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A’rhis talk can only present some highlights of the EIC program
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inclusive deep-inelastic scattering in ep and eA



what to measure

R bread and butter probe at an electron-ion collider

need to measure only the scattered electron (its energy and angle)

° ' i ical variabl
fully determines two relevant kinematical variables Q2. virtuality of exchanged photon

a 3" variable (inelasticity y) is related to x,Q>

through the available c.m.s. energy ~‘ X : momentum fraction of probed parton
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DIS

what to measure

need to measure only the scattered electron (its energy and angle)

o ] - " I . I '
fully determines two relevant kinematical variables @2 . virtuality of exchanged photon

beware:

a 3" variable (inelasticity y) is related to x,Q? | _
through the available c.m.s. energy X : momentum fraction of probed parton

[J want to measure up to large Q2: exchange of W,Z bosons contributes

¢ need to determine x,Q2 from hadronic final-state (lepton can turn into neutrino)

[ kinematics obscured by additional photon radiation off the lepton

¢ need Monte Carlo tools to control; cannot be separated from detector acceptance

[J need to measure also the polarization (and luminosity) very well



why is this interesting and what can we learn?

DIS measurements are the classic tool to study the partonic structure of nucleons (nuclei):
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M theory tools and higher order QCD corrections well understood o

] not so good for separation of quark flavors

[} no information on spatial distribution of partons
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M theory tools and higher order QCD corrections well understood o

' HERA Q% = 10 GeV®

] not so good for separation of quark flavors

[} no information on spatial distribution of partons

xf(x, Q%)

® HERA has studied unpolarized ep scattering in great detail

* discovered dramatic rise in gluon distribution
e achieved 1-2 % uncertainties

X

e current data for polarized ep and eA DIS cover only a very restricted x,Q? range

(no collider experiments so far)



extension of x,Q? coverage with an EIC

polarized ep scattering
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extension of x,Q° coverage with an EIC

polarized ep scattering

Current polarized DIS data:
OCERN ADESY ¢Jlab 0SLAC
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Current polarized BNL-RHIC pp data:
@ PHENIX ® ASTAR 1-jet

4 2 .
10 10 10 10

¢ gain two decades in x -> get into the region where gluons and sea quarks dominate
e cover large Q2 range for each x -> study “scaling violations” -> gluon density

e can reach large Q2 (at medium-to-large x) -> access to electroweak effects

eA scattering

- Measurements with A = 56 (Fe):
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what can be achieved: spin structure

® RHIC will determine Ag(x,Q?) down to x = few x 1072 recall: &~ = <o

but need access down to few x 10" to close chapteronspin | Af(x) =f . (x) — f_ (x)

® an EICcandojust that ...
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aside: latest news on Ag from RHIC

RHIC run-g data for jets and nt°
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what can be achieved: nuclear PDFs

® map the momentum distribution of sea quarks and gluons down to small x

goals:
® gather unambiguous evidence for non-linear QCD dynamics (aka saturation)
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what can be achieved: nuclear PDFs

® map the momentum distribution of sea quarks and gluons down to small x

® gather unambiguous evidence for non-linear QCD dynamics (aka saturation)
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key advantage of eA DIS over ep DIS

amplification of non-linear effects by
nuclear “oomph factor”
AN L/3
Qi(x.4)~ (%)

X

expect to see saturation in eA at
| 100-200 x higher values of x than in ep

® presence of (large enough) saturation scale Qs
allows one to perform quant. calculations
in well-defined framework (*CGC")

e expect “physics at high gluon density”
to be universal; can verify this at an EIC!
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particularly suited inclusive observable: DIS structure function F(x,Q?) unmeasured so far

e extraction of F. needs
“Rosenbluth separation”

measurements at fixed x,Q2? for differenty (i.e, S)
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what can be achieved: nuclear PDFs

particularly suited inclusive observable: DIS structure function F(x,Q?) unmeasured so far
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| expect strong non-linear effects in F.
M due to its sensitivity to gluons

Au (A=197)
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measure
here

e extraction of F_needs
“Rosenbluth separation”

measurements at fixed x,Q2? for differenty (i.e, S)
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- combined analysis with other observables can
reveal presence of non-linear effects
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semi-inclusive probes in ep and eA
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what to measure and why

extension of double-differential DIS cross section to a
do

(in general) six-fold diff. cross section

dx dQ? dz d¢n dph

4 T )

Z : energy fraction of observed hadron

| pTh: its transverse momentum

(I): azimuthal angle of hadron

(I)s: azimuthal angle of spin vector

J

J prand ¢ integrated cross section is simplest but versatile SIDIS observable

can be used for flavor separation (needs 1's and K’s) and determinations of fragmentation functions

[ azimuthal modulations lead to transverse momentum dependent PDFs (TMDs)
require knowledge of kr dependent FFs

[J hadron-hadron correlations in eA give clean access to saturation physics

all SIDIS measurements require good particle ID in broad kinematic regime




1s* example: flavor separation for helicity PDFs
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1s* example: flavor separation for helicity PDFs
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kaon production in SIDIS

» compute K*yields at NLO with 100 NNPDF replicas (sensitivity to s(x) PDF)

* z integrated to minimize FF uncertainties (z binning can be used to determine FFs)
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NLO agrees well with PYTHIA simulation () despite very different hadronization



aside: impact of latest RHIC W data

A STAR Preliminary Run 2012
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aside: impact of latest RHIC W data

STAR Preliminary Run 2012
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physics of TMDs
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. . . . 102k Current data for Sivers asymmetry:
e theoretically interesting multi-scale problem: Q?2, p,lI“ :

bk ]

® COMPASS h:P_ <16GaV. 201

[ OMERMES ¥~ K%P, <1GeV.02«2+07
. 2 h FOBJLOMAA AP« 08GOV, 04«24«08
* TMD framework applicable for Q“ > pr I Pranmed:
- 107 BRE Jue 12
* studied only in fixed target regime =
nothing known yet about sea quarks and gluons Ng :
o
10




physics of TMDs

e theoretically interesting multi-scale problem: Q?2, p,}I“

® TMD framework applicable for Q2 > prlf

* studied only in fixed target regime

nothing known yet about sea quarks and gluons

* yields momentum distribution of partons
in the transverse plane
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physics of TMDs

* theoretically interesting multi-scale problem: QZ, pr}Il‘

® TMD framework applicable for Q2 > prlf

* studied only in fixed target regime
nothing known yet about sea quarks and gluons

* yields momentum distribution of partons
in the transverse plane

u quark
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x (% Kk Sy )

K, (GeV)

® origin of certain TMDs deeply linked with
color gauge invariance of QCD
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bk |

102k Current data for Sivers asymmetry:
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physics of TMDs

* theoretically interesting multi-scale problem: QZ, pr}Il‘

vevy

10°L Current data for Sivers asymmeatry: v <4

® TMD framework applicable for Q2 > pr}f

F o COMPASS WP «<16GeV. z>01
p
[ OMERMES #*“ K“P,<1GeV.02<2407
;» LD HAA ¥ P, « 045GV, 04 <2 « 06
1 3

Planned:
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* studied only in fixed target regime >
nothing known yet about sea quarks and gluons Ng [
o
* yields momentum distribution of partons 10

in the transverse plane

u quark

K,

-
-

X 1, (%, kp, Sy )

anisotropy due to transverse
proton polarization in y direction

A
k, (GeV) K, (GeV) - 1/](7
® origin of certain TMDs deeply linked with
color gauge invariance of QCD &
x shows emerges of a scale Qs
-3 .
_ _ ol where gluon density saturates
* unintegrated gluon density has -
connection to CGC physics at small x
- -
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specific example: Sivers function

* slew of different TMDs can be measured by selecting certain ¢ modulations

example:

Sivers function
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with the krof an unpolarized quark
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specific example: Sivers function

* slew of different TMDs can be measured by selecting certain ¢ modulations

example: Sivers function
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modulation
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with the krof an unpolarized quark
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~ correlation of nucleon’s transverse spin

J
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unintegrated PDF @

important link to physics of
gluon saturation at small x
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specific example: Sivers function

* slew of different TMDs can be measured by selecting certain ¢ modulations

example: Sivers function
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measure . :
. | ~ correlation of nucleon’s transverse spin
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unintegrated PDF @ Sivers function
important link to physics of * measures spin-orbit correlations
gluon saturation at small x e link to parton orbital motion (only through models)

e reveals non-trivial aspects of QCD color gauge invariance



specific example: Sivers function

* slew of different TMDs can be measured by selecting certain ¢ modulations

example: Sivers function

r $5 N

measure N . )
~ correlation of nucleon’s transverse spin

sin(én — ¢s) ‘@k

il e / with the kr of an unpolarized quark

. P J
S.-(Pxky)
2 L) el 2
fq/PT<x7kJ_75) :fl(xakL)_ M flT(xakJ_)
unintegrated PDF @ Sivers function
important link to physics of * measures spin-orbit correlations
gluon saturation at small x e link to parton orbital motion (only through models)

e reveals non-trivial aspects of QCD color gauge invariance

Sivers asymmetry has been observed only in the valence quark regime
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prospects for Sivers related measurements

extracted u-valence density

current data
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extracted u-sea density
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prospects for Sivers related measurements

extracted u-valence density

current data

_‘.2” bbbkl PRSP |
107 107 10”"

extracted u-sea density

-3 w/ EIC data

107 107 10”"

so far unmeasured gluon Sivers fct
can be probed in D-meson correlations

observable: azimuthal asymmetry
correlating the total kt of the D-meson pair
with transverse spin of the nucleon

o
»
|

o
N

o

Single Spin Asymmetry

A i i

0

yN'—>DD+X

BEEREE

2

—k'=0.75 GeV
—k'=1.5 GeV

error estimate
assuming 100 fb*

AERE

i i - i A i l

4 6

qlsk;

angle between proton spin and kr of D-meson pair



probing saturation with di-hadron correlations

* corresponding measurement in dAu at RHIC one of the best hints for saturation right now

* much cleaner probe in eA: no spectator background from electron side

‘tests universality of high gluon density framework between eA and pA
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probing saturation with di-hadron correlations

* corresponding measurement in dAu at RHIC one of the best hints for saturation right now

* much cleaner probe in eA: no spectator background from electron side

‘tests universality of high gluon density framework between eA and pA

observable: azimuthal correlation of hadron pair

CGC expectation
018 [ expectation: back-to-back peak washed out
dad 2 2
’ @r=1 Gev by multiple gluon interactions in CGC;
0.16 y multiple gluon interactions in ;
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probing saturation with di-hadron correlations

* corresponding measurement in dAu at RHIC one of the best hints for saturation right now

* much cleaner probe in eA: no spectator background from electron side

‘tests universality of high gluon density framework between eA and pA

. observable: azimuthal correlation of hadron pair
CGC expectation
018 [ expectation: back-to-back peak washed out
T E S Q%=1 GeV? : . . .
0.16 L ep/ | by multiple gluon interactions in CGC;
a1l peak persists w/o saturation for ep -> eA
t suppression
0.12 + X - . ith A )
~ , Increasing wit | EIC stage-II plfigger > 2 GeVvic
a A AW 021 fLdt=10 VA 1 < p3SSOC  plrigger
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hadronization in a nuclear medium

objective: precision study of propagation of a color charge through QCD matter

* large hadron attenuation observed at small v (HERMES)

* mechanism for energy loss of partons?

& -
oF b
¥
3
o

F 5 * puzzle: c/b quarks suppression similar to light quarks
o & 3 ..
®e _‘N:»‘r\ (expect less due to “dead cone” for gluon radiation)

& °
£ - - -
o s} & e e
& F
o e
p —C\g\r. .
.?
=

® much extended v range compared to HERMES
control “propagation length” before hadronization

o

¥

-
B2
\;Ji ..‘;’}

-
)
o
[}

DO mesons (lower energy)
m Pions (lower energy)

+ O DO mesons (higher energy)
O Pions (higher energy)

Wang, pions (lower energy)

rrrrrr Wang, pions (higher energy)

—
[OV]
o
—_
B
-&-

1.10 1-0 pion + 1-0 DO
. - systematic systematic
uncertainty ++ % uncertainty

©
N
o

o
(o)
o

0.01 <y <0.85,x>0.1,10 fb™!
Higher energy : 25 GeVZ Q% 45 GeV? 140 GeV < v < 150 GeV
Lower energy : 8 GeV< Q<12 GeV? 32.5 GeV< V < 37.5 GeV

Ratio of particles produced in lead over proton
o
o

e 15t study of D/B meson production in eA vs ep 0.30
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diffractive / exclusive processes



what to measure

e one of the surprises at HERA: large fraction of diffractive events (15% of total DIS rate)

//e' close relative of DIS

need in addition

€ : momentum transfer squared

X (My) X : mass of diffractive final-state

variables can be traded for 8 and xp

Largest rapidity where Xgj = B Xp

gap in event
or

>
\

Y (My)
breakup of A

diffractive event characterized by large rapidity gap (angular region w/o particle flow)
mediated by color neutral exchange (e.g. colorless combination of 2 or more gluons)
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what to measure

e one of the surprises at HERA: large fraction of diffractive events (15% of total DIS rate)

//e' close relative of DIS

need in addition

€ : momentum transfer squared

X (My) «\‘ My : mass of diffractive final-state

variables can be traded for 8 and xp

Largest rapidity where Xgj = B Xp

gap in event
or

>
L <l

Y (My)
breakup of A

diffractive event characterized by large rapidity gap (angular region w/o particle flow)
mediated by color neutral exchange (e.g. colorless combination of 2 or more gluons)

terminology: coherent incoherent

proton [ heavy nucleus stays intact proton [ heavy nucleus breaks up

® ep: detect intact protons in forward detectors critical: IR design

s

® eA: need to tag on emitted neutrons from nuclear breakup (shown to be possible with near 100% efficiency)



diffractive physics - why relevant?

4 Light
Intensity

0; ~ 1/(kR)

small angle scattering

recall: diffractive pattern in optics
position of minima O; related to size R of screen
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diffractive physics - why relevant?

recall: diffractive pattern in optics

4 Light
Intensity

position of minima 6; related to size R of screen 0i ~1/(kR)

small angle scattering
similarly: in coherent (elastic) scattering

do/dt resembles diffractive pattern
where [t| ~ k?6?
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B NN .

' Incoherent/Breakup o
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diffractive physics - why relevant?

recall: diffractive pattern in optics

4 Light
Intensity
position of minima O; related to size R of screen 0i ~1/(kR)
small angle scattering
similarly: in coherent (elastic) scattering
do/dt resembles diffractive pattern (0 O & & O Ange
where [t] ~ k202 NN
crucial differences:
\
® target not always “black disc” 3
— sensitivity to “size” of probe / onset of black disc limit \
® incoherent (inelastic) contribution '1[__
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diffractive physics - why relevant?

recall: diffractive pattern in optics

4 Light
ntensity

position of minima 6; related to size R of screen 0i ~1/(kR)

small angle scattering
similarly: in coherent (elastic) scattering

do/dt resembles diffractive pattern -
where [t| ~ k262

6 Angle
- l | l l I | I -
crucial differences:

® target not always “black disc”

A
— sensitivity to “size” of probe / onset of black disc limit F
® incoherent (inelastic) contribution

TIIm

strong sensitivity to gluons
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diffractive physics - why relevant?

4 Light
recall: diffractive pattern in optics intensity

position of minima 6; related to size R of screen 0i ~1/(kR)

small angle scattering
similarly: in coherent (elastic) scattering

do/dt resembles diffractive pattern -
where [t| ~ k262

(A Anqle
- I | l l l | I -
crucial differences:

® target not always “black disc”

\
— sensitivity to “size” of probe / onset of black disc limit F
® incoherent (inelastic) contribution

F 1
strong sensitivity to gluons

b l' ,"/ -\-.‘
wlw< ; “”)'fuéz‘_]/mﬂ do ~ [g(x)]2 FoLf
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Incoherent/Breakup

do/dt

T[0 000

.
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b . ~Coherent/Elastic
due to required E | \ /N
color-neutral exchange
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do Fourier ' . | | ,
bonus: — spatial distribution of gluons T N~
- dt transform "
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ratio (eAulep) (1/0tot) dogift/dMZ (GeV?)

ratio of diffractive to total cross section

® black disc limit characterized by cqifr/0tot = 1/2

(recall: HERA sees =1/7 in ep)

—large fraction of diffractive event is unambiguous signature for reaching the saturated limit

estimates for fraction of low-mass coherent diffraction in ep and eA at EIC kinematics:

| Q2 =5 GeV? & Q? = 10 GeV2
L x=3.3x10% | D 102l x = 6.6x103
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find e w/o non-linear effects eA/ep ratio stays roughly one
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¢ non-linear effects enhance ogiff in eA scattering
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ratio (eAulep) (1/0tot) dogift/dMZ (GeV?)

ratio of diffractive to total cross section

® black disc limit characterized by oqifr/0tot = 1/2

(recall: HERA sees =1/7 in ep)

—large fraction of diffractive event is unambiguous signature for reaching the saturated limit

estimates for fraction of low-mass coherent diffraction in ep and eA at EIC kinematics:

| Q? =5 GeV? & Q? =10 GeV?
2| —— x=3.3x10° | D 102l x=66x10%
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find: w/o non-linear effects eA/ep ratio stays roughly one " day-1 signature for

¢ non-linear effects enhance ogiff in eA scattering

y saturation at an EIC




exclusive vector meson production

® unique probe - allows to measure momentum transfer t in eA diffraction
2 2
t = (pa —Pa’)” = (PvM + Pe’ — Pe)

in general, one cannot detect the outgoing nucleus and its momentum
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® unique probe - allows to measure momentum transfer t in eA diffraction W< )
t = (pa —Pa)? = (Pvm + Do — Pe)?

in general, one cannot detect the outgoing nucleus and its momentum
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exclusive vector meson production
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Coherent events only
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cross section strongly depends on
overlap with VM wave function

e small size (J/W¥)
cuts off saturation region in
dipole amplitude

e large size (9,p, --.)
“sees more of dipole amplitude”

— more sensitive to saturation



® unique probe - allows to measure momentum transfer t in eA diffraction MA< ]
t = (Pa —Pa’)’ = (PvM + Po’ — Pe)?

in general, one cannot detect the outgoing nucleus and its momentum

(1/A*3) o(eAu)/o(ep)
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06F
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exclusive vector meson production

- e +p(Au) — e'+p'(Au’) +V

Coherent events only
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cross section strongly depends on
overlap with VM wave function

e small size (J/V¥)
cuts off saturation region in
dipole amplitude

e large size (9,p, --.)
“sees more of dipole amplitude”

— more sensitive to saturation

Q2 variation controls size of probe
— go in (smallQ?) and out (large Q?)
of saturation region



spatial distribution of gluons through diffraction

goal: going after the source distribution of gluons through Fourier transform of do/dt



spatial distribution of gluons through diffraction

goal: going after the source distribution of gluons through Fourier transform of do/dt

find: e typical diffractive pattern for coherent (non-breakup) part

e as expected, J/V less sensitive to saturation effects than larger ¢ meson

4 ol fL =10 YA o coberent - no Saturation ) fLct = 10 IY/A Q coherent - NO SAlUrABon
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how does the imaging work - what do we learn?

idea: momentum transfer t conjugate to transverse position (impact parameter b)

— expect small t relevant for large b and vice versa Ll e a
e coherent part probes “shape of black disc” < w r s
* incoherent part (dominant at large t) sensitive S, - s V_zy[fm]
to "lumpiness” of the source (fluctuations, hot spots, ...) xm * « . o !

— impact on our understanding of initial conditions of heavy ion collisions
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® accessible t range rather small (|t| = 0.2 GeV?) for coherent part
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exclusive processes and GPDs

another class of (related) processes for parton imaging

need to introduce concept of
generalized parton distributions (GPDs)

GPDs depend on:

x+§/ \ x—5 * momentum transfert
— ~——

e resolution scale Q

s N v P»%  elong. momentum before and

{ after the scattering: x, &

= interference between different nucleon states (not a probability)
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another class of (related) processes for parton imaging

need to introduce concept of
generalized parton distributions (GPDs)

GPDs depend on:

x+§/ \ x—5 * momentum transfert
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e resolution scale Q

P.s v v P35 e long. momentum before and

{ after the scattering: x, &

= interference between different nucleon states (not a probability)

appear in theoretical description of exclusive processes
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deeply virtual Compton scattering (DVCS) vector meson production



path to spatial imaging of partons through GPDs

recall: standard PDFs do not resolve transverse positions in the nucleon

fast moving nucleon turns into a "pizza’ but transverse size remains = 1 fm

4 : : A
compelling questions

* how are quarks and gluons spatially distributed

* how do they move in the transverse plane

* do they orbit and do we have access to spin-orbit correlations
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path to spatial imaging of partons through GPDs

recall: standard PDFs do not resolve transverse positions in the nucleon

fast moving nucleon turns into a "pizza’ but transverse size remains = 1 fm
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compelling questions

* how are quarks and gluons spatially distributed

* how do they move in the transverse plane

\0 do they orbit and do we have access to spin-orbit correlations)

Wigner function high-level connection
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roadmap for transverse imaging of the proton

» obtain GPDs from global analysis of DVCS and vector meson data in ep scattering

slew of angular & polarization observables (+ use of positron beams) to disentangle H and E

dz= . - z
4 GPDs per flavor, e.q., f Eemlﬁz (p',s'|qg(—=) W7+q(§)|p, 8) 2+ =0,2=0

1

z
2
= H%u(p, 5’)'y+u(p, s)+ Elu(p’,s") 5

‘o,
mpa (p" — p)au(p, s)
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roadmap for transverse imaging of the proton

» obtain GPDs from global analysis of DVCS and vector meson data in ep scattering
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roadmap for transverse imaging of the proton

» obtain GPDs from global analysis of DVCS and vector meson data in ep scattering

slew of angular & polarization observables (+ use of positron beams) to disentangle H and E

dz= . - z z
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recover PDFs in limit no PDF limit; involves helicity flip
S = 3’, £E=0,t=0 indicator of OAM,; key part in Ji's sum rule
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» perform Fourier transformation to obtain b-space image ’V’-//‘\E ol
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gives distribution of quarks with o -

_.;’_ by ® longitudinal momentum fraction x
e transverse distance b from proton center



roadmap for transverse imaging of the proton

» obtain GPDs from global analysis of DVCS and vector meson data in ep scattering

slew of angular & polarization observables (+ use of positron beams) to disentangle H and E

dz= . - z z
4 GPDs per flavor, e.q., Il Eemlﬁz (p', S’](j(—§) W7+q(§)|p, 8) 2+ =0,2=0

1
— —
= [H ' s ulp, s)H BT alp, ') 5—0 " (0 = plau(p, 5)
. p
recover PDFs in limit no PDF limit; involves helicity flip
s = S,, £E=0,t=0 indicator of OAM; key part in Ji's sum rule

» perform Fourier transformation to obtain b-space image . o
b\ -~

e.g. q(z,b%) ~ /d2Ae_“’AHq(sc,§ = 0,t = —A?) where A=p —p R~
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-
-
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e
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X
gives distribution of quarks with o -
by ® longitudinal momentum fraction x
.;. e transverse distance b from proton center

® need to resolve small distances in proton 3 need do/dt in larger
I

)
\

challenges:

* no diffractive pattern in accessible t range 1 t-range than in eA




example: DVCS - what do we know?

® best understood and worked out theoretically
® x is integrated out in scattering amplitude
o ¢ is related to usual Bjorken x of DIS: & = xg;/ (2-Xa))

® large number of angular and polarization observables

® interferes with genuine QED “Bethe-Heitler” process
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® large number of angular and polarization observables
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DVCS - how well does it work out?

examples of simulated DVCS data including acceptance cuts and resolution effects

VAP YD 7P Y+P
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DVCS - how well does it work out?

examples of simulated DVCS data including acceptance cuts and resolution effects
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DVCS - how well does it work out?

examples of simulated DVCS data including acceptance cuts and resolution effects
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DVCS - what can we learn?

[ & EIC pseudo data Q? =44 GeV? ] _ _ -
20 GeV on 250 GeV xg = 8.2 10-4 ! » unpolarized DVCS mainly sensitive to GPD H
0-5_"\\ fLdt = 100 fb-! t=-0.25GeV? .-

» unknown GPD E from angular asymmetries
with transversely polarized protons

|
o
)

] different assumptions for GPD E
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DVCS - what can we learn? - cont'd

qua rks (unpolarized proton)
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DVCS - what can we learn? - cont'd

quarks (unpolarized proton)
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DVCS - what can we learn? - cont'd

quarks (transversely pol. proton)

: x=10" x=10%

& 1.5.' /\ be=0fm 1 & 1.5p by =0 fm

E ! Q%= 4GeV® | E Q%= 4GeV?

G 1o} | G 10}

1 - 10

?; (. N

e icing on the cake:

x 4

0.0k .+, with GPDs H and E determined, one can access N
A, \ : :
° generalized form factors’ by taking x moments, e.g.,| '©

o 1 Ji's sum rule
C
2 Jgg = 2 /dxx HY8(x,{,t — 0) + EY8(x,£,t — 0)] 0.9, 1.00)
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gluon imaging through J/¥ production

® DVCS permits determination of gluon GPD through Q2 evolution (similar to DIS)

e can be further improved by adding vector meson observables | w

Distribution of gluons

e+p—e+p+JY
15.8 <Q? + M3, < 25.1 GeV?
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take away message

an EIC offers many unique opportunities
to greatly advance our understanding of
the structure of nucleons and nuclei

P orbitalg~

precision studies of PDFs, TMDs, and GPDs
will lead to the most comprehensive
picture of the nucleon ever:
its flavor, spin, and spatial structure
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precision studies of PDFs, TMDs, and GPDs
will lead to the most comprehensive
picture of the nucleon ever:
its flavor, spin, and spatial structure

requirements

» large enough c.m.s. energy to explore small x region

» sufficient luminosity for multi-dimensional binning, ... YN

» sufficient control of systematic uncertainties

» state-of-the-art detector systems, well intfegrated into IR
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