に起因する不確定性の影響を受けるが、Drell-Yan 過程はそのような終状態での不 確定性を避けることができる。偏極陽子ビームを用いた Drell-Yan 過程の測定は、核子の偏極パート ン分布のユニークな情報を得るために非常に重要である。しかし、高精度での Drell-Yan 過程の測定 は反応断面積が比較的小さいため、実験としては困難だがやりがいのある測定となる。

Sivers 分布関数のひとつの重要な性質は、Sivers 分布関数の持つ「非普遍性」である。SIDIS 過程 で測定される Sivers 分布関数と Drell-Yan 過程で測定される Sivers 分布関数は異なる符合を持つこと が理論的に示されている。

$$f^{Sivers}(x,k_T)|_{SIDIS} = -f^{Sivers}(x,k_T)|_{DY}$$

$$\tag{7}$$

この「非普遍性」はゲージ普遍性に基づく QCD の原理的な要請であり、この関係を実験的に示すことは、ハドロン物理分野の重要なマイルストーンのひとつである。このため、Drell-Yan 過程における Sivers 分布関数を測定し、SIDIS 過程での測定と比較し、この「非普遍性」を検証することは、ハドロン物理における世界的な優先課題のひとつである。

Drell-Yan 過程において、Sivers 分布関数は横スピン非対称度(SSA)の測定により行われる。SIDIS 過程の場合に Sivers 効果と Collins 効果を区別したのと同様に、Drell-Yan 過程においては、Sivers 分 布関数に起因する効果と Transversity と Boer-Mulders 分布関数に起因する効果を、異なる方位角分布 を用いて区別する。また、非偏極の pp 衝突における Drell-Yan 過程の方位角分布からは Boer-Mulders 分布関数の測定が行われる。

これらの偏極(または非偏極)での Drell-Yan 過程の高精度での測定を目指して、世界中で多くの 計画や準備中の実験がある。これらの実験の比較を表2に示す。

横偏極現象の解明に、Sivers 分布関数や Boer-Mulders 関数に加えて重要な測定は Collins 効果を表 す Transversity 分布関数や Collins 偏極破砕関数の測定である。Transversity は Drell-Yan 過程では上 述の SSA 測定において Boer-Mulders 関数との組み合わせで測定されるのに加え、二重横スピン非対 称度 (A_{TT})測定での Transversity 同士の積という形でも測定される。Transversity 分布関数はまた、 Interfarence 破砕関数 (IFF) と組み合わせて測定する方法もある。Collins 関数や IFF は Belle 実験 における e+e-衝突データから測定される。

3.2 核子の3次元構造と軌道角運動量

核子の3次元構造の解明は、今後20年以内、2030年頃までの核子構造研究分野の中心課題と なる。核子構造は「互いに独立なパートンからなる核子」という理解では全く理解することができな い多様な現象を示す。このような理解を超えた「核子内部のパートンの量子多体相関」の理解をしな

experiment	particles	energy	x_1 or x_2	luminosity
COMPASS	$\pi^\pm + p\uparrow$	$160 {\rm GeV}$	$x_2 = 0.2 - 0.3$	$2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
		$\sqrt{s} = 17.4 \text{ GeV}$		
COMPASS	$\pi^{\pm} + p \uparrow$	$160 {\rm GeV}$	$x_2 \sim 0.05$	$2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
(low mass)		$\sqrt{s} = 17.4 \text{ GeV}$		
PAX	$p\uparrow+\bar{p}$	collider	$x_1 = 0.1 - 0.9$	$2 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$
		$\sqrt{s} = 14 \text{ GeV}$		
PANDA	$\bar{p} + p \uparrow$	$15 {\rm GeV}$	$x_2 = 0.2 - 0.4$	$2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
(low mass)		$\sqrt{s} = 5.5 \text{ GeV}$		
NICA	$p\uparrow + p$	collider	$x_1 = 0.1 - 0.8$	$10^{30} \text{ cm}^{-2} \text{s}^{-1}$
		$\sqrt{s} = 20 \text{ GeV}$		
PHENIX/STAR	$p\uparrow+\bar{p}$	collider	$x_1 = 0.05 - 0.1$	$2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
		$\sqrt{s} = 500 \text{ GeV}$		
AnDY	$p\uparrow+\bar{p}$	collider	$x_1 = 0.1 - 0.5$	$?? \text{ cm}^{-2} \text{s}^{-1}$
		$\sqrt{s} = 500 \text{ GeV}$		
SeaQuest	$p\uparrow + p$	$120 {\rm GeV}$	$x_1 = 0.3 - 0.9$	$2 \times 10^{36} \mathrm{~cm^{-2} s^{-1}}$
Polarized Beam		$\sqrt{s} = 15 \text{ GeV}$		
RHIC Internal	$p\uparrow + p$	$250 {\rm GeV}$	$x_1 = 0.2 - 0.6$	$3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
Target		$\sqrt{s} = 22 \text{ GeV}$		
J-PARC	$p \uparrow + p$	$50 \mathrm{GeV}$	$x_1 = 0.5 - 0.9$	$10^{35} \text{ cm}^{-2} \text{s}^{-1}$
		$\sqrt{s} = 10 \text{ GeV}$		

表 2: Comparison with other experiments.

図 10: DVCS 実験での運動学的測定領域

くては、核子スピンへの軌道角運動量の寄与を知ることもできない。このためには、核子の構造を3 次元で精密に記述することが必要であり、今後20年以内の中心課題として、この方法の確立を行う。 核子構造を3次元で記述するために、既存のPDFによる記述を拡張し、一般化したものがGPD 関数 であり、これは形状因子とPDFを包含した概念である。GPD 関数は普遍性を持ち、QCD で厳密に取り 扱うことができる。そして Ji の和則により核子スピンへの軌道角運動量の寄与を曖昧さなく導くことが できる。GPD 関数は DVCS 過程と HEMP 過程により測定が行われる。HERA(H1/ZEUS/HERMES) や JLab (CLAS/Hall-A)では既に先駆的な GPD 関数の測定実験が行われているが、将来のレプト ン-核子散乱実験では GPD 関数の精密測定を行い、核子構造の3次元的記述を確立する。

3.3 その他の目標、より将来の目標

- 核子スピンに対するグルーオンスピンの寄与、クォーク・反クォークスピンの寄与、フレーバー 依存性のより精密な測定。
- ニュートリノ弾性散乱による △s の測定。
- Transversity、Collins 破砕関数、IFF などの測定。
- Transition GPD の測定。

4 実験計画

4.1 CERN/COMPASS

偏極ドレル・ヤン、GPD を含めた新たなプロポーザルが 2010 年に CERN で承認された。 COMPASSII の偏極 Drell-Yan プログラムでは、2014 年に 190GeV/c の -粒子ビームと偏極固体 陽子標的を用いて $x_{bj} > 0.1$ における横スピン非対称度を測定し、Sivers 関数、Boer-Mulders 関数や Transversity 関数などを抽出する。また、T-odd である Sivers 関数や Boer-Mulders 関数が SIDIS から求められたものと符号が反転することを実験的に検証する。

COMPASSIIの GPD プログラムでは、2015、2016 年に 160GeV/c の互いに偏極方向が反対の偏極 $\mu + \epsilon \mu - 粒子 c 液体水素標的を用いて深仮想コンプトン散乱 (DVCS) 過程を通して GPD の H を抽$ $出する。測定できる運動学的領域は、<math>0.005 < x_{bj} < 0.1$ であり HERA での実験と HERMES 実験で の領域の中間に当たる。また、 $0.03 > x_{bj}$ においては、Bethe-Heitler 過程からの寄与があまりないの で核子の横方向サイズを測定することができる。

4.2 RHIC

RHIC での pp 衝突における当面の最優先事項は $\sqrt{s} = 500$ GeV でのWボソンのパリティーの破れ た非対称度測定によるフレーバーを選択したクォーク、反クォークの偏極の測定である。2009 年に最 初の測定が行われ、2011 年より本格的なデータ収集が開始された。PHENIX 実験では 2011 年よりW の崩壊による前方のミューオンを捕らえるトリガーシステムが運用を開始し、STAR 実験でも 2012 年 より前方の電子、陽電子の電荷を区別するための GEM 検出器の設置が始まる。これにより前方と中 央ラピディティー双方でのWボソン測定が行われる。

グルーオンの偏極の測定としては、低いx、高いxの領域に測定範囲を拡げる。低いx領域ではグ ルーオン密度が高いため、この領域でのグルーオンの偏極は小さい値であっても重要な測定である。 また、高次ツイストの効果が大きければ大きな偏極を持っている可能性もある。低いxでの測定はよ り高いエネルギーである $\sqrt{s} = 500$ GeV での π 中間子やジェットの非対称度の測定によっても行われ るが、より前方での測定によっても達成される。これらの測定は、測定される非対称度が 0.01%程度 と小さい値が予想されるため、すべての系統的誤差をそのレベルでコントロールすることが要求され る。一方、高いx領域での測定は低いエネルギー、例えば $\sqrt{s} = 62$ GeV での測定により行われる。x領域の拡張も重要だが、異なる終状態での非対称度の測定も同様に重要である。これは例えば、終状 態として π 中間子、 η 中間子、荷電ハドロン、重いフレーバーを持つ中間子やジェットでの測定を指 す。これらの測定は、生成断面積が比較的小さい場合は統計精度が上がらないが、異なる系統誤差を 持つため比較測定を行うことが重要である。さらに生成過程として最も単純なものとして、光子の直 接生成過程や重いフレーバーの生成過程に対する非対称度の測定を目指す。

横偏極に対する測定として重要な課題は、前方の粒子生成に対する非対称度の p_T 依存性を明らかに することである。高い p_T での非対称度はツイスト3の効果を表すことが期待される。重いクォークの 生成はグルーオン融合過程に起因するため、この非対称度の測定は核子中のグルーオンの寄与に対する 感度が高い。従って J/ψ 粒子やチャーム中間子の崩壊レプトンに対する非対称度の測定は、グルーオン に対する Sivers 分布関数を測定するユニークな方法である。さらに前述の Interference Fragmentation Function を用いた Transversity 分布関数の測定も重要な課題である。

この後、さらに sPHENIX upgrade の話が続く。

4.3 Fermilab/SeaQuest

Main Injector からの 120 GeV 陽子ビームを用いた Drell-Yan 実験が実施・計画されている。現在の理論的フレームワーク (TMD 因子化)を検証する手法として Drell-Yan 反応は重要性が近年高まっ

ており、その初手として行なわれる実験が Fermilab の E906/SeaQuest 実験である。

E906/SeaQuest はビーム、標的ともに非偏極の実験である。2011年11月からビーム実験を開始し、 1年弱の加速器シャットダウンを挟んで2013年の末までデータを収集する。第一の実験目的は反クォー ク分布量のフレーバー非対称性 \bar{d}/\bar{u} を高 x_{Bj} 領域で測定する事である。同等の測定を行なえる実験 は存在せず、本実験の遂行は核子構造の解明に欠かせない。更に同一のデータから Boer-Mulders 関 数を導出する事が可能である。Drell-Yan 過程は特に反クォークの Boer-Mulders 関数に対して感度 が良く、SIDIS の測定結果と合わせてフレーバー依存性を検証可能にする。又、原子核標的でのデー タも測定して EMC 効果、エネルギー減衰の測定も行なう。

E906/SeaQuest 実験が完了した後は偏極 Drell-Yan 実験を推進する。検出器とビームは既存のま ま、偏極標的を開発・導入して偏極実験を実施し、比較的短期(201X年?) で偏極実験データを収 集する。ビームを偏極させる手法も検討されている。同時に、E906/SeaQuest 実験での知見は BNL (RHIC) や J-PARC での次期実験にも重要である。次期実験はスペクトロメータの設計方針や一部 検出器を E906/SeaQuest 実験から引き継ぐ予定であり、E906/SeaQuest 実験の測定結果(検出器の 性能、シグナルやバックグラウンドの空間分布、等)は検討材料として次期実験の早期開始に貢献す る。次期実験により異なるビームエネルギーや偏極状態での測定データ(Boer-Mulders 関数、Sivers 関数、Transversity)を得る。

4.4 Belle

日本の理研、RBRC、東工大グループおよび、イリノイ大、インディアナ大のグループは Belle 実験 データからのスピン依存および非偏極の破砕関数の導出を続けると同時に、より高いルミノシティー を要求する終状態を得るための Belle2 実験の準備に参加している。次は、 π 中間子、K 中間子、陽子 への非偏極破砕関数の結果がもうすぐ得られる。その結果得られる粒子誤識別の知識により、少なく ともひとつの K 中間子を終状態に含む Collins 破砕関数や IFF を求めることができるようになる。こ れらのチャンネルはすでに HERMES 実験により測定が行われており、COMPASS 実験では解析中で ある。さらに JLab-12GeV や EIC でも計画されており、クォークの Transversity 分布に対するストレ ンジネスを含む完全なフレーバー分解のグローバル解析が可能となる。さらに得られる他のチャンネ ルとしては、中性ハドロン (中性 π 中間子、 η 中間子) に関する Collins 破砕関数、IFF、非偏極破砕 関数が導出される。これらは現在のところ、xやzが大きい前方ラピディティーでの中性ハドロン崩 壊が好まれているチャンネルであり、ゼロでない SSA が測定されている RHIC スピン実験にとって 特に関心が高い。ベクトル中間子 (ho、 K^* 、 ϕ)の Collins 非偏極度も研究が行われており、横偏極し た Lambda 粒子への破砕関数の測定も可能性がある。全ての横運動量依存(TMD)分布関数および 破砕関数に対してさらなる興味が持たれているのは、非偏極破砕関数および Collins 破砕関数の横運 動量依存性である。Sivers 関数や Collins 関数のグローバル解析では、今までのところ依然 Gaussian が関数形として仮定されている。これが正しいのか、またさらなるz依存性があるのかを調べること により、今のところわかっていない関数の導出に対する不確定性が著しく減少される。*e*+*e*- 実験の きれいな始状態により、ほぼスラスト軸に対応するクォーク・反クォーク軸に対する横運動量依存性 を得ることが可能である。全く異なるトピックとして、RHICの重イオン衝突で見られたのと同様の QCDの局所的なパリティーの破れの研究が e^+e^- 実験においても進んでいる。これらの多くの研究に 対して、 $\Upsilon(4S)$ および $\Upsilon(5S)$ 共鳴付近でほぼ $1 ext{-ab}^{-1}$ を蓄積すれば十分であり、これらの解析の進展

図 11: JLab 12GeV アップグレード計画のコンセプト。

は主にはマンパワーと、必要性の増す完全な検出器のシミュレーションを用いたバックグラウンドの 理解により制限される。いくつかの参加グループは Belle2 実験にも参加しており、もしより統計量が 必要であれば、そこでそのような統計が得られる。

4.5 Jlab-12GeV

90年代半ばにスタートした実験はすでに140を越え、核子や原子核の構造、反応の理解に貢献 してきた。JLabでは更なる詳細研究のため、現行のビームエネルギー6GeVから12GeVへのアップ グレード計画が進行中である。すでに新しい実験 Hall-Dの建設が始まっており、6GeVビームによる 実験も12年には完了予定である。その後3年のシャットダウン期間を授け、図4.5に示すように、2 つのリニアックセクションにそれぞれ5基の加速管を追加、アークセクションに5番目のパスを設置 する。また3つの実験 Hall-A,B,Cの検出器群にも、それぞれ12GeVに適したデザインへのアップグ レードが行われる。2013年からコミッショニングを始め、15年に実験が再開される予定である。

12GeV アップグレード後の核子構造実験プログラムとしては大きく分けて以下の3つのテーマが軸 になると考えられる。 1) 形状因子、2) 高 Bjorken-x 価クォーク構造、3) 深非包括散乱。ここでは 核子の3次元的描像を測定する3)の DVCS について述べる。

DVCS 実験では競合する Bethe-Heitler(BH) バックグラウンドを差し引く必要があるが、図 4.5 に 示す通り 12GeV のアップグレードにより BH と DVCS 振幅はほぼ同程度となり、6GeV の場合と比 べて DVCS に対する感度が増す傾向になる。HERMES や COMPASS に比べて入射レプトンビーム のエネルギーとしては低いが、一方で高エネルギー実験としては圧倒的に高い輝度を持つ事で、その 運動学には特徴を持つ。図 4.5 に COMPASS, HERMES, JLab(6GeV), JLab(12GeV) の Q^2 , x_B の運 動学を示す。既存の実験とは 0.1 $\ge x_B \ge 0.3$ 領域でオーバーラップを持ち、より高い $x_B \ge 0.3$ 且つ $Q^2 \ge 4 \sim 5 \text{GeV}^2$ において独特の感度を持つ事が予測されている。

4.6 EIC/ENC/LHeC

EIC は電子と原子核、そして偏極電子と偏極核子の衝突実験を行う新たな計画である。この計画の 実現により、ハドロン物理、核子構造および原子核構造の研究は大きく進展する。原子核中のクォー

図 12: 異なるレプトンビームエネルギーにおける DVCS(水色) と BH(深紅色)の断面積。

図 13: 異なる実験施設における深非包括運動学のカバー範囲。

ク、グルーオンの分布の精密な測定では、特にパートン密度が高くなる領域において、新たな性質を 示すグルーオン物質が形成されることが予言されている。また、偏極電子・核子の衝突では、現在で は調べることができない領域の核子のヘリシティー(縦方向の)分布や、横方向の分布を含む核子の 3次元構造を調べることができる

4.7 J-PARC

J-PARCは、最大エネルギーが50GeVと低めであるが、大強度ビームが得られるという利点があり、 それを活かした研究が可能である。その1つはSeaQuestと同様のDrell-Yan実験(J-PARC P04)であ り、さらに高いx領域(0.25 < x < 0.6)の探査が期待できる。Fermilab-E866実験の結果を外挿すれ ば、この領域において $\bar{d}(x) < \bar{u}(x)$ となっている可能性がある。反クォーク分布が $\bar{d}(x) > \bar{u}(x)$ となる のは pion cloud 模型などによる理解が可能であるが、これらの模型では、大きな x 領域で $\bar{d}(x) < \bar{u}(x)$ となることは説明できない。したがって、もし実験的に $\bar{d}(x) < \bar{u}(x)$ (for x > 0.2)が確認されれば、 核子構造について新たな問題が投げかけられることになる。他にも、大きな x (x > 0.6)における d(x)/u(x)比の測定に興味がもたれている。x 1の極限におけるこの比は、単純な SU(6) クォーク模 型の予言では 1/2 だが、他の模型では 0 や 1/5 などの値が予言されており、興味深い。J-PARC では u(x)を $x \sim 0.9$ まで測定することができ、この問題に対して貴重なデータを提供することができる。 偏極陽子(ビームおよびターゲット)の利用も J-PARC における重要なテーマである。RHIC などで の Drell-Yan実験と同様に、 A_N を通した Sivers 関数の測定、 A_{LL} を通した helicity 分布の測定、 A_{TT} を通した transversity の測定があげられる。RHIC よりも高い x 領域での測定が可能であり、RHIC で の Drell-Yan 測定と相補的な情報が得られる。

重陽子などのスピン1粒子には、スピン1/2の核子とは異なるテンソル偏極分布関数が存在する。 この分布は構成粒子がS状態であれば存在しないため、ハドロンの動力学性質を特徴づける物理量で あり、またクォークの自由度によるテンソル構造の記述を目指す上でも重要である。テンソル構造関 数 b1 の実験は 2005 年 HERMES によって行われ、その結果の解析によれば予期しなかった有限な反 クォークテンソル偏極が示唆されている。この反クォーク分布は J-PARC において偏極重陽子標的を 用いた Drell-Yan 実験で特定することが可能である。他方、JLab において b1 の実験が検討されてお り、2011 年の JLab-PAC-37 で letter of intent が好評価を得たため現在実際の実験提案を準備中であ り、これから研究が盛んになることが予想される。

4.8 Neutrino 散乱, neutrino factory

J-PARC の特徴を活かした測定としては、ニュートリノ弾性散乱を利用した Δs の測定が挙げられ る。この測定は、 Q^2 0 における Axial form factor が Δs と結びついていることを利用したもので、 いかに低い Q^2 (weak force では Q^2 が小さくなるほど断面積が小さくなる)まで測定が行えるかが鍵 となる。J-PARC ではニュートリノ振動実験のために 1 GeV 以下のニュートリノを大量に取り出す ビームラインが既に存在しており、実験環境としては最適である。この実験がうまくいけば、ストレ ンジクォークの偏極という長年の問題に終止符をうつことが期待されている。

5 タイムライン、リソースの評価など

参考文献

- [1] J. Ashman et al. [European Muon Collaboration], Phys. Lett. B 206, 364 (1988).
- [2] J. Ashman et al. [European Muon Collaboration], Nucl. Phys. B 328, 1 (1989).
- [3] A. Airapetian *et al.* [HERMES Collaboration], Phys. Rev. D 75, 012007 (2007) [arXiv:hepex/0609039].
- [4] M. G. Alekseev *et al.* [COMPASS Collaboration], Phys. Lett. B 690, 466 (2010) [arXiv:1001.4654 [hep-ex]].
- [5] C. Amsler *et al.* [Particle Data Group], Phys. Lett. B **667**, 1 (2008).
- [6] A. Airapetian *et al.* [HERMES Collaboration], Phys. Rev. D 71, 012003 (2005) [arXiv:hepex/0407032].
- [7] M. G. Alekseev *et al.* [COMPASS Collaboration], Phys. Lett. B 693, 227 (2010)
 [arXiv:1007.4061 [hep-ex]].
- [8] A. Airapetian *et al.* [HERMES Collaboration], JHEP **1008**, 130 (2010) [arXiv:1002.3921 [hep-ex]].
- [9] M. Alekseev et al. [COMPASS Collaboration], Phys. Lett. B 676, 31 (2009) [arXiv:0904.3209 [hep-ex]].
- [10] A. Airapetian *et al.* [HERMES Collaboration], Phys. Lett. B 693, 11 (2010) [arXiv:1006.4221 [hep-ex]].
- [11] A. Airapetian *et al.* [HERMES Collaboration], Phys. Rev. Lett. **103**, 152002 (2009) [arXiv:0906.3918 [hep-ex]].
- [12] M. G. Alekseev *et al.* [The COMPASS Collaboration], Phys. Lett. B **692**, 240 (2010) [arXiv:1005.5609 [hep-ex]].
- [13] R. L. Jaffe, X. -D. Ji, Phys. Rev. Lett. **71**, 2547-2550 (1993). [hep-ph/9307329].
- [14] J. C. Collins, Nucl. Phys. B396 (1993) 161.
- [15] J. C. Collins, S. F. Heppelmann and G. A. Ladinsky, Nucl. Phys. B 420, 565 (1994).
- [16] D. Boer, Nucl. Phys. B806, 23-67 (2009). [arXiv:0804.2408 [hep-ph]].
- [17] X. Artru and J. C. Collins, Z. Phys. C 69, 277 (1996).
- [18] D. Boer, R. Jakob and M. Radici, Phys. Rev. D 67, 094003 (2003).

- [19] R. Seidl et al. [Belle Collaboration], Phys. Rev. Lett. 96, 232002 (2006).
- [20] R. Seidl et al. [Belle Collaboration], Phys. Rev. D 78, 032011 (2008).
- [21] Isabella Garzia [Babar Collaboration], presented at the Transversity 2011 workshop
- [22] A. Airapetian et al. [HERMES Collaboration], Phys. Rev. Lett. 94, 012002 (2005).
- [23] V. Y. Alexakhin et al. [COMPASS Collaboration], Phys. Rev. Lett. 94, 202002 (2005).
- [24] M. Anselmino, M. Boglione, U. D'Alesio, A. Kotzinian, F. Murgia, A. Prokudin and C. Turk, Phys. Rev. D 75, 054032 (2007).
- [25] A. Vossen *et al.* [Belle Collaboration], Phys. Rev. Lett. **107**, 072004 (2011). [arXiv:1104.2425 [hep-ex]].
- [26] A. Airapetian et al. [HERMES Collaboration], JHEP 0806, 017 (2008).
- [27] J. C. Collins and G. A. Ladinsky, PSU-TH-114, 18 (1994).
- [28] A. Bacchetta and M. Radici, Phys. Rev. D 67, 094002 (2003).
- [29] M. Radici, R. Jakob and A. Bianconi, Phys. Rev. D 65, 074031 (2002).
- [30] A. Bianconi, S. Boffi, R. Jakob and M. Radici, Phys. Rev. D 62, 034008 (2000).
- [31] R. L. Jaffe, X. Jin and J. Tang, Phys. Rev. Lett. 80, 1166 (1998).
- [32] A. Bianconi et al., Phys. Rev. D 62, 034009 (2000).
- [33] A. Bacchetta and M. Radici, Phys. Rev. D 74, 114007 (2006).
- [34] A. Bacchetta, A. Courtoy, M. Radici, Phys. Rev. Lett. 107, 012001 (2011). [arXiv:1104.3855 [hep-ph]].
- [35] A. Airapetian *et al.* [HERMES Collaboration], Phys. Rev. Lett. 87, 182001 (2001) [arXiv:hepex/0106068].
- [36] S. Stepanyan *et al.* [CLAS Collaboration], Phys. Rev. Lett. 87, 182002 (2001) [arXiv:hepex/0107043].
- [37] A. Airapetian *et al.* [HERMES collaboration], JHEP **0911**, 083 (2009) [arXiv:0909.3587 [hepex]].
- [38] A. Airapetian *et al.* [HERMES Collaboration], JHEP 0806, 066 (2008) [arXiv:0802.2499 [hepex]].
- [39] M. Mazouz et al. [Jefferson Lab Hall A Collaboration], Phys. Rev. Lett. 99, 242501 (2007) [arXiv:0709.0450 [nucl-ex]].

- [40] A. Airapetian *et al.* [HERMES Collaboration], Phys. Lett. B 679, 100 (2009) [arXiv:0906.5160 [hep-ex]].
- [41] A. Airapetian *et al.* [HERMES Collaboration], Phys. Lett. B 682, 345 (2010) [arXiv:0907.2596 [hep-ex]].
- [42] D. Boer *et al.*, arXiv:1108.1713 [nucl-th].
- [43] K. Kumericki and D. Mueller, Nucl. Phys. B 841, 1 (2010) [arXiv:0904.0458 [hep-ph]].
- [44] C. Amsler et al. [Particle Data Group Collaboration], Phys. Lett. B667, 1-1340 (2008).
- [45] D. de Florian, R. Sassot, M. Stratmann, Phys. Rev. D75, 114010 (2007). [hep-ph/0703242 [HEP-PH]].
- [46] M. Hirai, S. Kumano, T. -H. Nagai, K. Sudoh, Phys. Rev. D75, 094009 (2007). [hep-ph/0702250].
- [47] R. Seuster et al. [Belle Collaboration], Phys. Rev. D73, 032002 (2006). [hep-ex/0506068].
- [48] Ph. Hagler et al. [LHPC Collaborations], Phys. Rev. D 77, 094502 (2008) [arXiv:0705.4295 [hep-lat]].
- [49] I. C. Cloet, W. Bentz, A. W. Thomas, Phys. Lett. B642 (2006) 210-217. [nucl-th/0605061].