「日本の核物理の将来」 シンポジウム 2011年9月17日@弘前大学

ハドロン物理の将来

大西 宏明 理化学研究所 仁科加速器研究センター

石川貴嗣(東北大)、板橋健太(理研)、内田誠(東工大) 江角晋一(筑波大)、大西宏明(理研)、小沢恭一郎(KEK) 慈道大介(京大)菅谷頼仁(阪大)、住浜水季(岐阜大) 成木恵(KEK)、新山雅之(京大)、武藤亮太郎(KEK) 森野雄平(阪大)安井繁宏(KEK) 世話人:中野貴志(阪大)

QCDとハドロン

- QCD:強い相互作用の基礎理論 (quark – gluon の相互作用を記述)
- QCD の特徴の一つ
 - ≫**漸近的自由性** (2004, ノーベル賞 D.J. Gross, H. D. Politzer, F. Wilczek)
 - → quark-quark, gluon 間相互作用(結合定数) がエネルギースケールが大きくなる (摂動計算可能)
 - » 反対に エネルギースケールが小さい場合 真空を変えてしまうくらいの強結合を示す (摂動計算では取り扱えない世界)

QCD が作りだす Meson, Baryon

Meson Summary Table

See also the table of suggested $q\overline{q}$ quark-model assignments in the Quark Model section.

• Indicates particles that appear in the preceding Meson Summary Table. We do not regard the other entries as being established.

	LIGHT UNF			STRAI $(S = \pm 1, C)$		CHARMED, S (C = S =		c	\overline{c} $I^G(J^{PC})$
	$I^G(J^{PC})$		$I^G(J^{PC})$	(====,=	$I(J^P)$	(====	$I(J^P)$	 η_c(15) 	0+(0-+
$\begin{array}{l} \pi^{\pm} \\ \pi^{0} \\ \uparrow^{0} \\ \bullet \ \eta_{0} \\ \bullet \ \rho_{0}(600) \\ \bullet \ \rho(770) \\ \bullet \ \omega(782) \\ \bullet \ \rho_{1}(988) \\ \bullet \ \rho_{0}(980) \\ \bullet \ \sigma_{0}(980) \\ \bullet \ \sigma_{0}(980) \\ \bullet \ \rho_{1}(1170) \\ \bullet \ \rho_{1}(1235) \\ \bullet \ \sigma_{1}(1260) \\ \bullet \ \rho_{1}(1270) \\ \bullet \ \rho_{1}(1285) \\ \bullet \ \eta(1) \\ \bullet \ \sigma_{1}(1260) \\ \bullet \ \rho_{1}(1285) \\ \bullet \ \eta(1) \\ \bullet \ \sigma_{1}(1260) \\ \bullet \ \eta(1) \\ \bullet \ \sigma_{1}(1260) \\ \bullet \ \eta(1) \\$	$\begin{array}{c} 1^-(0^-) \\ 1^-(0^-) \\ 1^-(0^-) \\ 0^+(0^-) \\ 0^+(0^+) \\ 0^+(0^+) \\ 1^+(1^-) \\ 0^-(1^-) \\ 0^+(0^+) \\ 0^-(1^-) \\ 0^-(1^-) \\ 0^-(1^-) \\ 1^-(1^+) \\ 0^+(2^+) \\ 0^+(1^+) \end{array}$	$\begin{array}{l} \bullet \pi_2(1670) \\ \bullet \phi_1(1680) \\ \bullet \phi_1(1680) \\ \bullet \rho_2(1680) \\ \bullet \rho_2(1700) \\ \bullet \rho_1(1700) \\ \bullet \rho_2(1700) \\ \bullet \pi_1(1800) \\ \bullet \pi_1(1800) \\ \bullet \pi_2(1810) \\ \bullet \pi_2(1880) \\ \bullet \rho_3(1880) \\ \rho_1(1900) \\ \bullet \rho_2(1910) \\ \end{array}$	1-(2-+) 0-(1) 1+(3) 1+(1) 1-(2++) 0+(0++) 1-(0-+) 0+(0-+) 1-(0-+) 0+(2++) 1-(2-+) 1-(2-+) 1-(2-+) 1-(2-+) 1-(2-+)	$\begin{array}{c} \kappa^{\pm} \\ \kappa^{0} \\$	1/2(0 ⁻) 1/2(0 ⁻) 1/2(0 ⁻) 1/2(0 ⁻) 1/2(0 ⁺) 1/2(1 ⁻) 1/2(1 ⁺) 1/2(1 ⁻) 1/2(1 ⁻) 1/2(2 ⁻) 1/2(2 ⁻) 1/2(2 ⁻) 1/2(2 ⁺) 1/2(1 ⁺)	$\begin{array}{c} \bullet \ D_s^{\pm} \\ \bullet \ D_s^{\pm} \\ \bullet \ D_s^{\pm} \\ \bullet \ D_s^{\pm} (2317)^{\pm} \\ \bullet \ D_s (2460)^{\pm} \\ \bullet \ D_s (2460)^{\pm} \\ \bullet \ D_s (2536)^{\pm} \\ \bullet \ D_s (2536)^{\pm} \\ \bullet \ D_s (2573) \\ D_s (2600)^{\pm} \\ D_s (3040)^{\pm} \\ BOTTC \\ (B=\pm) \\ \bullet \ B^{\pm} \\ \bullet \ B^{\pm} \\ \bullet \ B^{\pm} \\ \bullet \ B^{\pm} / B^{0} \ ADM \end{array}$	1/2(0 ⁻) 1/2(0 ⁻) 1/2(0 ⁻) HIXTURE	$\begin{split} & \cdot J/\psi(1S) \\ & \cdot \chi_{c0}(1P) \\ & \cdot \chi_{c1}(1P) \\ & \cdot \chi_{c1}(1P) \\ & \cdot \chi_{c2}(1P) \\ & \cdot \chi_{c2}(1P) \\ & \cdot \psi(2S) \\ & \cdot \psi(3770) \\ & \cdot \chi(3872) \\ & \cdot \chi(39872) \\ & \cdot \chi(3940) \\ & \cdot \psi(4040) \\ & \cdot \chi(4050) \pm \chi(4140) \end{split}$	$\begin{array}{c} 0-(1)\\ 0+(0+)\\ 0+(1++)\\ ??(1+-)\\ 0+(2++)\\ 0+(0-+)\\ 0-(1)\\ 0-(1)\\ 0-(1)\\ 0+(2++)\\ ??(2?)\\ 0+(2++)\\ ??(2?)\\ 0-(1)\\ ??(2?)\\ 0+(2?+)\\ (1)\\ ??)\\ ?\end{array}$
π_1 (η (1		1			IC	501		10	(1
• f ₁ (1 • ω(1420)	0-(1)	f ₂ (2150)	0+(2++)	K ₂ (2250)	1/2(2-)	BOTTOM, S	TRANGE	X(4660)	?:(1

• f ₁ (1									Ϋ́ (
 ω(1420) 	0-(1)	$f_2(2150)$	0+(2++)	K ₂ (2250)	1/2(2-)	воттом, ѕ		X(4660)	?:(1')
f ₂ (1430)	0+(2++)	$\rho(2150)$	1+(1)	K ₃ (2320)	1/2(3+)	$(B = \pm 1, S$		b	<u></u>
• a ₀ (1450)	1-(0++)	 φ(2170) 	0-(1)	K*(2380)	1/2(5-)	• B _s	0(0-)		
 ρ(1450) 	1+(1)	$f_0(2200)$	$0^{+}(0^{+})$	K ₄ (2500)	1/2(4-)	• B*	0(1-)	$\eta_b(1S)$	0+(0-+)
 η(1475) 	0+(0-+)	$f_J(2220)$	0+(2++	K(3100)	??(???)	 B_{s1}(5830)⁰ 	$0(1^{+})$	• T(15)	0-(1)
 f₀(1500) 	$0^{+}(0^{+}+)$		or 4 + +)	N(3100)	. (.)	 B[*]₅₂ (5840)⁰ 	$0(2^{+})$	 χ_{b0}(1P) 	0+(0++)
$f_1(1510)$	0+(1++)	$\eta(2225)$	0+(0-+)	CHARM	1ED	B*, (5850)	?(??)	 χ_{b1} (1P) 	0+(1++)
 f'₂(1525) 	0+(2++)	$\rho_3(2250)$	1+(3)	(C = ±	:1)			 χ_{b2}(1P) 	0+(2++)
$f_2(1565)$	0+(2++)	f₂(2300)	$0^{+}(2^{++})$	• D±	1/2(0-)	воттом, сі		 • ↑(2S) 	0-(1)
$\rho(1570)$	1+(1)	$f_4(2300)$	$0^{+}(4^{+})$	• D ⁰	1/2(0-)	(B = C =		 T(1D) 	0-(2)
$h_1(1595)$	0-(1+-)	$f_0(2330)$	$0^{+}(0^{+}+)$	 D*(2007)⁰ 	1/2(1-)	• B [±] _c	0(0-)	 χ_{b0}(2P) 	0+(0++)
• $\pi_1(1600)$	1-(1-+)	 f₂(2340) 	$0^{+}(2^{+}+)$	 D*(2010)± 	1/2(1-)			 χ_{b1} (2P) 	0+(1++)
$a_1(1640)$	1-(1++)	$\rho_5(2350)$	1+(5)	• D*(2400)0	1/2(0+)			 	0+(2++)
$f_2(1640)$	0+(2++)	$a_6(2450)$	$1^{-}(6^{+})$	D ₀ *(2400)±	1/2(0+)			 T(3S) 	0-(1)
 η₂(1645) 	0+(2-+)	$f_6(2510)$	$0^{+}(6^{+})$	• D ₁ (2420) ⁰	1/2(1+)			 ↑ (4S) 	0-(1)
• ω(1650)	0-(1)	OTHER	LICHT	$D_1(2420)^{\pm}$	1/2(??)			 T(10860) 	0-(1)
 ω₃(1670) 	0-(3)			D ₁ (2430) ⁰	1/2(1+)			 • T(11020) 	0-(1)
		Further Sta	ates	• D ₂ (2460) ⁰	1/2(1)			NON == CA	NDIDATES
				• D ₂ (2460) [±]				NON-q q CA	
				• D ₂ (2460)-	1/2(2+)			NON-g g C	ANDI-

Baryon Summary Table

This short table gives the name, the quantum numbers (where known), and the status of baryons in the Review. Only the baryons with 3or 4-star status are included in the main Baryon Summary Table. Due to insufficient data or uncertain interpretation, the other entries in the short table are not established baryons. The names with masses are of baryons that decay strongly. For N, Δ , and Ξ resonances, the πN partial wave is indicated by the symbol $L_{2l,2J}$, where L is the orbital angular momentum (S, P, D, \ldots) , L is the isospin, and J is the total angular momentum. For Λ and Σ resonances, the $\overline{K}N$ partial wave is labeled $L_{l,2l}$. The nucleon is a pole in the P_{11} wave, and similar comments apply to the A and Σ

			1										
9	P_{11}	****	$\Delta(1232)$	P_{33}	****	Σ^+	P_{11}	****	Ξ0	P_{11}	****	Λ_c^+	
7	P_{11}	****	$\Delta(1600)$	P_{33}	***	Σ^0	P_{11}	****	Ξ-	P_{11}	****	$\Lambda_c(2595)^+$	
V(1440)	P_{11}	****	$\Delta(1620)$	S_{31}	****	Σ-	P_{11}	****	$\Xi(1530)$	P_{13}	****	$\Lambda_c(2625)^+$	
V(1520)	D_{13}	****	$\Delta(1700)$	D_{33}	****	$\Sigma(1385)$	P_{13}	****	$\Xi(1620)$		*	$\Lambda_c(2765)^+$	
V(1535)	S_{11}	****	$\Delta(1750)$	P_{31}	*	$\Sigma(1480)$		*	$\Xi(1690)$		***	$\Lambda_c(2880)^+$	
V(1650)	S_{11}	****	Δ(1900)	S ₃₁	**	$\Sigma(1560)$		**	$\Xi(1820)$	D_{13}	***	$\Lambda_c(2940)^+$	
V(1675)	D_{15}	****	Δ(1905)	F ₃₅	****	$\Sigma(1580)$	D_{13}	*	$\Xi(1950)$		***	$\Sigma_c(2455)$	
V(1680)	F_{15}	****	Δ(1910)	P_{31}	****	$\Sigma(1620)$	S_{11}	**	$\Xi(2030)$		***	$\Sigma_c(2520)$	
V(1700)	D_{13}	***	Δ(1920)	P ₃₃	***	$\Sigma(1660)$	P_{11}	***	$\Xi(2120)$		*	$\Sigma_c(2800)$	
V(1710)	P_{11}	***	$\Delta(1930)$	D ₃₅	***	$\Sigma(1670)$	D_{13}	****	±(2250)		**	-+	
V(1720)	P ₁₃	****	$\Delta(1940)$	D ₃₃	*	Σ(1690)		**	±(2370)		**	= 0	
V(1900)	P ₁₃	**	$\Delta(1950)$	F ₃₇	****	Σ(1750)	S_{11}	***	±(2500)		*	- c =++	
V(1900)	F ₁₅	***	$\Delta(2000)$	F ₃₅	**	Σ(1770)	P_{11}	*	_ (,			= 0	
V(1990)	F ₁₇	**	$\Delta(2150)$	S ₃₁	*	Σ(1775)	D ₁₅	****	Ω-		****	- c	
V(2080)	D ₁₃	**			*	Σ(1840)	P_{13}	*	Ω(2250)		***	$\Xi_c(2645)$	
V(2000)	C 13	*	$\Delta(2200)$	G_{37}		\(\(\tau(1000)\)	D 13	**	0(3380)-		**	$\Xi_c(2790)$	
v													
V				_									
V			1 1	•					a \		N I	าร	
٧ 🖊			_	•			•	_			1		
V								7		•	,,		
V								~ I	y				

					_		

1.4	r_{01}	****	- ()		I	1	
A(1405)	S_{01}	****	$\Sigma(2455)$	**		≡+ cc	*
A(1520)	D_{03}	****	$\Sigma(2620)$	**		- cc	
A(1600)	P_{01}	***	$\Sigma(3000)$	*		A_b^0	***
A(1670)	S_{01}	****	$\Sigma(3170)$	*		Σ_b	***
A(1690)	D_{03}	****				Σ_b^*	***
A(1800)	S ₀₁	***				Ξ_{b}^{0}, Ξ_{b}^{-}	***
A(1810)	P_{01}	***					***
A(1820)	F ₀₅	****				Ω_b^-	
A(1830)	D_{05}	****					
A(1890)	P_{03}	****					
A(2000)	, 03	*					
A(2020)	F_{07}	*					
A(2100)	G_{07}	****					
A(2110)		***					
	F ₀₅	*					
A(2325)	D_{03}	***					
A(2350)	H_{09}						
A(2585)		**	1				

- **** Existence is certain, and properties are at least fairly well explored.
- Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.

D(2600)1/2(?? $D^*(2640)^{\pm}$ 1/2(? 如何に、このような多種多様なハドロンが QCDから作られるのか?

Nakamura et al. (Particle Data Group) 37, 075021 (2010) G

ハドロン物理の課題

低エネルギーQCDが織りなす世界の解明

カラー対称性 (カラー閉じ込め)

QCD の持つ対称性

カイラル対称性 ダイナミカルな質量 の獲得

フレーバー対称性から 重いクォーク対称性へ

ハドロン物理の課題

低エネルギーQCDが織りなす世界の解明

- Exotic hadrons を軸にしたハドロンの多様な存在形態:カラー閉じ込めの物理(カラー対称性)
- 核物質中メソンを通じた質量獲得機構の解明 (カイラル対称性)

フレーバーフロンティアの拡張 ストレンジネス→チャーム、ボトムへの展開 (フレーバー対称性から重いクォーク対称性へ)

ハドロン物理研究拠点

LESP / SPring-8 upto 2.9 GeV: γ beam

KEKB:B meson decay

ELPH/Tohoku Univ. Upto 1.2 GeV: γ beam

J-PARC Hadron hall Secondary : π±,K±, p,p :

< 2 GeV/c

primaly proton: 30 GeV

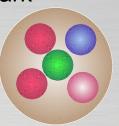
RIKEN/RIBF

Deuteron:
Td = 500 MeV

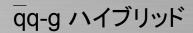
Exotic hadrons を軸にした ハドロンの多様な存在形態: カラー閉じ込めの物理 (カラー対称性)

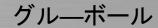
Constituent Quark Model

- Ground state baryon spectrumはよく表現

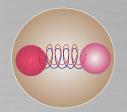

 » Λ(1405) をはじめ、説明できない粒子が多数存在
- 予言はあるが確認されてないExcited state多数

Exotic Hadron


• 通常の quark model では説明できないハドロン

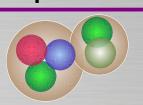

»メソン(qq)でも バリオン(qqq)でも表現出来ない?

Penta quark

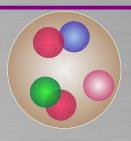


Tetra quark

● Penta, Tetra quark状態をはじめとする 未知のexotic state があるかも?

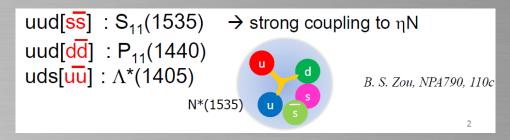

ハドロン構成の謎→Exotic hadron

Constituent Quark model で表現できない
 ハドロンの存在 → model が間違ってるだけ?


新しい可能性

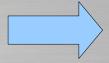
Constituent quark を越える新しい自由度?

- Meson-Baryon, Meson-Meson 分子
- di-quark structure in exotic hadron



新しい謎

Exoticsは 通常ハドロンに比べ存在しにくいのか? どのような Exotics は存在できるのか? ハドロン内有効自由度? カラー閉じ込め。


Excited baryons

- Exotic particle としての Excited baryon
 - ≫ Baryon 中の 〈qq〉成分
 - ≫ Penta quark?

Photon beamを使って展開

LEPS/Spring-8 ELPH/Tohoku Univ.

LEPS2^

S=-2 バリオンのspectroscopy

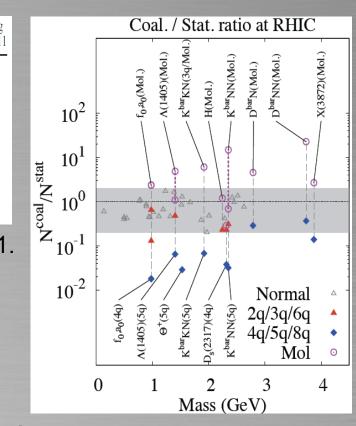
J-PARC high momentum K- beam 10

Exotic particle from HI collisions

PRL **106**, 212001 (2011)

PHYSICAL REVIEW LETTERS

week ending 27 MAY 2011

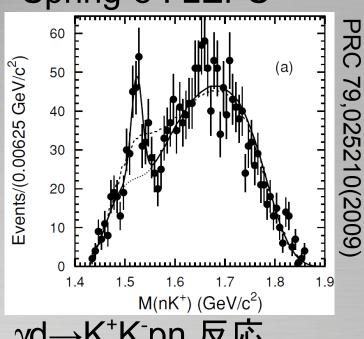

Identifying Multiquark Hadrons from Heavy Ion Collisions

Sungtae Cho, ¹ Takenori Furumoto, ^{2,3} Tetsuo Hyodo, ⁴ Daisuke Jido, ² Che Ming Ko, ⁵ Su Houng Lee, ^{1,2} Marina Nielsen, ⁶ Akira Ohnishi, ² Takayasu Sekihara, ^{2,7} Shigehiro Yasui, ⁸ and Koichi Yazaki^{2,3}

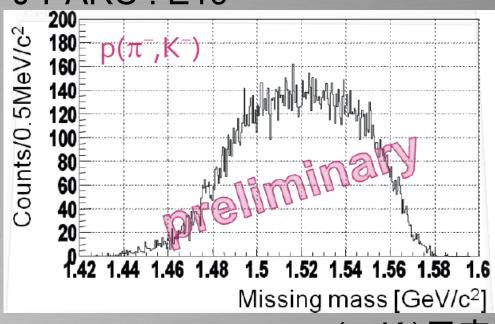
(ExHIC Collaboration)

Published in Phys.Rev.Lett.106:212001,2011.

高エネルギー重イオン衝突で作り だされる大量の粒子の中から Exotic particleをさがす



• 生成比から Exotic particle の内部構造 (quark の数、ハドロン-ハドロン分子状態など)


新しいハドロン(Θ†)

Spring-8: LEPS

γd→K⁺K⁻pn 反応

J-PARC: E19

p(π⁻,K⁻)反応

決着を付けるべき問題 ペンタクオークの存否・量子数の決定

LEPS2 実験

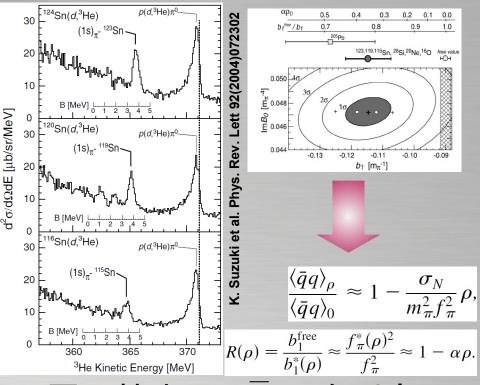
J-PARC における⊕[†]直接生成実験へ $K^{+}+n\rightarrow\Theta^{+}\rightarrow K^{0}_{s}p(J-PARC\ LOI)$

核物質中メソンを通じた 質量獲得機構の解明 (カイラル対称性)

ハドロン質量獲得

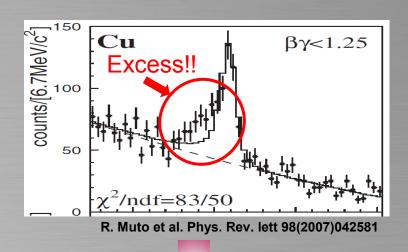
- ハドロンの形成過程
 - ≫裸のクォークはカイラル対称性の破れによって、 ダイナミカルに質量を獲得
 - » ダイナミカルなクォーク(構成子クォーク)が 集まってハドロンを形成

裸**のクオーク** 構成子クオーク カイラル対称性の (<qq>との結合) 自発的破れ


核物質中の中間子

→ カイラル対称性の自発的破れを見る

核物質中での<qq> ≠ 真空中の<qq>


原子核中の中間子

π中間子アトム

原子核中の <qq>を測定?

● 中間子 mass shift

原子核中でφ中間子の質量が軽くなった?

→ 自発的に破れているカイラル対称性が 原子核で部分的に回復した証拠?

高統計・systematic study 次世代実験へ

RIBF, J-PARC

対称性の回復を系統的に調べる

- 中間子-原子核束縛状態の探索
 - » 核内ストレンジネス
 - ≫K中間子原子核(K-pp...)
 - >>double Kaonic nucleus(K-K-pp)
 - > 核内ベクトル中間子
 - »ω中間子原子核
 - ≫中間子原子核
 - » 核子とN(1535)のカイラル対称性
 - »η中間子原子核
 - $\gg U_A(1)$ amonaly

»η'中間子原子核

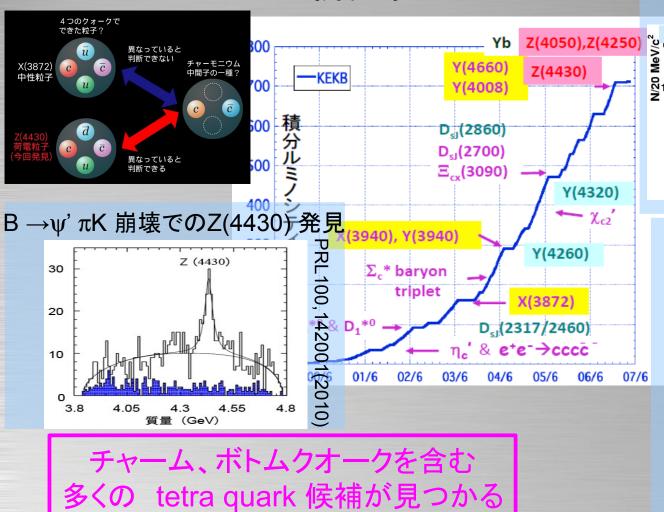
J-PARC E15

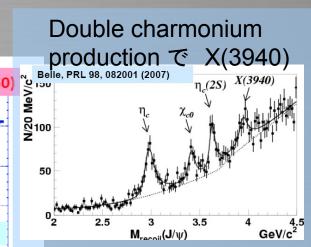
J-PARC LoI

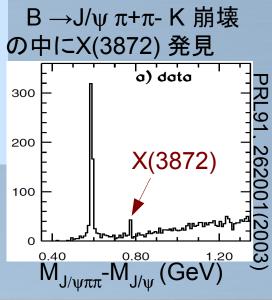
J-PARC E26

J-PARC E29

J-PARC LoI


フレーバーフロンティアの拡張


ストレンジネス から チャーム、ボトムへの展開 (フレーバー対称性から 重いクォーク対称性へ)


charm, bottom のセクターが light quarks と どう「違う」のか?
light と heavy 双方の動力学を理解

フレーバーフロンティアの拡張

● Belle での 新発見

Charm を見ることの意義

● Strangeness→charm ただの拡張ではない

≫Color magnetic interaction は1/mでsuppress (QCD から)

> SU(3): mu~md~ms なので区別ない charm → charmに関する相互作用がSuppress

Charm quarkを使って SU(3)の世界をより深く知る!(例:カラー相関)

Charmonium-原子核反応 (J/ψ 原子核)
 グルーオン交換で束縛

→原子核中のグルーオンダイナミクスを探る!

ハドロン物理にとって重要な事

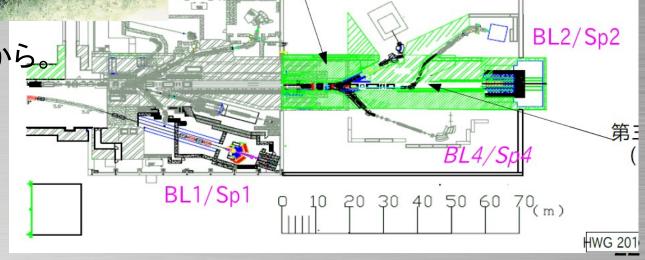
- "ハドロン"を理解するために必要不可欠なもの
 - ≫反応機構 = unique であるか自明ではない ≫生成する為の入射粒子(γ or π)で違う様相を示す ≫重いクォークの生成を理解するにはQCDが必要
- 同じ現象を違う角度から多面的に観測
 - >多彩なビーム(γ,π,K,p,p)
 - »多彩な観測量:質量、幅、分岐比、 スピン・パリティー決定、生成過程の解明
 - >>大立体、高分解能大型検出器

ハドロン物理にとって重要な事

- すらに強力な理論一実験の協力関係
 >QCD → ハドロン どのようにつなぐか?
 の枠組み
- 大型将来計画としての最重要課題
 - LEPS2 spectrometer の完成、実験開始>大立体角spectrometer を使った γ induced 実験
 - ≫J-PARC ハドロンホール 拡張
 - »大強度 π,K,p,p 利用可能 ビームラインの建設
 - ≫新型 spectrometer

J-PARC ハドロンホール拡張

● 理研・JPARC 連携センター構想


- 現在の施設をほぼ2倍
- 2次粒子生成標的を 2個新設(計3個に)
- 新規ビームライン、 大型スペクトロメータ建設

新施設(建屋、ビームライン)

BL3/Sp3

具体的デザインはこれから コミュニティー全体で

プロジェクト総額 ~100億円

LEPS / ELPH / Belle / LEPSII / Belle II

Exotic hadron

カラー対称性 (カラー閉じ込め)

カイラル対称性 ダイナミカルな質量 の獲得

核物質中の中間子

J-PARC / RIBF

フレーバーフロンティア

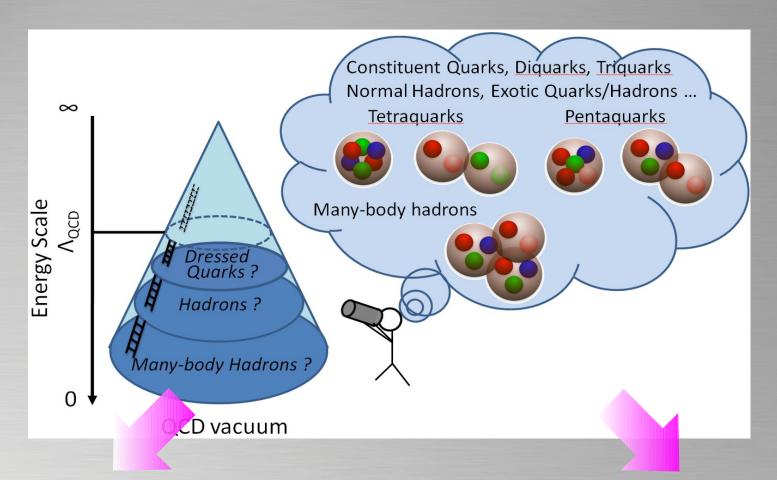
Exotic hadron
w/ C or B quarks
charm in nulcei,

Belle / Belle II / J-PARC23

ハドロン物理の課題

低エネルギーQCDが織りなす世界の解明

• Exotic hadrons を軸にしたハドロンの多様な存在 形態:カラー閉じ込めの物理(カラー対称性)


LEPS/LEPS2/ J-PARC

核物質中メソンを通じた質量獲得機構の解明 (カイラル対称性)

J-PARC

 フレーバーフロンティアの拡張 ストレンジネス→チャーム、ボトムへの展開 Belle/Belle II/J-PARC

まとめ:ハドロン物理って何?

密度・温度を変える

フレーバー を変える

まとめ:ハドロン物理

- ハドロン自身、またはその相互作用を記述する 有効自由度は何であるのか?
- その有効自由度とQCDとの間の関係は どのようについているのか?
 - »ハドロンの中に新たな階層が存在するのか?
 - >階層形成が如何に行われているのか?
- ◆ そのような階層構造が「密度・温度」あるいは 「フレーバー」によってどのように変化するのか?

クオーク → ハドロン → ハドロン多体系 26

これまでWG議論に参加していただいた みなさま、ありがとうございました

今後もよろしくお願いいたします

おわり