日本の核物理の将来

計算核物理ワーキンググループからの報告

堀内渉 (理研)、古本猛憲 (京大基研)、阿部喬 (東大 CNS)、清水則孝 (東大・副代表)、根村英克 (筑波大・代表)、板垣直之 (京大基研)、佐々木勝一 (東大)、江尻信司 (新潟大)、藏増嘉伸 (筑波大)、中務孝 (理研)、住吉光介 (沼津高専)、大西明 (京大基研・世話人)

1 はじめに

原子核は、強い相互作用によって核子が互いに結合した有限量子多体系である。低エネルギー領域の原子核物理は、核子を基本的な自由度として記述する枠組みが伝統的に取られており、大きな成功をおさめている。一方で、重イオン衝突など高エネルギー領域の実験の解析から、量子色力学(QCD)が強い相互作用の基礎理論であることは疑いのないものとなっている。原子核物理の理論的研究は、クォーク・グルーオンの力学を直接扱うものから少数核子多体系、安定核での魔法数の出現、クラスター物理、中性子・陽子過剰核(不安定核)の存在、高密度核物質(中性子星)、ストレンジネスなど、強い相互作用にまつわる多様な現象を、各階層に応じて多様な手法を駆使して進められてきた。

近年コンピューターの急速な発展と新しい計算アルゴリズムの開拓などに伴い、各分野の研究は、精密化の方向に進むとともに、各分野をまたいだ研究も活発に行われつつある。今後の計算核物理が進むべき重要な方向のひとつは、こうした各階層をより密接にかつ定量的に紡いでいくことによる、QCDを基礎理論とした核子および核子多体系の理解を通じて、宇宙の進化における元素合成や超新星爆発現象の理解を確立していくことにある。このレポートでは、とりわけ日本で活躍する研究者を中心とした最近の原子核物理の理論的研究の現状分析をまず行い、続いて将来の計算核物理として具体的に取り組むべき課題について、すでに具体的な活動をすすめつつある計算基礎科学連携拠点 (JICFuS)[1]、HPCI 戦略分野 5 などの紹介も交えて、報告する。

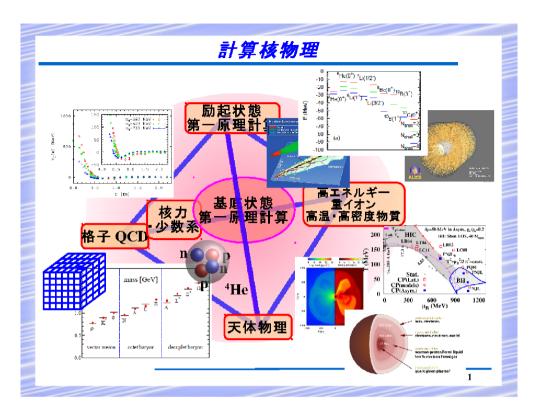


図 1 計算核物理が対象とする研究領域とそれぞれの相互の関係を模式的に示す。なかにはめ込んである図は、文献 [?,?,?,?] から引用。

2 現状分析

2.1 クォーク・グルーオン多体系

2.1.1 格子 QCD によるハドロン構造

原子核は、有限個の核子の自己束縛系であり、核子どうしを結び付けている相互作用の基礎はクォークとグルーオンの力学を記述する量子色力学 (QCD) であると考えられている。高エネルギーの原子核反応への QCD の摂動的解析の成功に対して、原子核の基底状態近傍の現象への QCD の直接的な解析は、摂動論が使えないために非常に難しい。そのため、低エネルギーの原子核現象を理論的に調べるためには、有効模型もしくは QCD 和則、格子QCD 計算が用いられる。このうち、格子 QCD は Wilson によって提案された、QCD を解析する強力な手法である。4 次元連続時空上の非可換ゲージ理論である QCD を、ユーク

リッド化した 4 次元格子点上のクォーク場とその格子点をつなぐリンク変数をゲージ場とすることにより、ゲージ対称性を保持した有限自由度の場の理論として定式化する。こうしてQCD を正則な理論として解析可能とするだけでなく、経路積分表示によって具体的な数値計算を可能とした。その一つの重要な応用が、高性能の計算機を駆使することによって様々な物理量をQCD を基礎として計算することである。この節ではこの格子QCD 計算の最近の成果を概説する。

格子 QCD の具体的な数値計算を実行するためには、いくつか克服するべき課題がある。 (i) 計算機の演算速度及びメモリ容量の制限から、時空点の数(格子サイズ)を大きくとるこ とができない。(ii) クォーク伝搬関数を求めるための線型方程式の解の収束性を良くするた め(条件数を大きくしないため)クォーク質量を軽くすることができない。(iii)動的クォーク (クォークの真空偏極)の効果を正しく評価するためには数値コストがかかる。これらの課題 は、様々な工夫を凝らすことにより、次第に克服されて、現在では、ストレンジ (s) クォーク 質量を現実の値 (物理点) に固定し、アップ (u)・ダウン (d) クォーク質量は s クォークより も軽くかつ互いに等しいとし、これらのクォークの真空偏極も正しく評価した 2+1 フレー バ格子 QCD 計算が主流となっている。例えば、物理的な空間サイズ約 $2-3~\mathrm{fm}$ (空間の格 子サイズ 16^3 もしくは 32^3)、u、d クォークを π 中間子の質量に換算して 200- $300~{
m MeV}$ 程 度の軽さまで近づけたシミュレーションが 2006 年に報告されている。[2, 3, 4] 動的クォー クの取り扱いについても、格子上でのクォークの定式化は、もともとウィルソンが提案した ウィルソン型と、計算コストが少ないが理論的には問題が指摘されているスタッガード型と、 大きく分けて二種類あるが、現在ではウィルソン型が主流になってきている。将来は厳密な カイラル対称性を持つ定式化での計算も期待されている。さらに、最近では、u、d クォーク の質量差まで考慮し、3 種類の動的クォークu、d、s を全て物理的なクォーク質量上(物理 点)で扱ったシミュレーションも可能となりつつある。こうした格子 QCD 計算が狙う物理 的課題のひとつは、原子核を構成する粒子 (ハドロン) の基本的な性質を QCD に基づいて再 現することである。 現在、擬スカラー中間子やベクター中間子、並びに重粒子8重項、10 重項などの軽いハドロンの基底状態の質量が、数%の精度で格子 QCD 計算によって再現さ れることが示されており、低エネルギー領域においても、 QCD が強い相互作用の基礎理論 であることは疑いのないものとなっている。さらに中間子の弱崩壊に関するハドロン遷移行 列 (例えば π 、K 中間子のレプトン崩壊や非 CP 対称な弱崩壊に関係する中性 K 中間子の非 レプトン崩壊)においては、非常に高い精度で実験値との比較がなされている。[5,6,7,8] また小林-益川理論のユニタリティの精密検証においても格子 QCD 計算の結果が決定的な役

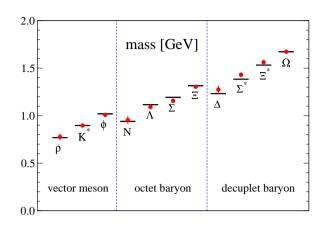


図 2 PACS-CS グループによって計算された軽いハドロンのスペクトル。 m_π, m_K, m_Ω の実験値をインプットとして使っている。文献 [4] より引用。

割を果たしている。[9,10] 一方、核子やその他の重粒子の構造に関する研究は精力的に行われているものの、前述のような中間子系において達成されてきた精度の精密計算には未だ至っていない。[11,12,13] これらのハドロンには、基底状態だけでなく多様な励起状態やエキゾチック状態の存在が実験的に観測され、もしくは理論的に示唆されている。これらは単なるハドロンの 1 粒子状態に留まらず、2 粒子の共鳴状態としてのより精密な取り扱いが求められる。このような QCD に基づくハドロン構造の理解の深化は、自ずとハドロン少数多体系研究の発展へとつながるものである。以下ではこれらの研究の進展について記す。

2.1.2 格子 QCD によるハドロン少数多体系

まず、ハドロン 2 粒子からなる系では、相互作用の到達距離よりも大きな空間体積を持った格子の中では漸近状態が定義できるため、ハドロン-ハドロン散乱のエネルギーを計算することにより、低エネルギーの散乱位相を求めることが可能である。 [14, 15] このようなハドロン間相互作用における散乱位相の研究は、筑波大グループを初めとして日本の研究者によって精力的に行われ、現在では世界中のグループでも行われるようになっている。最近の特筆すべき研究としては、散乱位相の研究を発展させ、 ρ 中間子を強い相互作用で 2 つの π 中間子に崩壊する不安定粒子(共鳴状態)として取り扱い、その崩壊幅を計算することにも成功している。 [16]

また別の発展としては、ハドロン 2 粒子の散乱位相だけでなく、ハドロン 2 粒子の南部・ベーテ・サルペーター散乱振幅から定義される散乱状態の波動関数を格子 QCD により数値

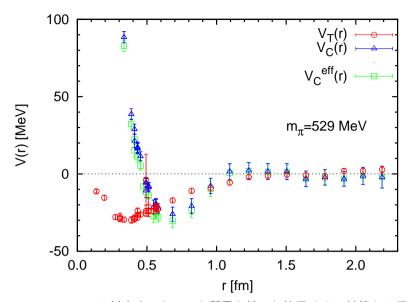


図 3 $m_\pi=529 {
m MeV}$ に対応するクォーク質量を持った格子 QCD 計算から得られたスピン三重項状態の核力ポテンシャル。三角が中心力、丸がテンソル力であり、四角はテンソル力を繰り込んだ場合の有効中心力ポテンシャル。文献 [18] より引用。

的に求め、その波動関数からハドロン間相互作用のポテンシャルを引き出す方法が提唱されている。その画期的な方法により、格子 QCD 計算から核力ポテンシャルを引き出すことに成功した。[17] この方法で得られた核力ポテンシャルは、従来の現象論的ポテンシャルの形を定性的に再現し、中心力およびテンソル力はクォーク質量を軽くする(現実に近づける)と相互作用が強くなる(テンソル力も増大する)傾向を示している。エネルギー依存性や角運動量依存性に加えて、三体力への試みもすでに計算が進められている。とりわけ、ストレンジネスを含んだハイペロン力への拡張はハイペロン散乱実験が困難であるだけに、大きな期待が寄せられている。

さらに最近では、QCD に基づく原子核の直接構成とその諸性質の解明に向けた研究も始まっている。2010 年筑波大グループは 原子核構造論において最も基本となる $^4{
m He}$ 原子核の格子 QCD による直接構成に世界で初めて成功している。[19]

2.1.3 高温高密度での QCD 物性

QCD の極限状態に目を転じてみると、QCD の有限温度相転移の解明を目指した高エネルギー重イオン衝突実験が現在ブルックへブンの RHIC や CERN の LHC で行われている。 そこで得られた実験データを曖昧さ無く解析するためには、QCD の相転移に関する、理論

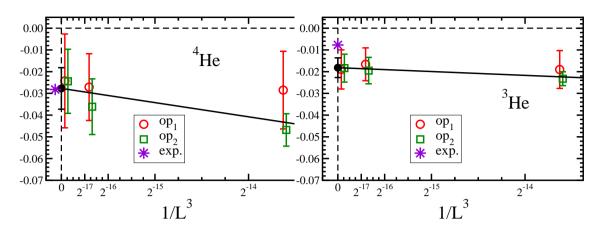


図 4 4 He (左図) と 3 He (右図) 原子核に対するエネルギーシフト $\Delta E_n = M(^n$ He) $-nM({\rm N})$ [GeV] の空間体積 L^3 依存性。ここでは 2 種類の生成演算子に対する結果をプロットしている。 黒丸と星印はそれぞれ空間体積無限大極限への外挿値と実験値を表す。 文献 [19] 参照。

計算による基本的な情報が不可欠である。まずは、これまでの格子 QCD の数値シミュレーションによる研究によって、着実な成果をあげてきている高温ゼロ密度での QCD 物性について述べる。初期の研究段階では、クェンチ近似計算や現実よりも重いクォーク質量領域での研究が多く行われたが、最近では (比較的計算時間のかからない) スタッガード型クォーク作用を用いた計算が、すでに現実世界とほぼ同じクォーク質量を用いて行われている。 [20] そのため、相転移温度や状態方程式 (熱力学量間の関係式)の計算は充分に精密物理と言えるものになり、もう一つの代表的なクォークの定式化であるウィルソン型クォークによる研究を進めることにより、格子上での異なるクォークの定式化による系統誤差を検証すべき段階にある。また、より進んだ研究として、ハドロンの質量スペクトルの温度変化や [21]、QCD 物質の流体力学的性質を決める輸送係数 (ずり粘性や体積粘性など) [22, 23] の計算も現在行われている。これらは、計算コストなどの理由で今のところクェンチ近似による研究段階に留まっているが、計算機性能のさらなる向上に伴い現実世界に近い計算が可能となれば、今後の研究の進展が多いに期待される分野である。

一方、高エネルギー重イオン衝突反応過程で生成された物質は、それ自体が時空発展する動的な系なので、虚時間を用いた有限温度定式化を利用した格子 QCD に基づく第一原理計算だけでは、直接記述するのは難しい。そのため、まずは格子 QCD からは、静的な情報である状態方程式を決定し、その情報を元に現象論として相対論的流体力学を介して、実験結果の解析を行ってきた。従来、流体数値シミュレーションは重イオン衝突反応で生成された

局所熱平衡物質の平均的な振る舞いを記述してきており、計算時間はそれほどかからなかった。しかし、近年、RHIC や LHC で測定された生成粒子の方位角分布の揺らぎの実験結果は、事象ごとの揺らぎを含む流体数値シミュレーションの必要性を示唆している。[24, 25] 今後、極限状態、特に RHIC や LHC で達成されるような高温低密度における QCD 物質の精密物理を展開するためには、揺らぎ入りの流体数値シミュレーションの定式化を行い、実験と同程度のイベントを貯めるための大規模数値計算が必要になる。

前述の高温ゼロ密度領域の進展と比べると、高密度領域での QCD 物性の理解はまだ進ん でいない。これまでの現象論的な研究から、高密度での臨界点の存在や、複雑な相構造が予 想されている。[26] もし臨界点が存在すれば、高エネルギー重イオン衝突実験で観測される はずである。また、そういった高密度の QCD 相転移の詳細な情報は、超新星の爆発メカニ ズムの解明や中性子星のような超高密度天体の内部の状態を知るために不可欠である。この ように高密度状態の QCD 物性研究のための第一原理計算が期待されているが、高温状態の 研究とは対照的に、本格的な研究はまだ始まったばかりである。QCD のシミュレーション の基礎であるモンテカルロ法には、クォークの化学ポテンシャル μ の導入により符号問題 を引き起こすという根源的問題が内在している。その難問を克服するために、いろいろな計 算方法の改良が試されている。これまでは動的クォークの効果を取り入れた計算の難しさに 伴って種々の試行錯誤による計算方法の開発自体が難しい状態にあったが、最近になって低 密度領域から徐々に研究を進めることができるようになった。現在広く用いられている方法 の一つは、 $\mu=0$ の周りで μ について級数展開をして物理量を評価する方法である。[27] し かしながら、この方法は収束半径の制約によって低密度領域でしか有効な方法とならない。 謎の多い QCD の高密度領域を研究するためには新しい計算方法の開発が不可欠である。そ れが確立されれば物理学の新しい研究領域が立ち上がると期待される。

2.2 核子多体系

2.2.1 第一原理計算

前節で述べたように、原子核およびその構成要素である陽子や中性子 (核子) を、格子 QCD の方法を使って、クォークやグルーオンの力学に基づいて記述する試みが進められつつあるが、計算できる領域は He 以下の軽い質量領域に限られている。そもそも、クォークは単体では取り出すことができないので、構造や反応など、低エネルギー領域での原子核の現象の見通しの良い記述としては、常にクォーク・グルーオンの自由度をあからさまに持ち込むよ

りも、核子を基本的な自由度として考え、その量子力学的多体系として原子核を扱う枠組が、依然として有効であると期待される。即ち、原子核理論の重要な研究課題として、核子間の相互作用(核力)を高い精度で記述する枠組みを構築すること、およびその上でそのような高精度の核力の観点から、原子核の性質を、核子多体系として理解すること、を挙げることができる。このような核子多体系の統一的理解には、理論に確かな実験再現性およびそれに伴う予言力が期待されるが、そのような多粒子系の量子力学的状態を精度良く求めることは、核力の複雑さに加え多体問題の難しさを克服する必要がある。ここでは、まず核力の理解の現状、および比較的少数の核子多体系の原子核の研究の現状について述べる。

核力の理解は、歴史的には、短距離部分を除いてそのクォークによる内部構造には目をつむり、核子の間の中間子の交換によって核力を記述することによって進められてきた。これまでの研究で、核力の構造は、その二核子間の距離によって分類することが有効であるとされており、とりわけ、遠方での振る舞いは湯川秀樹博士のパイ中間子交換理論による説明が確立していると言ってよい。一方多重パイ中間子交換やより重い中間子の交換が効くような中短距離部分は、現在でも完全には理解されておらず、模型に依存している。今日、膨大な核子・核子散乱の実験データを非常に高い精度で再現し、重陽子の束縛エネルギー、半径、電気四重極モーメントなどを再現する二核子間力の模型が提唱されている。これらはその精度の高さからいわゆる現実的核力と呼ばれ、その代表的な例として、CD-Bonn、Nijmegen、Argonne といったポテンシャル模型や、カイラル有効場の理論に基づくものがある。

近年の計算機の性能向上および計算手法の開発によって、こうした現実的核力を用いた核構造・核反応の計算が、精力的に行われるようになってきている。三(四)核子系の場合には、厳密解を求める処方箋として Faddeev (Faddeev-Yakubovsky)方程式が知られており、その計算を具体的に実行するために、(特に四核子系を解くために)高性能の計算機が用いられている。また、束縛状態の計算では各種の変分法も有効な手法であり、⁴He 原子核の場合には、現実的核力のうち特に重要な成分を抜き出した Argonne v8' ポテンシャルを用いて、様々な方法で (Faddeev-Yakubovsky 方程式を解いた場合とほぼ同じ) 精度の高い解が得られることがベンチマーク計算 [28] によって示されている。

現実的核力は核子-核子散乱や重陽子などの二核子系の実験データを再現するように決められているが、これだけで三核子系以上の原子核の性質が正確に再現できるかどうかは自明ではない。特に、上で述べた核力の長距離部分がパイ中間子交換によって記述できることを基礎として、三核子が互いに長距離にあるときに二核子間の核力に加えて余計な引力(藤田宮沢型三体力)が働くことが指摘されている。[30] 実際に、これまでの三核子系・四核子系

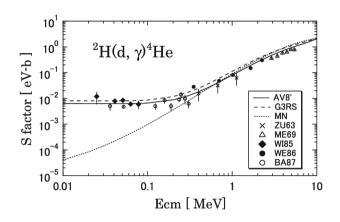


図 5 現実的核力 (AV8' および G3RS) を用いて計算された 2 H $(d,\gamma)^4$ He 反応の Astrophysical S factor を、実験値と比較した図、有効中心力のみを含む核力ポテンシャル (MN) を用いた場合と比べて、低エネルギー領域で Sfactor がほとんど減少せず、水平になっていることがわかる。文献 [29] から引用。

の精密計算と実験データとの比較が、Faddeev 法もしくは変分法による束縛状態の計算や、Faddeev 法による核子・重陽子反応など三体散乱問題の分析などによって行われ、 3 He や 3 H、 4 He 原子核の束縛エネルギーに関して、三核子系で数百 keV、四核子系で数 MeV の引力的効果を与える三核子間力の存在が必要であることが確認されている。また、陽子・重陽子散乱においては、弾性散乱断面積や偏極分解能などの直接測定が可能な領域における実験値との比較が行われ、入射粒子のエネルギーが高くなるにつれて三体力の重要性が明らかになりつつある。 $[31,32]^{*1}$ ここまで述べた原子核の第一原理計算では、束縛状態についてはエネルギーだけでなく波動関数も求められるため、各種物理量を計算したり、軽い複合核の反応計算などに用いいることができる。四核子を超えた質量数の原子核の第一原理計算では、フェルミ粒子の多体系では粒子数 A に対して反対称化のために A! 個の置換を扱う必要があり、計算を困難にしている。グリーン関数モンテカルロ法、閉殻を仮定しない殻模型、カイラル有効場の理論による格子計算手法などがあるが、これらの手法では、核子数 12 程度の p 殼近傍の原子核まで構造計算が行われており、多くの成果を挙げている。また、結合

^{*1} ここでは正味の引力を与える三体力について述べたが、これは三核子が互いに比較的離れていて、三核子中の任意の二核子間の相互作用としてパイ中間子交換描像が有効な場合に寄与する力と考えられている。中距離、短距離での二核子力がまだ完全には理解されていないように、三核子がより近づいている状況での三核子力も、まだ良くわかっていない。現象論的には、たとえば核物質の性質を再現するためや、観測されている中性子星の質量を説明するためには、短距離で斥力的に働く三体力が必要であると考えられている。

引き続いて、現実的核力に基づく有効相互作用を用いた手法の発展について述べる。自由空間で決められた核力 (生の核力) は、一般に短距離部分に強い斥力を持つが、短距離での強い斥力を正確に扱うには、模型空間に高い運動量成分を含めねばならず、そのままでは扱いづらい。強い斥力の効果を、ユニタリー変換 (Lee-鈴木変換)[34] などにより、物理量を不変に保ちながら、模型空間に繰り込むことにより、もともと短距離部分にあった強い斥力を弱めた有効核力が導出される。このようなソフトな(高い運動量成分を繰り込むことによって得られた)有効核力を用いる利点は、短距離での強い斥力を直接扱わない点で、閉殻を仮定しない殻模型では、模型空間に対する計算の収束性が生の核力を直接用いた計算と比較して非常によくなる。一方、核反応計算でいえば、現実的核力から導出された複素 G 行列有効核力を用いて、パウリの排他律や三体力などの効果を密度依存性として有効核力に繰りこみ、微視的核反応模型に適用することで、一定の成果を挙げている。[35]

ラムダ (Λ) 粒子をはじめとするハイペロンを含む原子核 (ハイパー核)の研究の現状について、ここで簡単に触れておく。上で述べたような (通常核についての)研究を、ストレンジネスを含めた原子核へと拡張することにより、一般化された核力ならびにそれに基づくよりひろい原子核の統一的記述を目指すことができればよいが、このような拡張を進める上での大きな障害は、ハイペロン散乱実験が難しいために散乱データの情報が限られていることである。これは、現実的核力模型の構築において、豊富な実験データの蓄積を利用できることとは対照的である。ストレンジネスを含む中間子やハイペロンの関係する相互作用に現れる結合定数などのパラメータをフレーバ対称性を手がかりに決めることや、ハイパー核のガンマ線分光実験などのデータと多体の核構造論を組み合わせて、そこから間接的にハイペロン核子相互作用の情報を引き出し、現実的核力をハイペロンを含むように拡張する試みもなされているが、まだまだ発展途上中である。この分野は、むしろ、格子 QCD によるハイペロンポテンシャルの導出や、最大質量の観測データについて近年話題 [36] となっている中性子星の内部構造の解明などと密接に関連しており、今後の飛躍的発展が期待される分野である。

2.2.2 クラスター模型

比較的軽い質量領域の核構造理論の長年のテーマとして、クラスター構造のようなエキゾ チックな構造、の研究を挙げることができる。さらに、中性子過剰核に特徴的な現象である 一粒子準位の異常や逆転といった、最近実験サイドからも大きな興味が持たれている物理現象に対しては、従来提案されてきた模型に改善の余地がある。第一原理的な計算手法によっていかにしてクラスター構造などのエキゾチックな構造を記述できるかは、大きなオープンプロブレムになっている。なぜならば、現実的な核力は原点付近に強い斥力コアを持つために大変扱いが難しく、単純な一粒子波動関数の積(スレーター行列式)では核子間の相関を取り扱えない。前述のように Lee-鈴木変換による有効核力を用いた、芯を仮定しない殻模型計算(模型空間が数学的に明確に定義されている)においても、クラスター構造が顕著であると思われる状態のエネルギースペクトルの記述には成功しておらず、この困難は解消されていない。 そのため、これまでの多くの原子核模型では、この斥力コアの効果および原子核の核内媒質効果をたくみに繰り込んだ、より扱いやすい有効核力を核構造計算に用いてきた。

クラスター構造のような、多核子が強い相関を持って原点から離れて空間的に局在した配 位を記述するためには、核子の一粒子波動関数として空間的に局在したローカルガウスなど を用いるのが効果的である。ローカルガウスの波動関数は非直交基底であり、数学的に厳密 に模型空間を定義し、現実的核力から模型空間で用いる核力へ一意的にマッピングすること が難しくなる。そのため、現実的核力を用いてクラスター構造を記述しようとする場合、現 実的核力から模型空間で用いる核力へのマッピングを厳密に行うのではなく、 2 つの核子 が接近した際に核力の斥力コアが低くなるようにユニタリー変換を与え、さらに少数核子系 の性質を再現するようにパラメータを調節する方法が有効である。このような考え方に基づ く、 ドイツで発達しつつあるユニタリ相関演算子法は、ローカルガウス基底に対する現実的 核力の適用を可能とし、幅広い質量数領域のクラスター構造を研究できる現在ほとんど唯一 の方法である。しかしそのユニタリー変換は、上記の理由により一意的に定まる厳密なもの ではなく、さらに、ユニタリー変換されたハミルトニアンをどう簡単な既存の演算子で表現 するかについても、特にそのテンソル相関の部分に関してはまだ改善の余地が残されている。 このように、現実的核力を用いたクラスター的構造の研究には、方法論の開拓が重要である。 同時に、ひとたび相互作用が設定された後でも、ハミルトニアンの行列要素の計算に膨大な 数値計算が必要となる。

また中性子過剰核においては、中性子数の変化とともに原子核がどのようなクラスター・シェル競合を見せるのかを明らかにすることが物理の課題として重要であり、さらに、原子核の基底状態ではシェル模型的成分が優勢な場合でも、励起状態にはクラスター構造が現れる可能性もあり、統一的な模型の構築が求められている。

これらの核構造情報は、核反応理論を通じて直接実験結果と比較される。特に、励起状態

や共鳴状態にクラスター構造が発達する原子核においては、それらの状態がさまざまな観測量にダイナミカルに影響を与えられることが知られる。そのために、励起状態のみならず閾値を超えた連続状態を精密に取り扱う必要性がある。それらの状態を核反応の観点から精密に取り扱うために、連続状態離散化チャネル結合 (CDCC) 法が九州大学のグループを中心に開発されてきた。この CDCC 法は、先の Faddeev 方程式のように完全な厳密解を与えるものではないが、クラスターに分解するような反応を取り扱うときには非常に良い精度で反応現象を記述することが可能である。さらに、近年では非常に大きな模型空間をとることも可能となり、核反応分析を行う模型としては非常に精度の高い核反応模型である。

また、その原子核内で発達したクラスターの一部が標的核に移行するような多核子移行反応も話題として取り上げられる。しかし、現段階において日本国内では、直接反応過程としての核子移行反応計算は不十分なものがあり、今後の発展・改善が必要である。

2.2.3 殼模型

質量数 20 を超えるようなより重い原子核では、現象論的補正なしの第一原理計算は困難となるため、原子核殻模型計算と密度汎関数法による計算が選択肢としてあげられるが、この節では、原子核殻模型計算の話題を挙げる。

原子核殻模型計算では、まず、核子多体系を魔法数をもつ閉殻と、バレンス殻内のバレンス核子の運動に分離する。バレンス核子の波動関数を、取り得る全ての多粒子配置を表現するスレータ行列式(配位)の線形結合によって記述することにより、設定した模型空間の配位混合を完全に取り入れた高精度の計算を可能とする。バレンス殻内のバレンス核子のすべての配位で張られるヒルベルト空間を模型空間と呼ぶ。通常1主殻をバレンス殻ととり、模型空間外からの寄与は、有効相互作用理論によって、バレンス核子間の残留相互作用に繰り込まれる。この手法により、閉殻近傍の原子核の低エネルギースペクトルを精度良く再現することができ、ガンマ線分光によって得られた励起エネルギー、遷移確率、磁気能率などの多数の実験値と、広範な質量領域で簡便に比較することができる理論計算手法であり、有用性は確立されている。また、理論的にも、有効相互作用の構築に実験値による現象論的補正が必要なため、実験と理論の二人三脚ですすんできた手法である。

この模型には、主に 2 つの現実的な制限がある。一つは、模型空間の指数関数的増加であり、中重核領域では対角化すべきハミルトニアン行列の次元が 10^{10} を超えることも珍しくない。通常この行列の直接対角化はランチョス法を用いておこなわれ、最新の並列計算機を用いても 10^{11} 次元程度が限界となる。今の計算機の発展を外挿すると 10 年後にはおよそ 10^{14}

次元のハミルトニアン行列が対角化可能となるが、質量数 100 を超える重核領域の原子核構造を計算するには不十分であり、なんらかの形の近似が必要となる。さまざまな手法が試みられているが、日本ではモンテカルロ殻模型法により直接対角化の限界を超えた計算がなされており [53]、HPCI 戦略分野の一部としての活動が平成 23 年度から始まっている。今後10 年で外挿法など、近似手法のさらなる発展も見込まれ、計算機の発展と両輪をなし、殻模型計算の適用範囲を大きく広げていくと期待される。

もう一つの制限は有効相互作用における現象論的補正である。核子間の核力から出発して模型空間内における有効相互作用を求めるのが理想ではあるが、現在の閉殻を仮定した殻模型計算ではそのような精度に達していない。この原因に3体力の効果や連続状態との結合が考えられ、これらの寄与の定量的な評価が始まっている。UMOA法などの有効相互作用理論の発展と組み合わさることにより、現象論的補正を必要としない有効相互作用の構築という理想に近づいていくであろう。

2.2.4 密度汎関数

密度汎関数理論は、厳密かつ普遍的汎関数の存在定理(Hohenberg-Kohn)と実用的汎関数の構成を可能にする Kohn-Sham の方法によって基礎づけられた理論である。原子核においては、その発展の歴史的経緯から平均場模型とも呼ばれるが、原子核のバルクな特徴である飽和性を再現するためには、密度依存有効核力が必要であり、密度汎関数理論と同一のものと考えてよい。密度汎関数理論の大きな特徴の一つとして、特定の原子核(質量領域)を記述する模型ではなく、すべての原子核を包括的かつ定量的に記述することが可能であることがあげられる。[37]

この普遍的な汎関数の存在は原理的には保障されている。しかし実際にどうこの厳密な 汎関数を構成するかは自明でなく、我々がこれまで手にしたものはすべて近似的であり、 Kohn-Sham の方法に基づくものである。Kohn-Sham 法は、運動エネルギーにおける量子 的効果をうまく取り込むスキームを与えており、結果的には平均場理論に類似した自己無撞着な非線形方程式となる。特に、基底状態においてもフェルミ運動が重要な役割を担うフェルミ粒子多体系に対しては、Kohn-Sham スキームに基づく汎関数の構成法が現在のところ ほぼ唯一の方法といって良いであろう。

現在、全核種の質量を平均 1 MeV 以下の誤差で再現する汎関数が報告されているが、その精度をさらに向上させる研究は精力的に行われている。[38] 質量について言えば、閉殻配位の原子核と開殻配位の原子核との系統的な差、特定の原子核における特殊な相関 (例えば

N=Z核のウィグナー・エネルギー)、偶核と奇核の対相関の違いなどが未解決である。これらの問題は、現在のエネルギー汎関数に明らかに欠けている相関の存在を示しているが、その取り込みの方法については多くの研究がある中、決定的なものがまだ現れていない。解決に向けて、汎関数の最適化に向けた新たな研究が進められており、第一原理計算を用いて、汎関数の形を探索するなど、他のアプローチによる大規模核構造計算との共同研究も進められている。[39]

通常の密度汎関数計算では、一体密度 $ho(\vec{r})$ が多体系を記述するので、計算量はオーダーだ いたい M^3 に比例する。ここで、M は一粒子状態を記述する空間の次元。質量数 A に対し て M はだいたい線形に依存すると考えてよいので、計算量は質量数に対して A^3 で増加す る。通常の多粒子系の量子力学の計算量と比較すれば、圧倒的にゆるやかな粒子数依存性で あり、これが大きな原子核を扱うことを容易にしている。密度汎関数理論を用いた通常の計 算(Kohn-Sham-Bogoliubov)に対しては、汎用的なプログラムも開発・公開されており、 これを用いて、原子核基底状態の質量・半径等を求め、自発的な核変形を決定することがで き、今や誰でも中性子数 (N) と陽子数 (Z) を指定することでこれらの情報をパソコンから簡 単に得ることができる。大規模並列計算と組み合わせれば、1万個程度のプロセッサを用い た並列計算によって、1日程度ですべての原子核の基底状態を計算することが可能である。 [39] 今のところ、原子核の形状に軸対称性と反転対称性が仮定されたプログラムが主流で あり、特に調和振動子基底の計算コードが収束の速さなどにおいて優れている。一方で、ド リップライン近傍の中性子過剰核等を扱うためには連続状態との結合を考慮し適切な境界条 件を課すため、実空間基底での計算コード開発も進んでいる。[40,41,42] この場合、空間の 大きさや収束のスピードが遅く、一般的に上記の調和振動子基底よりも 1 、 2 桁大きな計算 コストが要求される。

時間依存密度汎関数理論に基づく線形応答計算は、最近数年でもっとも大きく進んだ研究分野の一つである。[43,44,45,46,47,48] 日本と欧米の複数のグループが、変形した基底状態上の線形応答計算を可能にする計算コード開発にしのぎを削り、いくつかのコードが既に完成している。通常の線形応答計算では、 M^6 の計算量と M^4 のメモリ容量が必要とされ、一つの原子核の応答を調べるのに、 1 万コア程度のプロセッサを用いた大規模並列計算が行われている。しかし、最近国内で開発された有限振幅法 [40] では、 M^3 の計算と M^2 のメモリで同一の計算が可能である。この手法の優位性を生かした系統的な光反応断面積の計算が現在進行中である。[49,50,51]

2.3 天体核物理

クォーク・ハドロン・原子核における計算手法の発展とともに、原子核物理の成果を活かした天体・宇宙物理学の諸問題への取り組みが進みつつある。核構造・反応における一貫した枠組みの確立は、ビックバン・星の進化・爆発天体での元素合成過程において鍵となる原子核データの整備に繋がっている。また、第一原理計算から求められた核力から出発した核子多体理論による核物質状態方程式の構築の取り組み [55] や、高温高密度における QCD 物性の探求 [56] は、中性子星内部や超新星ダイナミクスを探ることに繋がっている。天体や宇宙のおける極限状態は、中性子過剰・高密度・高温と地上実験では達することのできない領域であり、最新の原子核実験データに基づいて精査した理論計算手法による探求が欠かせない。その領域はクォーク・ハドロン・原子核から星と広いスケールに渡る。

超新星爆発は極限状況における原子核物理が本質的な役割を果たす課題の代表格であるとともに、天体核物理における代表的な未解決課題でもある。超新星爆発は、大質量星の進化の最期に起こる爆発現象であり、そこでは中性子星・ブラックホールが誕生し、重元素合成が行われ、物質がまき散らされて次の星の誕生の源となり、銀河と物質の進化の基礎となっている。宇宙物理学の重要な課題であり、40年以上に渡る長い間の多岐にわたる研究にもかかわらず、現在でも爆発メカニズムの解明には至っていない。

未解決である原因は、極限状態における原子核・ニュートリノ物理を与えることが難しいこと、および数値シミュレーションが非常に大規模なものとなるという両面の困難である。前者では超新星コアにおける高温高密度での状態方程式 [57] やニュートリノ反応、後者では3次元空間における一般相対論・流体力学・ニュートリノ輻射輸送・電磁気学を組み合わせた統合計算が課題である [58]。数値シミュレーションによって爆発を再現することだけでなく、中性子星が誕生する様子や、超新星ニュートリノの放出、爆発で外部に放出される物質のダイナミクスを解明することが必要である。こうした際には、中性子星内部の核物質・エキゾチック物質の解明や、元素合成過程で経由する広い核種範囲にわたる原子核の質量・核反応データを網羅する必要がある。近年の原子核実験・理論の進展および計算機環境の発展はめざましく、上記の難問を解決する道のりにおいて、計算核物理は大きな役割を果たし、超新星の爆発現象を解明する道のりに貢献してきた。

中でも1990年代より理化学研究所を代表とする不安定原子核ビーム実験により、宇宙物理における核データ研究が大きく進展したことは特筆すべきである。安定線から離れた領

域で不安定核の質量・半径・反応の系統的な測定がなされ、中性子過剰な領域での核子間相互作用・核構造・反応率についての理解が進んだ。実験をもとに中性子過剰な核物質の状態方程式や不安定核における核反応レートなどの理論研究が精力的に行われ、理論と実験による連携した取り組みが行われてきた。不安定核データが中性子星・超新星・元素合成の研究において果たす役割が明らかになり、原子核物理が宇宙・星で活躍する道筋が具体的に作られた。また、KEK や BNL 等において行われてきたストレンジネス原子核実験研究の進展により、中性子星コア等の高密度領域におけるハイペロン出現について実験データに基づく議論が可能となってきた。ハイパー核や K 中間子核について実験・理論が協力して研究が進み、 Λ についてはスピン依存相互作用まで精密な議論が行われるとともに、 Λ 以外の粒子についても核物質中でのポテンシャルの深さが明らかになりつつある。現在、高密度領域におけるエキゾチック物質出現の研究はより定量的な議論へと進み、天体現象においてエキゾチック相探索が可能であることが示されている [59,60]。

一方、理論研究では、計算機性能の向上とともに、以前は現実的でなかった原子核多体問 題の第一原理的計算が可能となった。第一原理計算による核子多体系へのアプローチ [61]、 殻模型による大次元計算による核構造反応の解明 [62]、微視的核子多体理論による核物質飽 和性の理解 [63] が進み、天体核物理への応用が現実的なものとなっている。密度汎関数法 (平均場近似を含む)による核図表上の広範囲な原子核構造の系統的な予測 [?] は、r プロセ ス元素合成を初めとする爆発的元素合成過程の解明に貢献し始めている。重い原子核の電子 捕獲・光分解・ニュートリノ反応などの反応率計算も可能となり、核データの提供を通じて 天体核物理に貢献している。不安定核や核子多体理論の発展とともに高温・高密度領域にお ける状態方程式の研究が行われ、超新星シミュレーションに用いる状態方程式データテーブ ル構築[57]へと繋がっている。こうした微視的情報を取り入れた状態方程式は様々な天体数 値シミュレーションに用いられ、高温高密度核物質の果たす役割が定量的に議論されるよう になった。最近発見された2倍の太陽質量をもつ中性子星[64]は、核子以外のハドロン自由 度を考慮した従来の状態方程式の多くを棄却し、原子核多体問題においても中心課題となり つつある3体力等の多体力をハイペロン等にも拡張して考える必要性を示しており、今後の 進展が期待される。さらに、クォーク・ハドロン物理の研究成果が中性子星や超新星での現 象に直接適用されるようになり、天体観測から QCD 相転移を探る道筋も明確になりつつあ る [65]。

さらに、天体数値シミュレーションの発展もめざましい。核図表上の数千種類の核種を結 ぶ、原子核反応ネットワークの計算は頻繁に行われるようになり、個々の原子核反応の影響 や、系統的な構造予測の影響が定量的に吟味されるようになってきた。一般相対論を数値シミュレーションにより扱うことで、中性子星合体やブラックホール形成の計算も可能となり、状態方程式が重力波放出に及ぼす影響が解明されている [66]。超新星爆発メカニズム解明には、上述のように得られた原子核・ニュートリノ物理を詳細につぎ込んだ大規模な数値シミュレーションが必要である。近年では計算機能力の向上により、球対称の範囲では一般相対論のもとでニュートリノ輻射流体計算が行なわれるようになり、ダイナミクスとしては第一原理計算を行なうことが可能になってきたため、核物理の詳細な検証が可能になってきた[67]。日本を含む世界の数グループの計算結果により、実験データで検証された範囲での核物理を用いた上で、球対称計算では爆発しない、ということが判ってきた。このため、衝撃波を後押しするニュートリノ加熱という効果に加えて、多次元的な効果(流体不安定性など)が爆発メカニズムとして必要であると考えられている [68]。しかし、2次元3次元では、大規模計算によるシミュレーション結果は一握りしかなく、爆発メカニズムは諸説に分かれている。また、ニュートリノ輻射輸送の扱いは近似的な方法に依っていて、系統的な研究および近似のないニュートリノ輻射輸送計算による研究が待たれている。

ここより後ろの文章は、まだ完成に程遠い状態のものであり、現在は、WG内で作成した文書や議論したものの単なる羅列になっています。文章として読みづらい部分があるかもしれず、申し訳ありません。今後書き直していく予定です。みなさまからご意見頂ければ幸いです。

3 5~10年後の展望

ここでは、5~10年後程度の将来にわたっての日本の計算核物理の研究が進む方向についてまとめる。次世代大型計算機(京速コンピュータ)の運用開始に伴って計画されている研究や、さらにその先(次々世代)の大型計算機利用を見据えた活動が既に始まっている。[52] 前節で紹介した最近の成果をふまえて、今後特に重要と思われるいくつかの研究課題について、まず述べる。その後、5~10年後をめどに進めるべき研究課題について触れる。

3.1 Lattice QCD からの He 原子核の直接構成

現状分析で紹介したように、2010 年筑波大グループは、原子核構造論において最も基本となる $^4{
m He}$ 原子核の格子 QCD による直接構成に世界で初めて成功している [19] が、この計

算はクェンチ近似(動的クォークを無視する近似)かつ重いクォーク質量で行われたもので あるため、そういった現実とは異なる近似計算を行っていることから来る系統誤差を排除す ることができない。そのため、現実的な(より軽い)クォーク質量でのフル QCD 計算を実 行し、これらの系統誤差を取り除いていくことが重要である。格子 QCD による原子核の直 接構成という、基本原理に忠実ではあるが挑戦的な課題を実行するためには、解決するべき 固有の問題がある。有限体積の箱の中に引力相互作用を行う2粒子が閉じ込められている場 合、束縛状態であっても散乱状態であっても負のエネルギーシフトを生じる。両者を区別す るものは、 エネルギーシフトの空間体積依存性である。束縛状態の場合は負のエネルギーシ フトが空間体積無限大の極限でも有限の値で残るが、散乱状態の場合はエネルギーシフトが 空間体積の逆数に比例し、空間体積無限大の極限で消失してしまう。束縛状態と散乱状態を 区別するためには空間体積依存性を調べなければならず、そのための計算コストは大きい。 この問題はペタスケールからエクサスケールへと計算機の能力が増大していくことによって 解決していくと予想される。もう一つの大きな課題はクォーク・ダイアグラムの数である。 格子 QCD ではクォーク場を用いて原子核の量子数を持つ生成・消滅演算子を組みその縮約 を取ったクォーク・ダイアグラムを考えるが、質量数が多くなるにつれて縮約の"場合の数" は急激に増大する。例えば炭素 $^{12}\mathrm{C}$ の場合は u クォーク 18 個、 d クォーク 18 個から構成 されるので、単純に考えればクォーク・ダイアグラムの数は $(18!)^2 \sim 4 \times 10^{31}$ という天文 学的数字となる。この膨大な数のダイアグラムをどのようにして計算するかという問題が、 QCD を用いて原子核を取り扱う場合の大きな困難である。この点に関してはアルゴリズム 的に解決するためのアイデアが必要である*2。

3.2 高温高密度 QCD の相構造の決定

符号問題のない密度ゼロ系では、すでによく研究されているスタッガード型クォーク作用の計算に加えて、ウィルソン型クォーク作用での有限温度領域の計算がすすめられようとしている。今後は、その2つのクォークの定式化による結果を比較しながら計算を進め、格子QCD計算の系統誤差の評価がより精密となり、高い精度の熱力学量や相転移温度の研究が期待される。

また、現在、クエンチ近似で計算されている有限温度でのハドロンスペクトルや輸送係数

^{*2} 実際には様々な対称性を駆使して独立なクォーク・ダイアグラムの数を減らすことが可能であるが、困難の 度合いは本質的には変わらない。

の研究についても、今後計算機の性能の進歩によってクォークの真空偏極を正しく評価した計算となり、LHCでの重イオン衝突実験の結果が出そろうまでに相当の進展が見込まれるであろう。

さらに、有限密度系の計算方法に関して、いろいろなアイデアが提案されている。低密度 領域の計算では化学ポテンシャルによるテイラー展開の係数をゼロ密度で計算する方法が有 効で、この領域は、計算機の性能の進歩に合わせて着実に研究が進むことが期待される。高 密度の研究に関しても、符号問題を解決するためのアイデアが試行されて、高密度での計算 が可能になることが期待される。それによって、近い将来、高密度 QCD の相構造を明らか にしたい。

3.3 クラスターを含む励起状態の第一原理計算

宇宙の進化における元素合成の真の理解においては、原子核が織り成す階層構造を基本原理から理解することが欠かせない課題である。具体的には、恒星内部での水素の燃焼からヘリウムが作られる課程 (CNO サイクル) にとっては、炭素の存在が必要である。ビッグバン直後の炭素がほとんど存在しない時代から、CNO サイクルが可能となる恒星が誕生するまでに、 3α の反応によって炭素が大量に生成されたと考えられている。Hoyle 状態と呼ばれる 12 C の励起状態が 8 Be+ α 閾値付近に存在すると予言され、実験的には見つかっている。しかしながら、この状態を核子 12 体系のダイナミクスとして理論的に導き出すことには、まだ成功していない。核子を基本自由度とした第一原理計算において、この Hoyle 状態を正確に導出することは、原子核の階層構造を正確に理解し、元素合成や宇宙の進化の模型に確実な根拠を与える上で、非常に重要な課題である。スーパーコンピュータを使うことによってこの問題を解決しようとしている研究が既に発表される段階に入っており、この課題は、喫緊に進展することが求められている。

3.4 第一原理計算に consistent な DFT、Shell model、cluster model

核子を基本自由度として原子核構造や反応を第一原理的に理解しようとする試みは、反応については3核子もしくは4核子系まで、構造については12体程度までが限界である。従ってそれより質量数の大きな原子核領域を研究するためには、核子自由度を自由空間において扱ったのと全く同じようにあからさまに扱うのではなく、系を記述するのにより適した自由度を持つ模型を導入して原子核を記述することが必要となる。質量数の増加とともに系

を記述するために本質的な自由度がどのように現れるかを理解するために、第一原理計算と 模型計算のそれぞれが有効な境界領域の質量数の原子核において,このような模型の基礎付 けを与えるために、必要な課題である。将来的には、密度汎関数計算については、重いアイ ソトープ領域のドリップラインを予言できるような精度の向上を目指す。

3.5 爆発的天体現象

超新星爆発の研究は、2次元や3次元における数値シミュレーションが初期研究のメカニズム探索から、定量的な解明を目指す本格的な時代に突入しつつある。その理由は、まず第一に、球対称のもとで一般相対論的ニュートリノ輻射流体計算という第一原理計算が行われた結果、最新の原子核物理データのもとで、超新星爆発が起きないことが明白となったことが挙げられる。さらに、爆発の鍵となるニュートリノ加熱メカニズムは多次元的な流体不安定性と共に効果的に働くことが2次元(軸対称)の数値シミュレーションで示されている。また、球対称より2次元、2次元よりも3次元の方が爆発を起こしやすいという、研究成果もあり、2次元3次元において、定量的な議論ができる緻密な数値シミュレーションを行うことが急務となっている。

現在までの計算は2次元においては、ニュートリノ輻射輸送を近似的に扱ったものであり、その範囲で、爆発を起こす数例が知られている。3次元においては、ニュートリノの扱いはさらに簡単化されており、ようやく最初の本格計算の成果が出始めた所である。今後、5~10年の課題は、このニュートリノ輻射の扱いにおける近似を取り除いて、段階的に厳密計算へ近づけて行く事がもっとも重要な事となる。同時に、初期モデル(親星の質量など)・状態方程式・ニュートリノ反応などの違いによる相違を明らかにする系統的な爆発シミュレーション計算も、メカニズム探索を明確なものとするために必要不可欠である。

ニュートリノ輻射輸送は、超新星コアの中心に溜まったニュートリノが拡散現象としてじわじわとしみ出してやがて星の外層に達するまでの、ニュートリノ伝搬・放出・吸収・散乱を記述するものである。超新星の問題では、中心部は高温高密度で拡散近似が良く、外層では自由伝搬近似が良いが、爆発メカニズムの鍵を握るのはその中間領域である。コアバウンスで発生した衝撃波が伝搬途中で停滞しまうのだが、その領域では、どちらの近似も正しくない。そのため、いわゆるボルツマン方程式を解いて、伝搬と衝突による影響を一貫して扱う必要がある。

この計算は、空間3次元、ニュートリノ運動量空間3次元の合計6次元位相空間における

ニュートリノ分布の時間発展を扱うものであり、原子核や工学分野においても共通の難しい問題である。球対称においても、空間1次元(半径)とニュートリノのエネルギー1次元・伝搬方向1次元の合計3次元位相空間の問題である。ニュートリノ核反応はエネルギー依存性が強いために、エネルギーを独立に扱うこともできない。

現在から数年先までに行われるのは、3次元での超新星計算であるが、ニュートリノ輻射輸送を近似的に扱う手法によるものである。流体計算は3次元であるが、ニュートリノ輻射輸送は、ray-by-ray 近似という半径方向の一次元計算を各方向独立に行う。この近似のもとでも計算資源は膨大なものとなるが、日本のグループは、京コンピュータの計算資源により解像度を最大限にとった超新星シミュレーションを行っていく予定である。その後、ニュートリノ輻射輸送を近似の無い扱い、ボルツマン方程式を直接解く方法、へ置き換えた計算を行っていく計画である。

さらに、空間3次元ニュートリノ運動量空間3次元におけるボルツマン方程式を解く計算コードがごく最近に開発されており、流体計算と組み合わせて、2次元、3次元計算へと拡大して行く予定である。6次元空間を扱う数値シミュレーションは、メモリ使用量も大きく計算量も膨大となる。また爆発の正否を追求するためには時間発展を追う長時間計算が必要となる。このため京コンピュータで行える輻射流体計算による超新星計算も空間3次元は試験的なもので、本格的な計算は空間2次元に抑えたものになる想定である。3次元による長時間計算で爆発メカニズムを探るには、エクサスケールなどの計算機の規模が必要である。

こうした将来の大規模計算においても数値シミュレーションに組み込まれる核物理が重要な鍵を握っている。巨大計算は時として唯一つの数値シミュレーションしか行うことができない場合もあり、その時点でベストな核物理を組み込むことが肝要である。その意味で、将来に渡って可能となる原子核構造反応計算や多体理論計算により、高温高密度核物質の状態方程式、原子核の電子捕獲反応、ニュートリノ核反応などの一貫した核物理データを構築することが課題である。

上に挙げたものに加えて、クォーク・グルーオン多体系、原子核、天体核物理の各分野に おいて計算核物理として進めるべき課題について述べる。

3.6 クォーク・グルーオン多体系

3.6.1 格子 QCD によるハドロン構造の精密化

ハドロン原子核分野に関連して「ハドロン1粒子系」の物理として残された問題は、格子 QCD による核子の静的な諸性質の再現である。現状では核子の質量を除いて格子 QCD 計 算が実験値を再現できているとは言い難い。中間子系の研究において弱崩壊に関する遷移行 列計算がすでに大きな成功を収めているのに対して、重粒子系において相当する弱崩壊の遷 移行列、例えば中性子 eta 崩壊に伴う軸性電荷 q_A において格子 QCD 計算が実験値を精密に 再現するには至っていない。これは核子などの重粒子の計算が π 、K 中間子など計算に比べ てより高い統計精度を必要とするという技術的な問題ばかりでなく、重粒子が中間子よりも クォーク多体系の複合粒子として、その構造が複雑であることと密接に関係していると思わ れる。特に現在深刻な問題として、現時点で核子の平均二乗半径に対して格子 QCD 計算が 実験値の約75%程度しか再現できない、「核子の大きさの問題」が挙げられる。現象論的に は所謂パイオンの雲の効果と直接関係していると考えられる。実際、核子を含むカイラル摂 動論において、核子の平均二乗半径がπ中間子の質量が零となるカイラル極限で対数赤外発 散することが知られている。つまりこの問題の解決にはより軽いクォーク質量 (π 中間子の 質量で $200~{
m MeV}$ 以下) でより大きな空間サイズ ($4~{
m fm}$ 以上) の格子 ${
m QCD}$ 計算が必要不可欠 といえる。現在、いくつかの研究グループにおいてそのような QCD ゲージ配位の生成が始 まり、かなり近い将来、核子系の物理量においても、カイラル摂動論などとの整合性なども 含め、より精密な実験値との比較が可能となることが予測される。また今後は、ハドロン構 造の包括的な理解のために、実験で観測できる物理量のみを格子 QCD 計算の研究対象とす るに留まらず、カイラル摂動論を代表とした有効理論のアプローチ(QCD 和則や重いクォー クの有効理論などを含む) において、これまで実験からしか決めることのできなかった有効 理論内のパラメータなどの格子 QCD による精密決定など、より広範な格子 QCD 計算の活 用が望まれる。

3.6.2 格子 QCD によるハドロン少数多体系

ムーアの法則を信じれば向こう 10 年でコンピューターの性能向上も 100 倍程度見込まれるため、ハドロン 1 粒子系の計算よりもはるかに計算資源を必要とするハドロン少数多体系の研究分野においても、さらなる発展がなされることは想像に難くない。3.1 節ではその

ような直近の目標として物理点における軽原子核の構成を挙げた。その次のステップは魔法数の導出であろう。既に 3.1 節で述べたように、このような方向での研究を進めるには、膨大な数のクォーク・ダイアグラムの計算をどう扱うかを解決することが必要である。更にその後は、実験的に生成困難な中性子過剰核などを格子 QCD で直接取り扱うことを目指したい。格子 QCD から通常核の構成に道が開かれた暁には、格子 QCD を用いて大きく進展が期待される研究分野として、ストレンジネスを含む原子核の研究が挙げられる。これまでは、実験の難しさから、ハイペロンを含む広義の核力の低エネルギー領域での性質は明らかでなかったが、格子 QCD によって、そのスピン・フレーバ構造の全体像が明らかになると期待される。これらの成果は、後で述べる軽いハイパー核や中性子星の中心部などの高密度核物質領域への波及効果も期待できる。また、格子 QCD 計算においても共鳴状態の研究は非常に難しいが、 $K-\pi$ 散乱をはじめとして、今後具体的な研究が進むと予想される。現在盛んに議論されている $\Lambda(1405)$ 状態とそれに関連するエキゾチックな状態の研究は、J-PARC での新たな実験による進展が期待され、そのような実験の進展を理論的に解釈するための手法として、格子 QCD による共鳴状態の研究は重要な研究テーマになっていると予想される。

3.6.3 Lattice QCD からのエキゾチックハドロン・原子核(ストレンジネスを含むもの)の 探索

格子 QCD に基づくエキゾチックハドロン・原子核の研究の方向性としては、前節で述べたような格子 QCD 計算そのものによってハドロン・原子核の少数多体系を調べるものに加えて、格子 QCD 計算の結果と、これまでの原子核の研究で培われた方法とを組み合わせた研究も考えられる。すなわち、京速計算機によって現実的な核カポテンシャル、ハイペロンポテンシャルが格子 QCD 計算から求められた後で、それらを用いてラムダハイパー核やグザイハイパー核などのエキゾチック原子核の構造計算を実行することである。現実的クォーク質量での格子 QCD 計算から求められたポテンシャルが、(NN や Δ N、 Σ N など) 実験と比較できる部分については実験を再現することが確かめられれば、これらのハイペロンポテンシャルを用いることにより、エキゾチック原子核の存在の可能性やその質量、構造などについて、従来よりも信頼性の高い計算を行うことができるものと期待される。とりわけ、ハイパー核のエネルギーについては比較的実験データが揃っているので、通常核だけでなく、これら ハイパー核についても実験を再現することを確かめていくより、格子 QCD 計算から得られたハイペロン相互作用の情報の信頼性の向上に加え、ハイペロンのようなエキゾチック粒子を含む場合の核構造計算の精度向上も同時に実現し、 Δ 1-PARC で計画されてい

るグザイハイパー核探索実験などをサポートしていくような研究が期待される。

3.6.4 極限状態での QCD 物性

数値シミュレーションによる格子 QCD の研究は計算機の性能によってできることが決まる。現実世界と同じクォーク質量をもつウィルソン型クォークによるゼロ温度の研究が、現在、筑波大学を中心とするグループによって行われている。その延長として、ウィルソン型クォークによる有限温度、現実のクォーク質量の研究も始まる予定である。重イオン衝突実験で興味がある低密度領域に限れば、温度を変えてシミュレーションを繰り返すことと、有限密度の効果を取り入れることを考慮して、必要な計算時間は現在行われているゼロ温度の研究の 100 倍程度で、近い将来、十分に実現可能な計算である。ウィルソン型とスタッガード型を比較しながら、今後も熱力学量や相転移温度の研究の精度が向上するはすである。また、有限温度でのハドロンスペクトルや輸送係数の研究についても、困難の源となっているものは格子間隔の粗さと統計誤差であるため、計算機の性能の進歩によって改善されるはずである。クエンチ近似を取り除き、LHC での重イオン衝突実験の結果が出そろうまでに、ある程度の結果を出さなければならない。

さらに、質的な進歩が期待される研究は有限密度での QCD の研究である。標準的なモンテカルロ法が有限密度では使えないため、いろいろな試行錯誤が必要である。以前は動的クォークの効果を取り入れた計算自体にコストがかかるためできなかったが、最近になって、有限密度の計算方法の開発にも時間をさけるようになった。計算機の性能の向上は、計算精度を高めるだけでなく、試行錯誤を要する方法の開発の速度をあげ、適用できる計算方法の幅も広げる。実際、今までの格子 QCD の研究の歴史を見ても、計算機の性能に合わせて新しい計算法が開発され、一昔前には考えられなかったような計算ができるようになっている。

重イオン衝突実験が進行中の現在、格子 QCD の研究者に期待されていることは、実験結果をどう理解すべきか議論するときに必要な基礎的かつ正確な理論からの情報を提供することである。高温高密度 QCD の研究には長い研究の歴史があるが、ついに理論を実験で検証できるかもしれない時期にきている。

3.7 原子核

質量数の軽い原子核から重い領域までのそれぞれでの今後の研究の方向性を述べる。

3.7.1 軽い核の第一原理計算

強い斥力芯を持つような核力ポテンシャルを直接扱える少数系では、核子数を増やしてい くことが考えられる。複雑な相互作用を用いた多体方程式の精度のよい解を得るには、あら わに相関した基底での変分計算が有効である。しかしながら基底関数の反対称化操作が粒子 数の階乗に比例するため、核子数を増やすのは困難である。そこで反対称化操作をうまく処 理する方法や、相関基底に対して効率的な有効相互作用の開発を行う。 また、これまでの研 究において、三核子以上の原子核の構成において、現状の2体力だけでは不十分であり、3 体力が必要なことがわかっている。現実的核力は核子 - 核子散乱を再現するが、起源の違う ポテンシャル模型 (例えばクォーク模型ポテンシャル) を用いると、必要な 3 体力の強さは伝 統的なポテンシャルと異なる。多体力の定量的な議論に向けて、様々なポテンシャル模型を 用いて 4 体系以上の計算を行う。また Δ 粒子を含んだヒルベルト空間に拡張し、別の角度 から多体力の起源を調べる。このような研究の進展は、格子 QCD 計算からの新しい結果を よってより信頼性の増した、ハイペロン力の理解に基づいたハイパー核の研究と並行して進 んでいくことが期待される。すなわち、ハイパー核では $\Lambda N - \Sigma N$ 結合のようなチャネル結 合が重要であり、これが模型空間の選択によっては三体力てき効果の起源となっていると考 えられているが、これらのより定量的な理解が今後進むであろう。さらに結合チャネルを直 接扱った少数多体問題を p-殻ハイパー核にまで適用できるような方法の確立が期待される。 また、質量数の軽い原子核領域では、連続状態を含んだ核子多体系の記述の進展も期待され る。軽い核に限られてはいるが、現実的核力から出発した波動関数が得られるようになった。 それらの多くは2乗可積分関数から得られており、そのまま連続状態へ適用することは難し い。近年2乗可積分関数の散乱問題への適用が活発に行われている。それは比較的取扱いが 容易で、束縛状態を解く計算コードが利用できるという大きな利点がある。そのような低エ ネルギー核反応理論の開発にも取り組む。これらの少数多体系の成果は、精密な波動関数を 扱えるという利点があり、10 年後の研究計画として、精密核構造、反応理論を駆使した不安 定核の予言、実験の困難な宇宙核物理学(ニュートリノ反応、中性子捕獲等)への応用が期待 される。

3.7.2 クラスター

現状分析で述べたように、原子核物理においてクラスター的構造は、現象論的には重要な概念であるが、現実的核力を用いたクラスター的構造の研究には、方法論の開拓が重要であ

る。同時に、ひとたび相互作用が設定された後でも、ハミルトニアンの行列要素の計算に膨大な数値計算が必要となる。また中性子過剰核においては、中性子数の変化とともに原子核がどのようなクラスター・シェル競合を見せるのかを明らかにすることが物理の課題として重要であり、さらに、原子核の基底状態ではシェル模型的成分が優勢な場合でも、励起状態にはクラスター構造が現れる可能性もあり、統一的な模型の構築が求められている。

このような核構造情報を精密に核反応データから引き出す、または直接測定可能な物理量を予言するために、微視的核反応模型の改良が必要となる。現在進められている現実的核力に基づいた微視的反応模型の構築はすでに多くの成果を挙げているが、これまでの核反応理論研究として掲げてきた"精密核物理"の立場からすればまだ十分とは言えない。そのため、現在進められている現実的核力に基づいた微視的核反応模型のさらなる改良・精密化が第一にすべき研究計画である。

3.7.3 閉殻を仮定しない殻模型

今後、安定核近傍では、sd 殻核のようにより重い原子核へと殻模型による第一原理計算が適用されていくものと思われる。また、現状では、安定核近傍の原子核までしか適用されていないが、今後、中性子過剰核や陽子過剰核のような不安定核での計算も期待される。さらに、励起状態にみられるクラスター的な状態に関しても ¹²C の Hoyle 状態だけでなく ¹⁶O の励起状態など、殻模型などによる第一原理計算による理解が必要とされている。

このように、さらに重く、安定線から離れた原子核へ、また、励起状態にみられるクラスター的なエキゾチックな状態の解明へと第一原理計算の適用領域が拡大していくことが考えられる。このような第一原理によるアプローチは、従来の模型に対する裏付けを与えるだけでなく、新たな模型の提唱にも貢献すると期待される今後の課題としては、計算機性能の向上だけでなく、いかに殻模型による第一原理手法で不安定核にみられるハロー構造や励起状態にみられるクラスター構造を効果的に記述できるのかという、手法自体のプレイクスルーが不可欠である。

3.7.4 クラスターを含む励起状態の第一原理計算

3.7.5 閉殻を仮定した殻模型

一方、旧来型の閉殻を仮定した原子核殻模型計算の将来について述べると、この模型には、主に 2 つの現実的な制限がある。一つは、模型空間の指数関数的増加であり、中重核領域では対角化すべきハミルトニアン行列の次元が 10^{10} を超えることも珍しくない。通常この行列の直接対角化はランチョス法を用いておこなわれ、最新の並列計算機を用いても 10^{11} 次元程度が限界となる。今の計算機の発展を外挿すると 10 年後には 10^{14} 次元のハミルトニアン行列が対角化可能となるが、質量数 100 を超える重核領域の原子核構造を計算するには不十分であり、なんらかの形の近似が必要となる。さまざまな手法が試みられているが、日本ではモンテカルロ殻模型法により直接対角化の限界を超えた計算がなされている。今後 10 年で外挿法など、近似手法のさらなる発展も見込まれ、計算機の発展と両輪をなし、殻模型計算の適用範囲を大きく広げていくと期待される。

今後 10 年のうちに現象論的補正なしの有効相互作用の構築がおこなわれるのではないだろうか。加えて、2 主殻を模型空間にとることで、 $^{100}{\rm Sn}$ など 2 重魔法数をもつ原子核の構造を調べることを可能とし、2 重閉殻構造のやぶれの研究がすすむであろう。

また、¹³²Sn や ²⁰⁸Pb 近傍の中性子過剰側領域は、元素合成プロセスで重要であるにもかかわらず殻模型計算がおこなわれていない。これは、現象論的補正に十分な実験データが存在しないためであり、RIBF などの加速器の発展により、実験データがそろい始めるにつれ、旧来型の有効相互作用の構築と殻模型計算がなされていくと思われる。また、二重ベータ崩壊の研究や放射性廃棄物への応用が期待される質量数 100 前後の原子核のより精密な殻模型計算も期待される。

3.7.6 密度汎関数理論

密度汎関数理論については、今のところ、原子核の形状に軸対称性と反転対称性が仮定されたプログラムが主流ですが、今後はこれらの仮定も取り除かれた"完全"な計算に向けた開発が進むことでしょう。また、今後数年程度で、時間依存密度汎関数理論に基づく線形応答計算についても同様のことが可能になり、励起スペクトルなども解析できる汎用コードが公開される時代が来ると考えられます。

10年先、20年先といった将来の課題として以下のような課題があげられます。まず、 今後RIビーム施設における研究の中心になると考えられる中性子過剰核、さらに実験的に は10年、20年スケールでは届かないと考えられる安定線からはるかに離れた中性子過剰核の精密計算です。特に原子核の存在限界を決定することは非常に重要です。このためには複雑な相関を取り入れた高精度なエネルギー汎関数が必要であり、その構築と計算法の確立が求められます。またこれは、非対称核物質の精密計算にもつながり、核物質の状態方程式や中性子星の構造の決定に大きな役割を果たすと考えられます。次に、核反応理論と融合させた理論・計算手法の開発があげられます。ニュートリノと原子核の弾性・非弾性散乱、2重ベータ崩壊といったニュートリノ核反応の精密計算は他分野から強く求められており、比較的近い将来に大きな進展が見込まれます。また、古典的な近似が適用できない低エネルギーにおける核反応を、(時間依存)密度汎関数理論で記述する方法の開発も将来の重要な課題だと考えます。これに関連した課題として、非調和・非線形・非断熱といった原子核の集団ダイナミクスの特徴を記述することが可能な微視的理論の開発も将来の大きな課題です。特に、核分裂現象に密度汎関数理論を適用して微視的計算を確立することです。核分裂は、原子核集団運動理論に携わってきた研究者の長年の目標ですが、散逸、チャネル分岐、多体量子トンネル現象などの難しい課題が複雑に絡み合う現象です。この中には大規模計算によって克服される可能性が見えてきた課題もあり、今後大きな発展が期待されます。

核反応物理学として期待されることは、第一に不安定核特有の反応現象は存在するのか? という点である。不安定核ならではの反応現象としてすでに弱束縛系による分解反応が分 かっているが、今後他にどのような反応現象が観測、または、予言されるかが期待される。 第二に、エネルギー依存性である。核反応は閾値を超えたエネルギー領域における現象であ るが、そのエネルギー領域は核構造と違い制限がない。すでに少数粒子系の陽子-重水素弾性 散乱ではエネルギー依存性と三体力の関係が問題になりつつある。この問題は重イオン核反 応でも起きると予想され、三体力の本質的理解と共に新たな核反応物理の発展に繋がると期 待される。

3.8 天体核物理

3.8.1 爆発天体現象の多次元シミュレーション

先に述べたように、爆発的天体現象の解明においては、極限状況における核物質や核構造・反応の理論的な予測がますます重要なものとなる。これらの極限原子核の物理は、中性子星・元素合成過程の解明においても重要な役割を担っており、大規模計算による系統的な核データ整備が課題である。実験的には、核図表の広い範囲での、中性子過剰核の半径・非

圧縮率の系統的な測定や不安定核の弱い相互作用探求 (ニュートリノ・電子捕獲反応)などが行われれば、理論解析とともに天体核物理に大きく貢献するであろう。

QCD 計算を基に核力、特に核子三体力、ハイペロン間の相互作用などが明らかになれば、それを基にバリオン多体系理論計算を行い、核物質状態方程式を確立することが中性子星・超新星爆発などの高密度天体現象の理解へ大きく寄与する道筋となる。また有限密度格子QCD が進展し、クォーク物質への相転移線が明らかになれば、ブラックホールや中性子星合体を含む高密度天体の解明が進むであろう。数値一般相対論計算の進展により、ニュートリノ輻射を組み込んだ数値シミュレーションが行われるようになり、中性子星合体や星の重力崩壊によるブラックホール形成、ガンマ線バーストの起源などの解明が期待される。こうした高エネルギー天体現象においても核物理が果たす役割は同様に重要である。

最終的な爆発メカニズムの確定には、高温高密度での核データを可能な限り信頼できるものにすること、そして、それらをシミュレーションに組込み3次元ニュートリノ輻射流体計算を行なうことが必要である。これらの両者が今後10年、20年の課題となる。近年の計算技術の発展により、多次元での系統計算や3次元での輻射流体計算が可能になると予測する。その際には、インプットとなる核物質状態方程式や核図表の広い範囲におけるニュートリノ核反応のデータを確立しておくことが重要である。例えば、中性子過剰核の半径・非圧縮率の系統的な測定や不安定核のニュートリノ電子捕獲反応などを通じて、原子核ハドロン分野による実験と理論解析の最先端成果をつぎ込むことが将来的な課題となる。また、核物質状態方程式を確立するための三体力の解明や核子多体理論計算の発展、クォーク物質への相転移などの物理も高密度天体の理解に必要不可欠である。

多次元での超新星爆発計算については、神戸の次世代スーパーコンピュータにおける課題の一つとして数グループが連携して計算機資源をつぎ込んだ研究を計画しており、その中で筆者は3次元ニュートリノ輻射輸送計算コードを開発して、超新星爆発計算への適用を行なっている所である。これらは5年から10年のスケールで進み、大規模な並列計算の数値シミュレーション実行により超新星爆発メカニズムの解明に迫ることとなるであろう。rプロセス元素合成などの詳細なダイナミクス、大質量星の重力崩壊現象の系統的な解明は、さらに10年先の大きな計算機資源を必要とすることが予測される。

今から10年スケール以降の間には天体観測の大型計画(超新星ニュートリノ Hyper-Kamiokande、重力波 LCGT、超大型望遠鏡 TMT など)も進行しており、観測による天体核物理への知見にも大きな進展が期待される。すなわち、今から10~20年後には観測データとの比較を通じ、核物理への制限が現実のものとなる時代がやってくるであろう。超

新星が爆発するかどうかの議論を越えて、爆発エネルギーの定量的理解とともに高密度状態方程式・ニュートリノ核反応・不安定核での魔法数変化等、核物理の大きな課題を解くための手段としても爆発天体現象の研究が進むであろう。中性子星の質量や半径の系統的測定や冷却過程の観測は、高密度物質やエキゾチック相への制限となり、中性子星合体による重力波放出は、高密度ハドロン物質(あるいはクォーク物質)の状態方程式の情報を引き出す重要な役割を果たしているであろう。このように原子核・核物質の性質と観測データをつなぐ上で、核多体問題と爆発現象シミュレーションの両面において計算核物理の果たす役割は本質的である。

3.8.2 rプロセス元素合成の詳細なダイナミクスの解明

鉄よりも重い元素のなかで、金・プラチナ・ウランなどの一連の重元素は高速中性子捕獲 反応という、爆発的元素合成で作られることが判っている。しかし現在でも、rプロセス元 素合成がどこで行われているのかは、未解決の問題である。非常に古い星(金属超欠乏星) の観測が進んでおり、そのデータからは超新星爆発が有力な候補とされているが、超新星爆 発のモデル計算では、rプロセス元素合成に必要な中性子過剰な物質放出は見つからず、む しろ陽子過剰な状況が発見されている。そのため、中性子星合体やガンマ線バーストなどの よりエキゾチックな環境が候補として研究されている。超新星爆発については、数値シミュ レーションにおいて爆発過程が明らかにならなければ、重元素合成についての詳細が明確に なることはなく、将来の大規模計算による爆発メカニズム解明が待たれる。この時、rプロ セスに至る物質放出の割合は、全体のなかでも非常に小さいと考えられるので、多次元計算 において高い空間解像度が必要とされる。また、rプロセス元素がいつどこで生成されたか、 宇宙・銀河の進化における履歴を明らかにするには、親星の質量や金属量の関数としてェプ ロセス元素合成量を求める必要があり、爆発的天体現象の系統的な数値シミュレーションが 不可欠である。このため、上述の超新星3次元計算よりも更に先の計算機資源が想定される。 中性子星合体による物質放出やガンマ線バーストによるジェット放出などのシナリオにお いて、rプロセスに繋がる物質放出を追うには、一般相対論でのニュートリノ輻射流体計算 に状態方程式やニュートリノ反応を組み込んでメカニズムを解明した上で、空間的な解像度 が高いことが要求され、将来の計算機資源による大規模な数値シミュレーションが必要とさ れる。どのシナリオにおいても、高密度や中性子過剰といった極限状況を経て、rプロセス に繋がることは間違いなく、ここでも理論計算による核物理データの系統的な整備が求めら れる。従って、様々な核物理計算手法の進展は、いずれ明らかになるアプロセス元素合成天

体環境の解明を、元素組成比の観測データに繋ぐ上で不可欠なものである。密度汎関数法などの核図表上の核種を広く扱える手法を用いて、質量・ベータ崩壊・中性子捕獲・光分解などの一貫した核データを計算し、元素合成計算の基礎データとして与えることが将来にわたる課題である。核データの不定性が小さくなれば、元素合成が行われる場所を特定する際に大きく貢献することとなる。天体現象のダイナミクス解明と、極限状態での原子核構造反応の系統的解明とを、計算科学的なアプローチにより密接に連携させて取り組んで行く事が、元素の起源の解明に大きな役割を果たすことであろう。

4 今後の研究に必要な計算機資源の見積り

ここでは、他の WG のように将来の研究課題のために必要な予算を示す代わりに、まず現在の原子核物理の研究で使われている大型計算機について、性能、ユーザー数、これまでの代表的結果についてリストアップし、前節で掲げた将来の研究計画について、既存の大型計算機が更新*3 されたものを使うと想定して、必要とされる計算機の性能を示す。また、高性能計算機を用いた現在の計算核物理が直面しつつある問題と、それに関連した jicfus の活動について紹介する。

4.1 利用者数、主要な研究課題、基本性能

共同利用されている計算機で、原子核理論の研究に使われているものを、以下にまとめる。なお、利用者数に関して、2010 年度の NTJ-L 名簿をもとに本ワーキンググループにおいて各分野の研究者数を大まかに数えたところでは、クォークグルーオン多体系分野約 200 人、核子多体系約 200 人、天体核物理約 30 人である。(一人の研究者が複数の分野にわたる研究をしている場合には、重複して数えた。)

大型計算機	基本性能 (Flops)*4	利用者数
京速	11.28 P	
KEK	684 T	
理研 (和光)	XXX T	YYY
t2k(東大)[70]	140 T	$15 + \alpha^{*5}$

 $^{^{*3}}$ ムーアの法則を信じれば、向こう 10 年でコンピューターの性能向上も 100 倍程度見込まれる。

$\mathrm{t}2\mathrm{k}$ (筑波)	95 T	XXX
PACS-CS(筑波 $)$	xx T	XXX
$\mathrm{t}2\mathrm{k}$ (京都)	61.2 T	
基研	90.3 T	11(年間~1000 時間以上使用しているユーザ数 $)$
RCNP	768 G	WWW
九大	$25.3 \mathrm{\ T}$	UUU

4.2 必要とされる計算機の性能

● Lattice QCD からの He 原子核の直接構成

格子 QCD 計算から、軽い原子核を直接求めるために必要な計算の規模を大まかに見積もる。クォーク質量についてはほぼ現実的な値(物理点)での計算がすでに行われている、PACS-CS グループによる計算を例に挙げると、格子サイズが $32^3 \times 64$ 、格子間隔が $a=0.0907\pm0.0013$ fm の計算が現在までに行われており、これは一辺が約2.9 fm の箱の中での計算に相当する。例えば $^4{\rm He}$ 原子核を収められる箱の大きさを考慮すると、実験で知られている $^4{\rm He}$ の平均二乗半径が約1.4 fm であり、波動関数の広がりを考慮して、半径 4-5 fm の球であればその中にじゅうぶん収まるとすれば、格子 QCD 計算においては一辺がだいたい10 fm の箱を準備することになる。現在の PACS-CS グループの計算と同じ程度の格子間隔を維持するとし、格子 QCD 計算における統計をできるだけ(経済的に)上げることを考慮して、将来期待される計算の規模は、格子間隔 $a\approx0.1$ fm で格子サイズ $128^3\times128$ 程度となる。この計算量が、現在利用可能な計算機で行われている計算の計算量から単純にスケールできるとすれば、その約 100-200 倍規模の計算を必要とすることになる。即ち、現在の計算規模を単純に外挿すると、5 TFlops \times 700 hours \times $128 \Rightarrow \sim$ 10 PFlops \times 400 hours となる。

● 爆発的天体現象

超新星爆発の解明には、流体力学とニュートリノ輻射輸送を組み合わせて解く枠組み

^{*5} P:peta (10^{15}) , T:tera (10^{12}) , G:giga (10^9)

^{*5} t2k(東京) では、必ずしも、すべての利用者の成果が報告書に掲載されているわけではないため、掲載されている研究者数のみ示した。

に、詳細の原子核物理データ(状態方程式・ニュートリノ反応率・電子捕獲反応など)を組み込んだ数値シミュレーションを行うことが必須である。流体力学の計算手法は3次元であっても既に発展してきているので、今後必要になるのは、核物理・ニュートリノ輻射輸送の記述のレベルを挙げつつ、空間2次元(軸対称)・3次元において、爆発メカニズムの探索を系統的に行うことである。

先に述べた様に、計算の中では、ニュートリノ輻射輸送の計算ロードが大きく、メモリ・計算速度共に大きな計算資源を必要とする。近似的なニュートリノ輸送(ray-by-ray 近似)であっても、3次元流体と組み合わせて行うには、京コンピュータ・クラスのスーパーコンピュータの計算資源を要する。特に、爆発が成功するかどうかは、バウンス後の超新星コアの時間発展を長く追い衝撃波が復活するかどうかを見定めなければいけない。さらに、親星・モデル・状態方程式・ニュートリノ反応率の相違による爆発への影響を定量的に明らかにして、爆発メカニズムの理解を確固たるものとするには、多数のモデルを系統的に実行することが不可欠である。

ニュートリノ輻射輸送を厳密に追う計算手法を例に、おおよその計算スペックを議論することにする。ボルツマン方程式を差分化して、大規模疎行列を含む線形方程式の形にするので、行列要素を格納するメモリ、ニュートリノ分布を保存するためのデータ収納、反復法により行列を解くための計算量が主に必要になる要素である。空間次元の他、ニュートリノエネルギー1次元、ニュートリノ角度2次元の位相空間を記述するため、2次元(軸対称)計算においても、やや粗い解像度であってもメモリに1TB、計算スピードで10Tflops は越えるものになる。3次元においては、メモリが200TB、計算スピードで2Pflops を越える。この時、ニュートリノ分布を保存するには1ステップごとに1TB程度のデータ量となり、数値シミュレーション全体では、かなり大きなデータ保存領域が必要となり、解析や画像処理に対応できる計算資源が必要である。

ここで、計算スピードの見積もりの際には、時間1ステップを1秒で解ける程度を想定している。時間ステップをマイクロ秒程度とすると、発展時間を1秒追うには 10⁶ 秒かかり、数ヶ月程度の日数がかかる見積もりとなる。従って、京コンピュータをもってしても、ニュートリノ輻射輸送の厳密計算による爆発計算は、3次元計算による部分的な解析にとどまる程度で、2次元の長時間発展が可能になる範囲と予想される。

3次元ニュートリノ輻射流体計算による長時間発展を行うには、メモリ 1PB、計算ス

ピード 10Pflops 程度の計算資源が必要となる。これは、次世代スーパーコンピュータで想定される Exa-scale のスペックとなる。さらにニュートリノ反応を詳細なものとすることや、相対論を取り入れることにより必要となる資源拡張は、ニュートリノエネルギー位相空間におけるブロック行列サイズを上げることに対応して、メモリはさらに 100 倍、計算量は 1000 倍程度は増える。このように超新星爆発の数値シミュレーションは、10年以上も先の計算資源を想定に入れながら、研究を進めていく必要があり、計算につぎ込む核物理の信頼性を常に高めていくことが重要である。特に、大規模計算は1ケースしか実行できない場合もあり、各段階でベストな核物理を提供することが鍵となる。

● 天体核物理

- r プロセス元素合成の詳細なダイナミクスの解明

r プロセス元素合成の詳細なダイナミクスの解明には、上述の超新星爆発メカニズムの数値シミュレーションによる解明の他、ガンマ線バースト・連星中性子星合体など様々な爆発的天体現象におけるダイナミクスを総合的に解明することが必要である。元素合成解明のためには、まず超新星爆発メカニズムの詳細を解明する事が先決であり、上述の数値シミュレーションで爆発メカニズムが確定しなければならない。連星中性子星合体については、数値相対論による流体計算からニュートリノ輻射輸送を組み込んだ計算が本格的になるであろう。一方で、ガンマ線バーストの中心メカニズムの解明は、ブラックホール形成と周辺領域や外層を含めた一般相対論での大規模数値シミュレーションが課題である。いずれの場合も、超新星爆発計算と同程度以上の計算資源が必要であり、r プロセスに繋がる物質放出を解明することは長期的な課題となるであろう。

爆発天体現象における元素合成を扱うためには、空間領域を広げて扱うこと、空間解像度を上げる事、時間発展を長く追う事が必要となる。このため、それぞれの拡張について、通常の計算に比べて例えば100倍程度の計算コスト増加が見込まれる。また、計算による元素合成量を観測による組成比を比較して元素合成起源を特定するには、系統的な計算(親星の質量・金属量を変えるなど)が必要であり、多数回の計算が見込まれる。また、核反応ネットワーク計算を流体計算と組み合わせて計算を行う場合は、その計算コストも考慮に入れる必要があるだろう。

4.3 高性能計算機を利用した計算核物理の現状と今後の研究体制の整備・ 構築について

2005 年まで、CPU はシングルコアの性能を高める方向で進化してきており、これはプロ グラムがそのままでもハードウェアの進化によって「待っていれば」パフォーマンスの向上 が得られてきた。しかしながら、動作周波数の向上は 3GHz 前後でとまり、マルチコア化 へと向かうことになる。PC クラスターの流行、GPGPU の登場もあり、計算物理のアプリ ケーションも並列効率を意識して構築することが当然の状況となっている。ハイエンド領域 においては京コンピュータでは8万8千 CPU、70 万コアにも達し、この性能をひきだす ためには、さらなる並列度の向上が求められる。High Performance Fortran のような並列 計算用高級言語の開発もなされているが、普及にいたっておらず、2011 年現在においても 1992 年に策定された MPI(Message Passing Interface) によるライブラリを用いたプログラ ム開発や、MPI に OpenMP を組み合わせたハイブリッド並列が主流であり、並列化にと もなう通信、ロックなどの機能の実現はユーザー側にまかされている。また、メモリーから CPU へのデータ転送能力は、演算性能の向上に比して貧弱となりつつあり、それに配慮した プログラミングが必須となりつつある。これらの要因により、最新の超並列計算機を有効に 使いこなすアプリケーションの構築は非常に複雑になり、多大な時間と労力を要し、原子核 物理学研究者各個の自助努力の限界を超えつつある。これらの問題を解決し、計算物理学を 軸とした素粒子・原子核・宇宙分野の連携によって新しい研究領域を切り開くため、2008 年 度から新学術領域研究「素核宇宙融合による計算科学に基づいた重層的物質構造の解明」が 始まり、2009 年 2 月に計算基礎科学連携拠点が立ち上げられ、この連携拠点を運営母体とし て 2011 年度から HPCI 戦略プログラム分野 5「物質と宇宙の起源と構造」(以下「HPCI 分 野5」)が開始されている。

HPCI 分野 5 の主な活動は、「京」コンピュータで走らせるアプリケーションの実装と、研究支援体制の構築である。研究支援体制にはユーザー支援やデータグリッド構築が含まれており、この分野における人材育成の一端をになっている。これらの活動を通して素粒子・原子核・宇宙の分野横断や計算機科学との連携をはかっている。しかしながら、たとえばHPCI 戦略プログラムは 5 年間のプロジェクトであり、多数の参加研究者は期限付き雇用となっている。計算科学による基礎科学研究はまだ新しい分野であり、研究者のキャリアパスは確立していない。この分野の継続的な振興と優秀な人材の確保のためには、キャリアパス

の確保が重要な課題であろう。

4.4 タイムライン

図 6 計算核物理で将来の課題として掲げたテーマのタイムラインを示す。

5 まとめ

参考文献

- [1] 革新的ハイパフォーマンスコンピューティングインフラ戦略プログラム分野 5 「物質と宇宙の起源と構造」http://www.jicfus.jp/field5/jp/; 計算基礎科学連携拠点 (Joint Institute for Computational Fundamental Science) http://www.jicfus.jp/jp/
- [2] Y. Kuramashi *et al.* [PACS-CS Collaboration], PoS LAT2006, 029 (2006)[arXiv:hep-lat/0610063].

- [3] T. Ishikawa *et al.* [JLQCD Collaboration], Phys. Rev. D **78**, 011502 (2008) [arXiv:0704.1937 [hep-lat]].
- [4] S. Aoki et al. [PACS-CS Collaboration], Phys. Rev. D 79, 034503 (2009) [arXiv:0807.1661 [hep-lat]].
- [5] Y. Aoki et al., Phys. Rev. D 84, 014503 (2011) [arXiv:1012.4178 [hep-lat]].
- [6] Y. Aoki et al. [RBC Collaboration and UKQCD Collaboration], Phys. Rev. D 83, 074508 (2011) [arXiv:1011.0892 [hep-lat]].
- [7] C. Allton et al. [RBC-UKQCD Collaboration], Phys. Rev. D 78, 114509 (2008)[arXiv:0804.0473 [hep-lat]].
- [8] D. J. Antonio et al. [RBC Collaboration and UKQCD Collaboration], Phys. Rev. Lett. 100, 032001 (2008) [arXiv:hep-ph/0702042].
- [9] P. A. Boyle et al., Phys. Rev. Lett. 100, 141601 (2008) [arXiv:0710.5136 [hep-lat]].
- [10] C. Albertus et al., light Phys. Rev. D 82, 014505 (2010) [arXiv:1001.2023 [hep-lat]].
- [11] Y. Aoki et al., domain wall Phys. Rev. D 82, 014501 (2010) [arXiv:1003.3387 [hep-lat]].
- [12] T. Yamazaki et al., fermions," Phys. Rev. D 79, 114505 (2009) [arXiv:0904.2039 [hep-lat]].
- [13] T. Yamazaki et al. [RBC+UKQCD Collaboration], wall Phys. Rev. Lett. 100, 171602 (2008) [arXiv:0801.4016 [hep-lat]].
- [14] M. Luscher, Theories. Commun. Math. Phys. **105**, 153 (1986).
- [15] M. Luscher, Nucl. Phys. B **354**, 531 (1991).
- [16] S. Aoki et al. [CS Collaboration], Phys. Rev. D 84, 094505 (2011) [arXiv:1106.5365 [hep-lat]].
- [17] N. Ishii, S. Aoki and T. Hatsuda, Phys. Rev. Lett. 99, 022001 (2007) [arXiv:nucl-th/0611096].
- [18] S. Aoki, T. Hatsuda and N. Ishii, Prog. Theor. Phys. 123, 89 (2010) [arXiv:0909.5585 [hep-lat]].
- [19] T. Yamazaki, Y. Kuramashi, A. Ukawa, Phys. Rev. D 81, 111504(R) (2010) [arXiv:0912.1383 [hep-lat]].
- [20] K. Kanaya, PoS (LATTICE 2010) 012 (2010).
- [21] M. Asakawa, T. Hatsuda, Phys. Rev. Lett. **92**, 012001(2004)

- [22] Nakamura, Sakai, Phys.Rev.Lett. **94**, 072305 (2005)
- [23] H.B. Meyer, Phys. Rev.D **76**, 101701 (2007); Phys.Rev.Lett. **100**, 162001 (2008)
- [24] T. Hirano and Y. Nara, heavy ion collisions," Phys. Rev. C 79 (2009) 064904 [arXiv:0904.4080 [nucl-th]].
- [25] B. Schenke, S. Jeon and C. Gale, with fluctuating initial conditions," J. Phys. G G 38 (2011) 124169.
- [26] K. Yagi, T. Hatsuda, and Y. Miake, Quark-Gluon Plasma (Cambridge University Press, Cambridge, 2005).
- [27] C.R. Allton, M. Döring, S. Ejiri, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann and K. Redlich, Phys. Rev. D 71, 054508 (2005).
- [28] H. Kamada et al., Phys. Rev. C 64, 044001 (2001) [arXiv:nucl-th/0104057].
- [29] K. Arai, S. Aoyama, Y. Suzuki, P. Descouvement and D. Baye, Phys. Rev. Lett. 107, 132502 (2011).
- [30] J. Fujita and H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957).
- [31] K. Sekiguchi et al., Phys. Rev. C 65, 034003 (2002).
- [32] K. Sekiguchi et al., Phys. Rev. C 83, 061001(R) (2011).
- [33] S. Quaglioni and P. Navratil, Phys. Rev. Lett. 101 (2008) 092501 [arXiv:0804.1560 [nucl-th]].
- [34] S. Y. Lee and K. Suzuki, Phys. Lett. 91B, 173 (1980); K. Suzuki and S. Y. Lee, Prog. Theor. Phys. 64, 2091 (1980).
- [35] T. Furumoto, Y. Sakuragi and Y. Yamamoto, Phys. Rev. C 79, 011601 (2009).
- [36] P. Demorest, T. Pennucci, S. Ransom, M. Roberts and J. Hessels, Nature 467, 1081 (2010) [arXiv:1010.5788 [astro-ph.HE]].
- [37] M. Bender, P. H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).
- [38] D. Lunney, J. M. Pearson, and C. Thibault, Rev. Mod. Phys. 75, 1021 (2003).
- [39] SciDAC-2 UNEDF project (http://www.unedf.org/).
- [40] T. Nakatsukasa, T. Inakura, and K. Yabana, Phys. Rev. C 76, 024318 (2007).
- [41] H. Oba and M. Matsuo, Phys. Rev. C 80, 024301 (2009).
- [42] K. Yoshida and N. Van Giai, Phys. Rev. C 78, 014305 (2008); Phys. Rev. C 78, 064316 (2008).
- [43] I. Daoutidis and P. Ring, Phys. Rev. C 83, 044303 (2011).

- [44] M. Martini, S. Péru, and M. Dupuis, Phys. Rev. C 83, 034309 (2011).
- [45] H. Nakada et al., Nucl. Phys. A 828, 283 (2009).
- [46] K. Yoshida and T. Nakatsukasa, Phys. Rev. C 83, 021304 (2011).
- [47] H. Shimoyama and M. Matsuo, Phys. Rev. C 84, 044317 (2011).
- [48] J. Terasaki and J. Engel, Phys. Rev. C 84, 014332 (2011).
- [49] T. Inakura, T. Nakatsukasa, and K. Yabana, Phys. Rev. C 80, 044301 (2009); Phys. Rev. C 84, 021302 (2011).
- [50] P. Avogadro and T. Nakatsukasa, Phys. Rev. C 84, 014314 (2011).
- [51] M. Stoitsov et al., Phys. Rev. C 84, 041305 (2011).
- [52]「今後のハイパフォーマンス・コンピューティング技術の研究開発について」の報告書のとりまとめ、文部科学省; http://www.mext.go.jp/b_menu/houdou/23/07/1308508.htm
- [53] N. Shimizu, Y. Utsuno, T. Mizusaki, T. Otsuka, T. Abe and M. Honma, Phys. Rev. C 82, 061305(R) (2010) [arXiv:1012.1167 [nucl-th]].

[54]

- [55] B. Friedman and V. R. Pandharipande, Nucl. Phys. A361 (1981) 501
 A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev. C58 (1998) 1804
 H. Kanzawa, K. Oyamatsu, K. Sumiyoshi, M. Takano, Nuclear Physics A 791 (2007) 232-250
- [56] For example, A. Ohnishi, arXiv:1112.3210 [nucl-th], and references therein.
- [57] J. M. Lattimer and F. D. Swesty, Nucl. Phys. A 535 (1991) 331; H. Shen, H. Toki,
 K. Oyamatsu and K. Sumiyoshi, Nucl. Phys. A 637 (1998), 435; Prog. Theor.
 Phys. 100 (1998), 1013; C. Ishizuka, A. Ohnishi, K. Tsubakihara, K. Sumiyoshi
 and S. Yamada, J. Phys. G 35 (2008), 085201.
- [58] S. Yamada, Astrophysical Journal 475 (1997) 720
 S. Yamada, H.-T. Janka and H. Suzuki, Astronomy and Astrophysics, 344 (1999) 533
 - R. Buras, M. Rampp, H.-Th. Janka, and K. Kifonidis Astronomy and Astrophysics, 447, 1049-1092 (2006).
- [59] K. Sumiyoshi, S. Yamada, H. Suzuki and S. Chiba, Phys. Rev. Lett. 97 (2006) 091101. K. Sumiyoshi, S. Yamada and H. Suzuki, Astrophys. J. 667 (2007) 382.

- K. Sumiyoshi, C. Ishizuka, A. Ohnishi, S. Yamada and H. Suzuki, Astrophys. J. Lett. 690 (2009) 43.
- [60] K. Nakazato, K. Sumiyoshi, H. Suzuki and S. Yamada, Phys. Rev. D 78 (2008) 083014 [Erratum-ibid. D 79 (2009) 069901]; Phys. Rev. D 81 (2010) 083009.
- [61] Ab initio calculation of few-body systems (Hiyama; Nemura; Horiuchi;). 緒方さん OKK rate
- [62] Shell model calculation, such as no core shell model.

Nuclear weak-interaction processes in stars K. Langanke and G. Martinez-Pinedo Rev. Mod. Phys. 75 (2003) 819

Electron capture rates on nuclei and implications for stellar core collapse K. Langanke et al. Phys. Rev. Lett. 90 (2003) 241102

[平均場大規模計算]

- S. Goriely, N. Chamel, J. M. Pearson Phys.Rev.Lett.102:152503,2009
- S. GORIELY, F. TONDEUR and J. M. PEARSON Atomic Data and Nuclear Data Tables 77, 311 2013381 (2001)

(中務さん達の仕事)

- [63] R. Brockmann and R. Machleidt, Phys. Rev. C 42, 1965 (1990).
- [64] P. Demorest, T. Pennucci, S. Ransom, M. Roberts and J. Hessels, Nature 467 (2010) 1081.
- [65] T. Hatsuda, Mod. Phys. Lett. A2 (1987) 805. I. Sagert et al., Phys. Rev. Lett. 102 (2009) 081101.
- [66] K. Hotokezaka, K. Kyutoku, H. Okawa, M. Shibata and K. Kiuchi, Phys. Rev. D 83 (2011) 124008 [arXiv:1105.4370 [astro-ph.HE]].
- [67] K. Sumiyoshi, S. Yamada, H. Suzuki, H. Shen, S. Chiba and H. Toki, Astrophys. J. 629 (2005) 922.
- [68] Two dimensional SN calculation (Sekiguchi; Takiwaki; Suwa; ...).
 A. Marek and H.-Th. Janka The Astrophysical Journal, 694:664 2013696, 2009
 Suwa et al. Publ.Astron.Soc.Jap.62:L49-L53,2010
 http://arxiv.org/abs/0912.1157v2
 Tomoya Takiwaki, Kei Kotake, Yudai Suwa http://arxiv.org/abs/1108.3989v1
- [69] K. Sumiyoshi and S. Yamada, submitted to Astrophysical Journal (2011).

超新星爆発についての、参考文献・解説記事

解説記事1) 諏訪雄大 ニュートリノ輻射輸送計算で探る超新星爆発メカニズム天文月報2011年6月号 http://www.asj.or.jp/geppou/contents/2011_06.html

- 2)鈴木 英之 超新星とニュートリノ日本物理学会誌 43(1988)106-115
- 3)W. Hillebrandt, T. Janka and E. Mueller Scientific American 2006 October issue http://www.sciamdigital.com/index.cfm?fa=Products.ViewIssuePreview&ARTICLEID_CHAR=8E
- 4) S. Woosley and T. Janka Nature Physics 1 (2005) 147 http://www.nature.com/nphys/journal/v1/n3/full/nphys172.html

レビュー論文 1) H. Suzuki, Supernova Neutrinos in Physics and Astrophysics of Neutrinos Fukugita & Suzuki, Springer

- 2) Janka et al. Physics Reports 442 (2007) 38
- 3) K. Kotake and K. Sato and K. Takahashi, Rev. Prog. Phys. 69 (2006) 971 教科書 1) Shapiro & Teukolsky Black Holes, White Dwarfs, and Neutron Stars The Physics of Compact Object Wiley 2章:ガスの基本、中性子星低密度物質、8章:中性子星高密度物質、核力9章:中性子星の質量と半径、18章、重力崩壊と超新星爆発 r プロセス元素合成についての、参考文献

The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries M. Arnould, S. Goriely, K. Takahashi Physics Reports 450 (2007) 97 - 213

[70] ス - パ - コ ン ピ ュ - タ - 利 用 に よ る 成 果 報 告(2010 年) http://www.cc.u-tokyo.ac.jp/support/press/news/VOL13/No3/Seika201105.pdf より。(必ずしも、すべての利用者の成果が掲載されているわけではないため、掲載されているもののみ抜粋した。)