
Measurements of $\gamma\gamma* \rightarrow \pi^0$ transition form factor at Belle

S.Uehara (KEK)
Belle

QCD and Fragmentation

RIKEN, Wako, Nov. 9-11, 2012

Two-Photon Collisions and QCD/Hadron Physics

Hadron production from collisions of virtual or quasi-real photons


- Perturbative/Non-perturbative QCD
- Hadron/Photon form factors
- Resonances

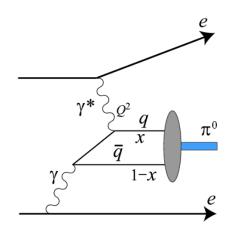
Wide energy region and various physics aspects can be studied simultaneously.

Incident photon -- dominated by quasi-real photon $Q^2 \equiv |q^2| \le 0.001 \text{GeV}^2$

Zero-tag: Measurement of two real photon collisions

Single-tag: Collisions of a Real and a Virtual photons

" $\gamma\gamma \rightarrow$ meson pair" measurements from Belle


				Physics covered		
Process	Reference	Int.Lum. (fb ⁻¹)	γγ c.m. Energy (GeV)	Light Mesons	QCD	Char- monia
$\pi^+\pi^-$	PLB 615, 39 (2005) PRD 75, 051101(R) (2007) J. Phys. Soc. Jpn. 76, 074102 (2007)	87.7 85.9 85.9	2.4 - 4.1 0.8 - 1.5 0.8 - 1.5	√ √	\checkmark	V
K+K-	EPJC 32, 323 (2003) PLB 615, 39 (2005)	67 87.7	1.4 – 2.4 2.4 – 4.1	\checkmark	√	V
$\pi^0\pi^0$	PRD 78, 052004 (2008) PRD 79, 052009 (2009)	95 223	0.6 - 4.0 $0.6 - 4.0$	√ √	√	V
$K^0_S K^0_S$	PLB 651, 15 (2007)	397.1	2.4 - 4.0		√	V
$\eta\pi^0$	PRD 80, 032001 (2009)	223	0.84 - 4.0	\checkmark	√	
ηη	PRD 82, 114031 (2010)	393	1.1 – 4.0	V	√	1
ωω,ωφ, φφ	PRL 108,232001(2012)	870	~2 - 4.0	√	V	V

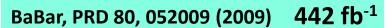
π^0 Transition Form Factor

Coupling of neutral pion with two photons Good test for QCD at high Q²

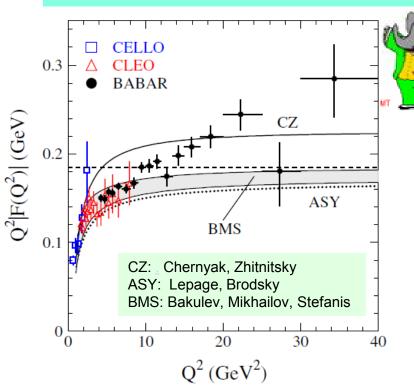
Single-tag π^0 production in two-photon process with a large-Q² and a small-Q² photons

Theoretically calculated from pion distribution amplitude and decay constant $F(Q^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int T_{H}(x, Q^{2}, \mu) \phi_{\pi}(x, \mu) dx$

Measurement:


$$|F(Q^2)|^2 = |F(Q^2,0)|^2 = (d\sigma/dQ^2)/(2A(Q^2)) \qquad A(Q^2) \text{ is calculated by QED}$$

$$|F(0,0)|^2 = 64\pi\Gamma_{\gamma\gamma}/\{(4\pi\alpha)^2m_R^3\}$$


Detects e (tag side) and π^0 $Q^2 = 2EE'(1 - \cos \theta)$

from energy and polar angle of the tagged electron

BaBar's Measurement

 π^0 transition form factor (TFF) measured by BaBar is larger than the asymptotic pQCD prediction above Q²>10GeV²

Below Q²<8GeV², the BaBar result supports the CLEO result.

η and η TFFs from BaBar PRD 84, 052001(2011) are consistent with QCD predictions.

Explanation within standard QCD calculations is difficult.

Measurement of π^0 TFF at Belle

KEKB accelerator and Belle detector

Asymmetric for beam energy (e⁺: 3.5 GeV, e⁻: 8 GeV) 16X₀ TOF conter-

for kinematic coverage of

e⁺-tag(**p-tag**) and e⁻-tag(**e-tag**)

Available Triggers:

HiE && Bhabha(-veto)

by ECL (electromagnetic calorimeter system)

HiE --- E(Forward+Barrel) > 1.15 GeV

Forward ECL

SC solenoid

Si vtx. det.

3(4) lyr. DSSD

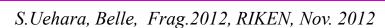
1.5T

CsI(Tl)

8 GeV e

Barrel ECL

(Backward ECL)


Bhabha-veto logic kills a part of the acceptance

Significant loss of efficiency for some angular patterns

in contrast to BaBar, where a special salvaging logic was prepared.

Int. Luminosity:759 fb⁻¹ (Larger than BaBar's)

Aerogel Cherenkov cnt.

Central Drift Chamber

 μ / K_I detection

14/15 lvr. RPC+Fe

small cell +He/C2H5

 $n=1.015\sim1.030$

Selection Criteria for Signal Events

- Triggered by HiE or CsIBB(≡Bhabha prescaled by factor 50)
- 1 good track only, Electron-ID E/p>0.8, $p_e > 1.0$ GeV/c in lab. system
- 2 Photons from π^0 $E_{\gamma i} > 0.2 \text{GeV}$, $E_{\gamma \gamma} \equiv E_{\gamma 1} + E_{\gamma 2} > 1.0 \text{ GeV}$

No big energy asymmetry: $|E_{\gamma 1}-E_{\gamma 2}|/E_{\gamma \gamma}<0.8$

Polar-angle difference: $\Delta\theta \equiv |\theta_{\gamma 1} - \theta_{\gamma 2}| > \frac{0.18 \text{ [rad GeV]}}{E_{\text{acc}}}$

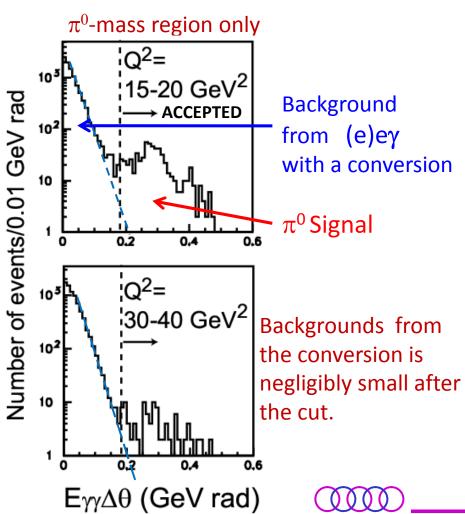
To reject large background from Radiative Bhabha (e)ey process

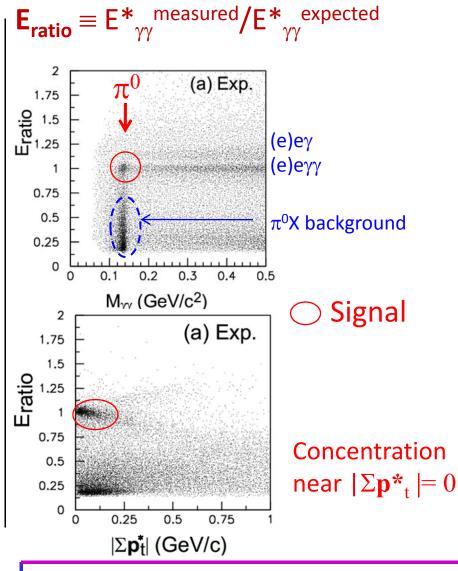
- Polar- angle of the electron and the two photons $-0.6235 < \cos \theta < +0.9481$ and Bhabha Mask cut
- e-charge vs. p, direction correlation

$$-Q_{tag}(p_{ze}^{*} + p_{z\gamma\gamma}^{*}) > 0 \quad (* --- e^{+}e^{-}c.m.s.)$$

• 3-body kinematical cut for π^0 energy $E^*_{\gamma\gamma}$

Energy-momentum conservation using direction of $\mathbf{p}_{\gamma\gamma}$, and $\mathbf{m}_{\gamma\gamma} = \mathbf{m}_{\pi 0}$


0.85< (
$$\mathbf{E}_{ratio} \equiv E^*_{\gamma\gamma}^{\text{measured}}/E^*_{\gamma\gamma}^{\text{expected}}$$
) <1.1


- Bhabha-background rejection, Acollinearity angle(e, $\gamma\gamma$) < 177° in e⁺e⁻ c.m. frame
- Good balances in azimuthal angle and p_t between e and π^0

Acoplanarity angle(e, $\gamma\gamma$) < 0.1 rad, $|\Sigma \mathbf{p}_t|$ < 0.2 GeV/c

Background rejection and signal enhancement

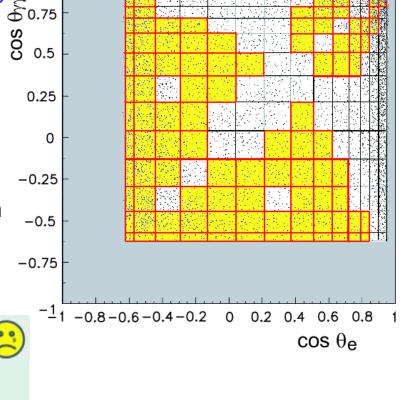
 $\Delta\theta$: Polar-angle difference of $\gamma\gamma$ is used to reject 2 clusters from $\gamma\rightarrow$ ee

Bhabha Mask; Unbiased sample

Bhabha-Mask criteria (Yellow regions for selection)

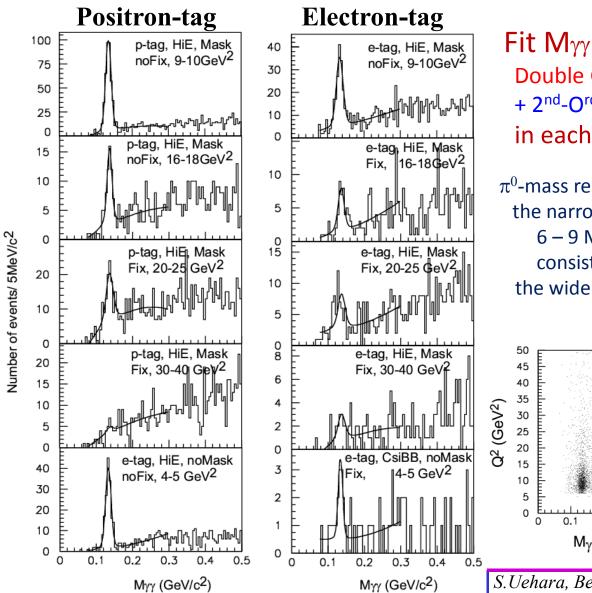
masks low-efficiency regions due to Bhabha veto 50.75 in $(\cos \theta_e, \cos \theta_{vv})$

to reduce uncertainty from trigger inefficiency


Unbiased sample using CsIBB trigger (1/50) Effects from the Bhabha-veto is compensated in

Nevent(HiE) + 50*Nevent(CsIBB)

≡"Unbiased sample"


Statistically too small for the signal analysis e-tag $4 < Q^2 < 6 \text{ GeV}^2$: HiE+50*CsIBB sample other regions: HiE sample only

Extensively used for tuning and evaluation of the trigger simulator

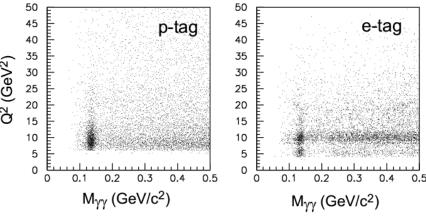
Extraction of π^0 Yield

Fit $M_{\gamma\gamma}$ distribution by

Double Gaussian (for signal)

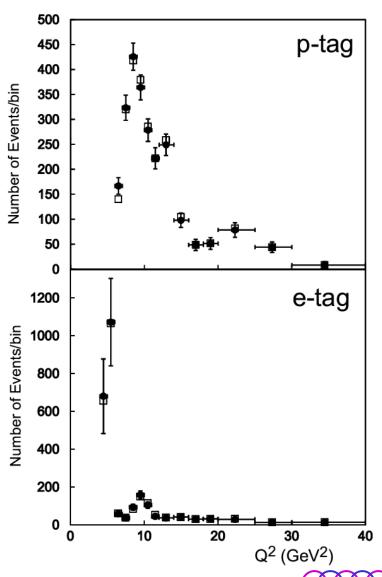
+ 2nd-O^{rder} Polynomial (for background)

in each Q² bin


 π^0 -mass resolution

the narrower Gaussian component

6-9 MeV (dependent on $Q^2 = 4-40$ GeV²)


consistent between the exp. and MC

the wider ~ 2.4 times larger than the narrower

S.Uehara, Belle, Frag.2012, RIKEN, Nov. 2012

Signal Yields; Q² Unfolding

Q² – unfolding is applied

using inverted migration matrix that takes into account the effects from:

- Detector resolution
- ISR at the tagged electron

Signal yields

- Before the unfolding
- After the unfolding

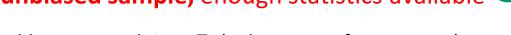
Calibration of Bhabha-veto Thresholds using Radiative-Bhabha (VC) Events

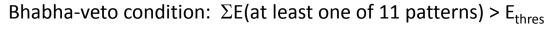
Bhabha-veto threshold is measured in real data

of Virtual-Compton process of (e)eγ

and is tuned in Trigger Simulator

MC generator Rabhat treats t-channel mass singularity

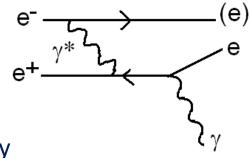

Comput. Phys. Commun. 55, 337 (1989)

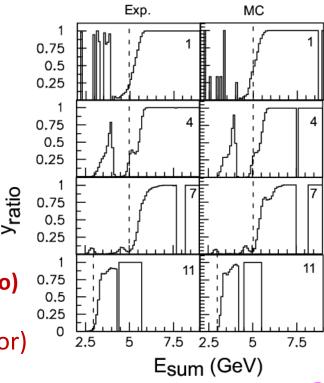


Require a single γ instead of π^0

Big cross section (~ O(1nb))

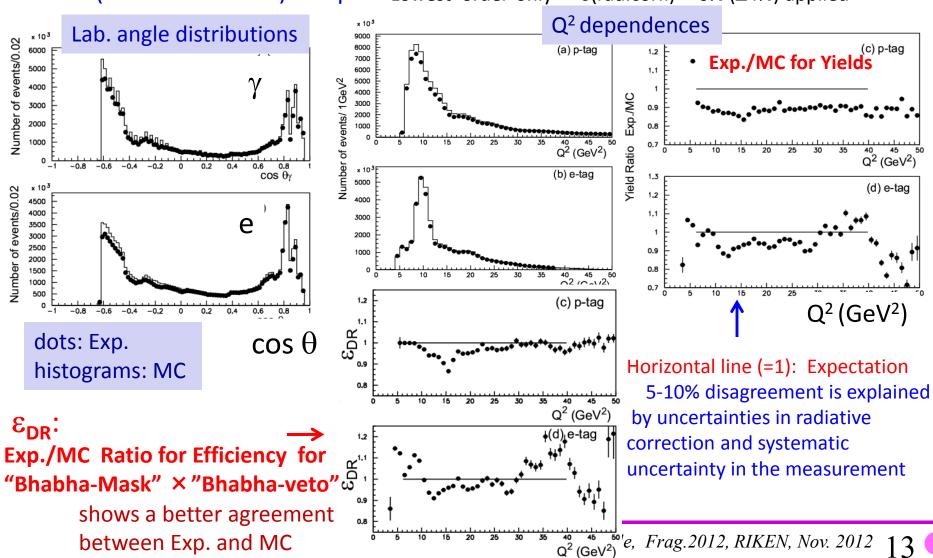
In **unbiased sample**, enough statistics available 🙂

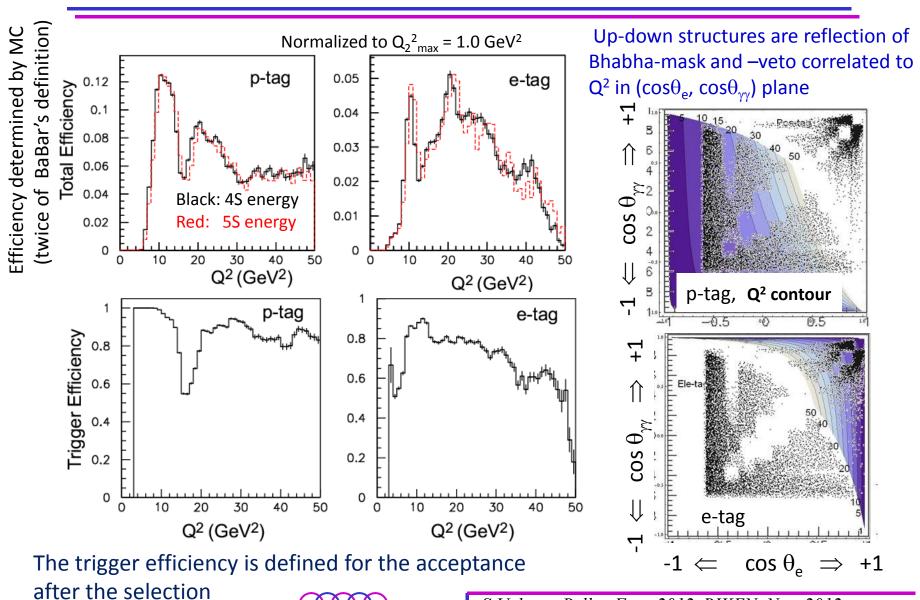

$$y_{\text{ratio}} = \frac{50^* \text{N(CsiBB)}}{\text{N(HiE)} + 50^* \text{N(CsiBB)}}$$


as a function of energy deposit

tune MC (trigger simulator)

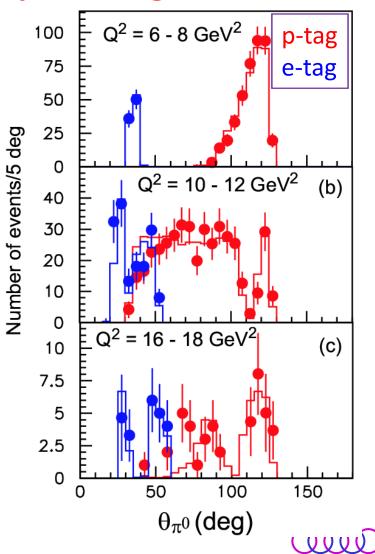
→ tune MC (trigger simulator)



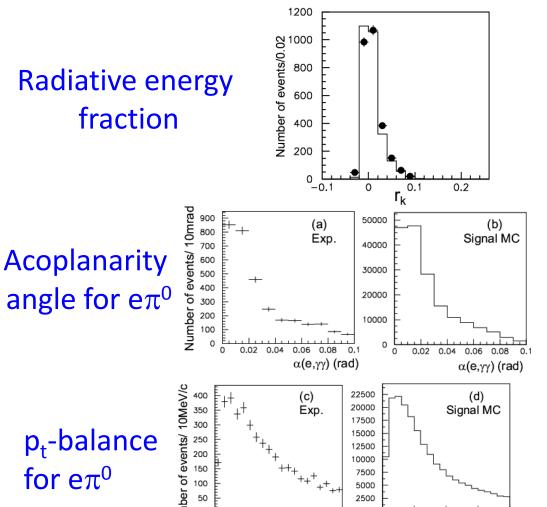

Comparisons in Radiative Bhabha (VC) samples

MC (Rabhat) is normalized by int. luminosity

For HiE (Bhabha-Masked) sample Lowest order-only -- δ (rad.corr.)~ -6% (\pm 4%) applied



Efficiency for the Signal Process

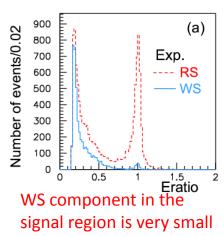


Checks of Signal Details with MC

Radiative tails

S.Uehara, Belle, Frag. 2012, RIKEN, Nov. 2012

 $|\Sigma \mathbf{p}_t|$ (GeV/c)

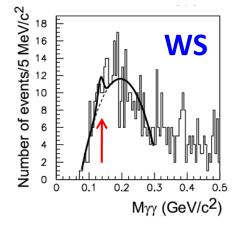

 $|\Sigma p_t|$ (GeV/c)

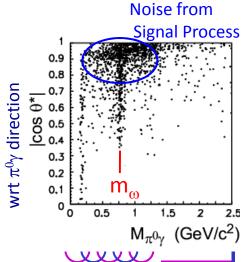
Peaking (π^0) Backgrounds

(e) $e^{\pi^0 X}$ --- Backgrounds peaking at the pion mass,

which leak near to ($E_{ratio}=1$, $|\Sigma p_t|=0$)

(1) Study of wrong-sign events (defined by the charge vs. z-direction correlation)




 $M_{\pi}0_{\pi}0$ (GeV/c²)

c.m. scattering angle

 $|\cos \theta_*|$

wrt $\gamma * \gamma$ axis

No π^0 is there $(1.2 \pm 0.9 \text{ events})$

Backgrounds from e⁺e⁻ annihilation and particle misidentification (of muon or hadron) are **negligibly small.**

(2) Background processes

$$\gamma\gamma* {\rightarrow} \pi^0\pi^0$$

ee \rightarrow (e)e ρ^0/ω , $\rho^0/\omega \rightarrow \pi^0\gamma$

are experimentally observed

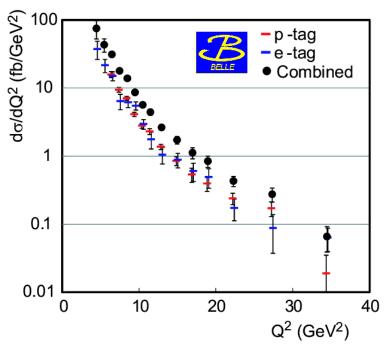
We build background MC's

normalized to these observations

Background contamination estimated

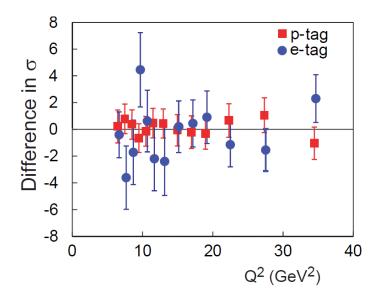
$$\pi^0\pi^0$$
: 2% uniformly for Q²

$$\pi^0 \gamma$$
: 0.8% @ Q² < 12 GeV²


$$1 - 3\%$$
 @ $12 - 40 \text{ GeV}^2$

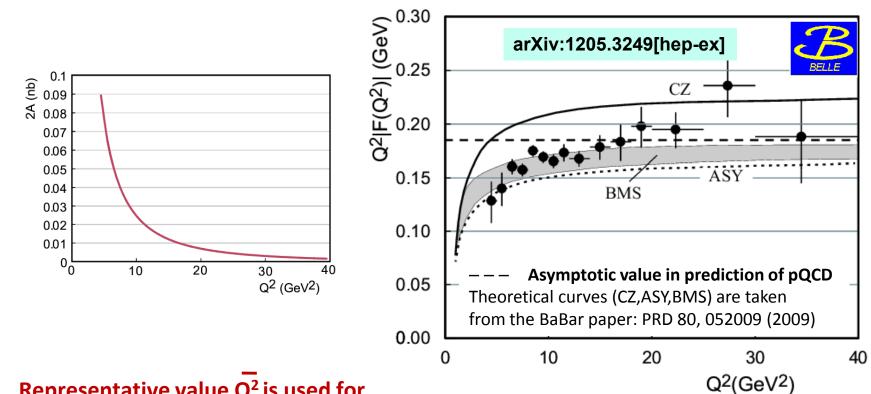
S. Oenara, Dene, Trag. 2012, MIXEIN, 1909. 2012

Cross Section


$$\frac{d\sigma}{dQ^2} = \frac{N (1-r_b)}{\int Ldt \text{ eff } B(\pi^0 \to \gamma\gamma) (1+\delta) \Delta Q^2}$$

The cross sections from p-tag and e-tag are evaluated, separately, and then combined.

 $Q_{max}^2 = 1.0 \text{ GeV}^2$ for the less-virtual photon Corrected for $\sqrt{s} = 10.58 \text{ GeV}$


r_b: background fraction eff -- signal selection efficiency d : radiative correction = +2%

No systematic bias found between the p-tag and e-tag results.

Transition Form Factor

$$Q^{2}|F(Q^{2})| = Q^{2}\sqrt{(d\sigma/dQ^{2})/(2A(Q^{2}))}$$

Representative value Q² is used for

Q² point that gives the cross section with the same size as the mean over the bin calculated using an approximated dependence, $d\sigma/dQ^2 \sim Q^{-7}$

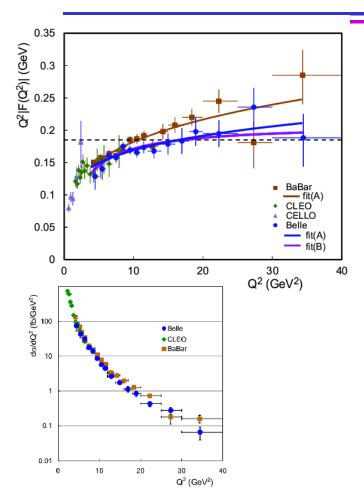
Systematic Uncertainties

For Cross Section:

```
Q<sup>2</sup> independent: Tracking
                                             1%
                   e-ID
                                             1%
                                             3%
                   yy reconstruction
                    kinematical selection
                                              2%
                   geometrical selection
                                             2%
                                             2%
                   beam background
                   integrated luminosity
                                            1.4%
                   radiative correction
                                             3%
                   form-factor effect
                                            1.0%
                                                      ( subtotal
                                                                   6%)
Q^2 dependent: Extraction of \pi^0-yield
                                                  estimated variation of fit (single Gauss + linear fit)
                                          5-10%
                 Trigger efficiency
                                          2-12%
```

estimated by studies of trigger threshold & Rad.Bhabha events

Peaking-background 1 – 4% **8 – 14% in total**


For Transition Form Factor:

Half of the above values, as $|F|^{\sim} \sqrt{d\sigma/dQ^2}$

with **added by an** uncertainty of 2A(Q²) -- 2% (form-factor effect for the low-Q²photon)

S. Uehara, Belle, Frag. 2012, RIKEN, Nov. 2012

Comparisons with Previous Measurements and Fits

No rapid growth above Q²>9GeV² is seen in Belle result.

~ 2.3σ difference between Belle and BaBar in $9 - 20 \text{ GeV}^2$

```
Fit A (suggested by BaBar)
Q^{2}|F(Q^{2})| = A (Q^{2}/10 GeV^{2})^{\beta}
BaBar:
A = 0.182 \pm 0.002 (\pm 0.004) GeV
\beta = 0.25 \pm 0.02
Belle:
A = 0.169 \pm 0.006 GeV
\beta = 0.18 \pm 0.05
\chi^{2}/ndf = 6.90/13 ~1.5\sigma difference from BaBar
```

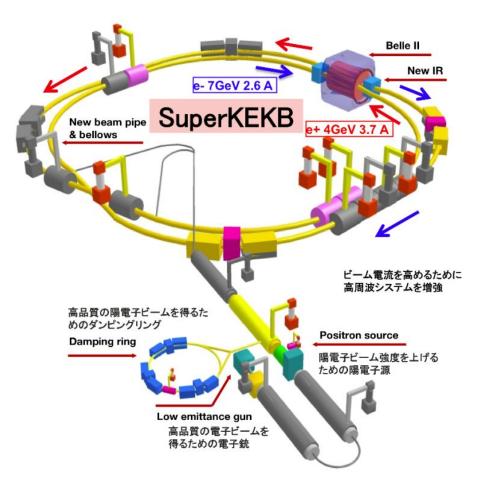
Fit B (with an asymptotic parameter) $Q^2|F(Q^2)|=BQ^2/(Q^2+C)$

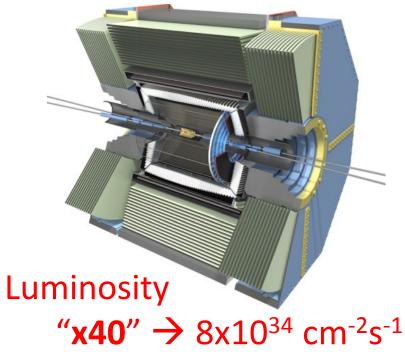
Summary

• The π^0 transition form factor is measured at Belle in the range, 4 GeV² < Q² < 40 GeV².

There was a significant effect from Bhabha-veto, but the trigger simulator to estimate the signal efficiency is tuned, reliably, calibrating it using radiative Bhabha events.

- No rapid growth of π^0 TFF is observed for the region Q²>9GeV².
- Phenomenological fits are applied for Q^2 dependence of π^0 TFF.


Belle

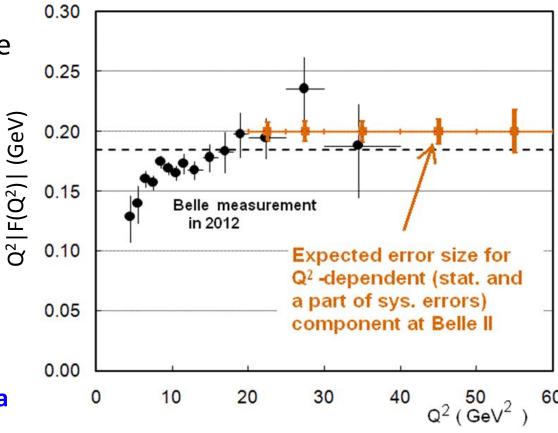

arXiv:1205.3249[hep-ex] (2012)

To appear in Phys. Rev. D

For future (SuperKEKB & Belle II)

Target of the integrated luminosity **50 ab**⁻¹

When 50ab⁻¹ data at Belle II analyzed, ...

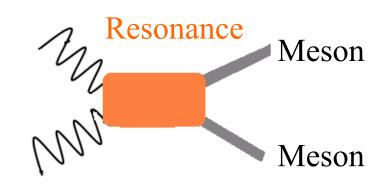

Assumptions:

- Integrated luminosity 50 ab⁻¹ (x 66)
- No large Bhabha-Veto inefficiency (x 2.5 @ high Q²)
- Systematic errors from π^0 -fit and trigger can be reduced
- Other systematics stay the same

$Q^2 > 60 \text{ GeV}^2$

Close to back-to-back topology of $e\pi^0$ in e^+e^- c.m. frame

Huge background from Bhabha


Backup

Resonance production

Resonance production and quantum numbers

Resonance formation partial-waves or

Meson
$$Q = 0$$
, $C = +$,
 $J^{P} = 0^{+}$, 0^{-} , 2^{+} , 2^{-} , 3^{+} , 4^{+} , 4^{-} , 5^{+}
(even) $^{\pm}$, (odd $\neq 1$) $^{+}$

Strict constraints for quantum numbers

Pseudoscalar-pair production: $J^P=(even)^+$ only

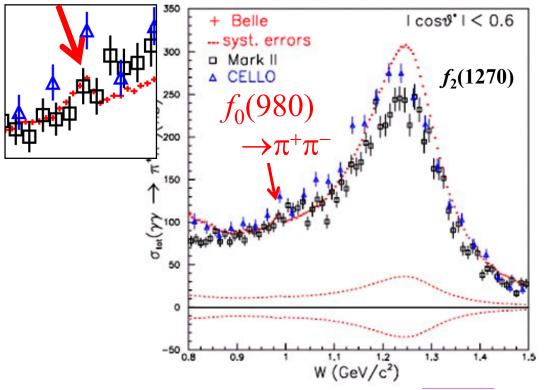
 $\Gamma_{\gamma\gamma}$, two-photon partial decay width of the resonance,

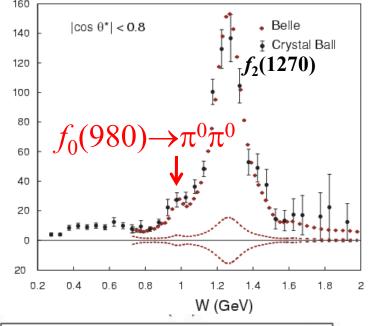
from the cross-section measurement,

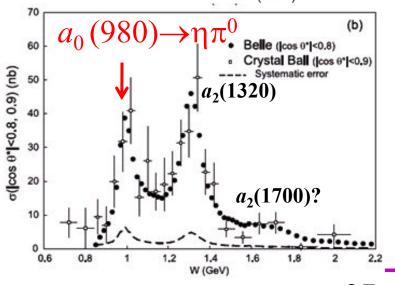
important information for the meson's internal structure

Decay properties

Searches/Discoveries of new resonances, including "XYZ"

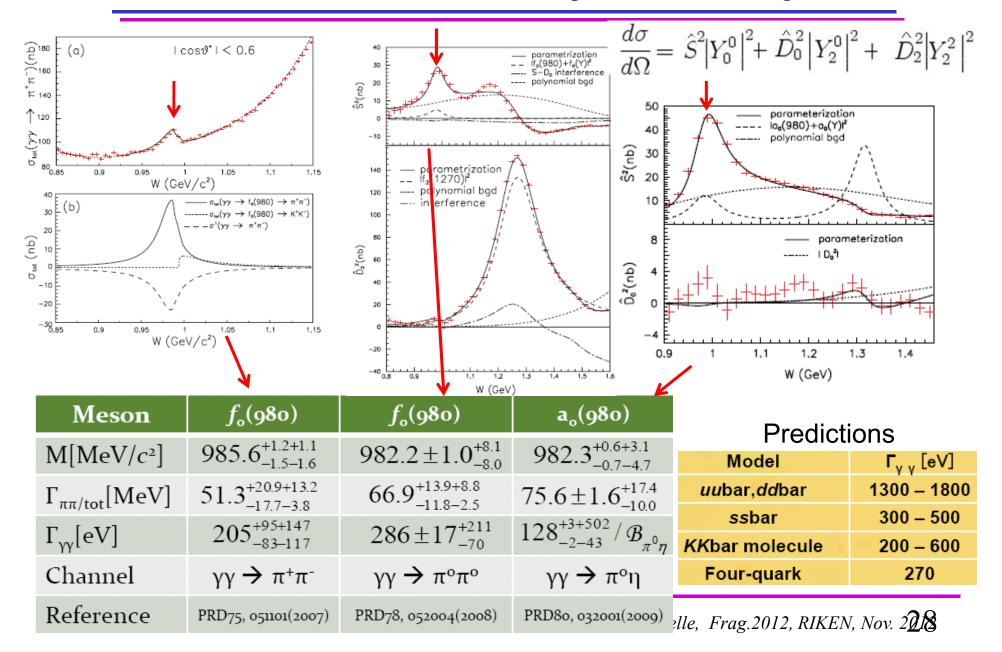



Confirmations of $f_0(980)$ and $a_0(980)$


True nature of $f_0(980)$ and $a_0(980)$ is not clarified, well.

We observe them as a peak very clearly in two-photon production for the first time

- Measurements of $\Gamma \gamma \gamma$



S.Uehara, Belle, Frag. 2012, RIKEN, 207.

Two-photon decay width of $f_0(980)$ and $a_0(980)$

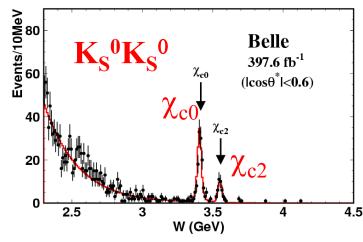
Summary of resonances seen in $\gamma\gamma \rightarrow MM'$

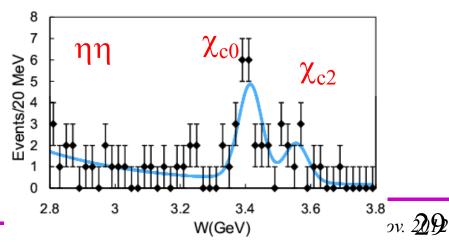
$$f_0(980) \to \pi^+\pi^-, \, \pi^0\pi^0$$
 $a_0(980) \to \eta\pi^0$

The 1^3P_2 tensor-meson triplet $f_2(1270)$, $f'_2(1525)$, $a_2(1320)$

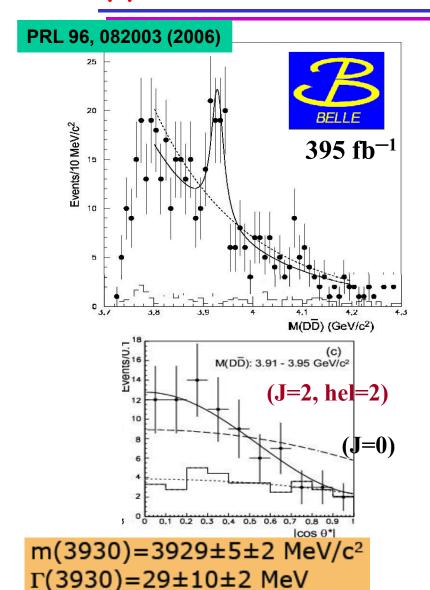
$$f_0(Y) \rightarrow \pi^+\pi^-, \pi^0\pi^0, \eta\eta$$
 unidentified in 1.2 – 1.5 GeV

$$a_0(Y) \rightarrow \eta \pi^0$$

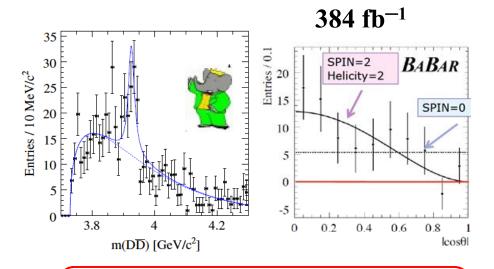

unidentified in 1.2 - 1.5 GeV


$$f_2(X) \rightarrow \pi^0 \pi^0$$
, $\eta \eta$

unidentified in 1.7 - 2.0 GeV

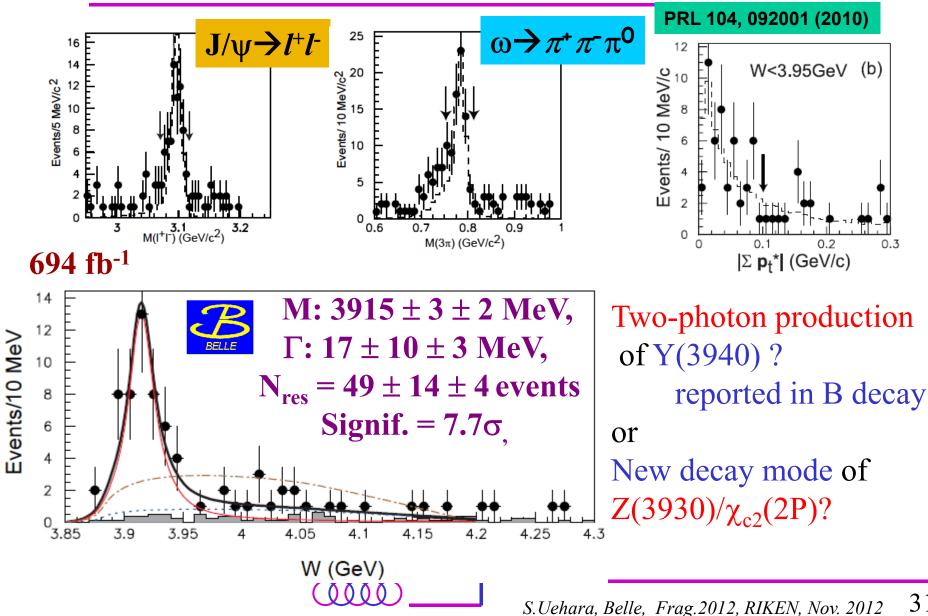

Signatures of $a_2(1700)$?, f_4 , a_4 , and/or others? seen in 1.7-2.3 GeV in $\pi^0\pi^0$, $\eta\pi^0$, $\eta\eta$ and K^+K^-

 $\chi_{c0}, \chi_{c2} \to \pi^+\pi^-, K^+K^-, \pi^0\pi^0, K^0_S K^0_S, \eta\eta$



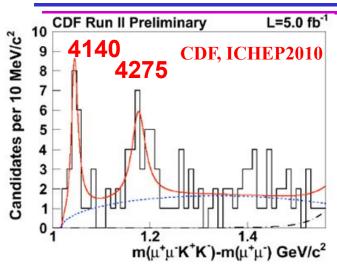
$\gamma\gamma \rightarrow Z(3930) \rightarrow DD$ discovered /confirmed

BaBar, PRD 81, 092003 (2010)


m(3930)=3926.7±2.7±1.1 MeV/c² Γ (3930)=21.3±6.8±3.6 MeV Γ_{yy} BF(Z(3930 \rightarrow D \overline{D}))=0.24±0.05±0.04 keV

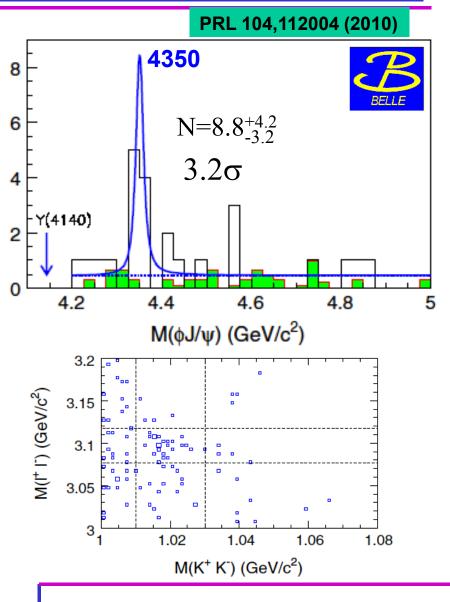
Belle and Babar results are consistent

 $\Gamma(3930) = 3929 \pm 3 \pm 2 \text{ MeV}$ Confirms that $Z(3930) = \chi_{c2}(2P)$ $\Gamma_{w} \cdot \text{BF}(Z(3930 \rightarrow \text{DD})) = 0.18 \pm 0.05 \pm 0.03 \text{ keV}$


S. Uehara, Belle, Frag. 2012, RIKEN, Nov. 2031

Peak in $\gamma\gamma \rightarrow \omega J/\psi$

$\gamma\gamma \rightarrow \phi J/\psi$


Entries/25 MeV/c²

Y(4140), reported by CDF in B-meson decays, is NOT seen in two-photon process by Belle.

Instead, a **new peak** is seen at around 4.35 GeV in the same process

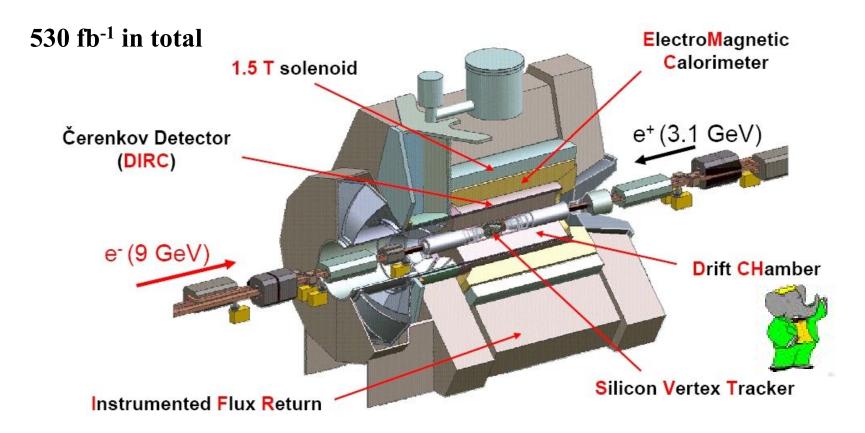
 $M=4350.6^{+4.6}_{-5.1} \pm 0.7 \text{ MeV/c}^2$ $\Gamma=13^{+18}_{-9} \pm 4 \text{ MeV}$

Summary

Many meson-pair production processes from two-photon collisions are studied at Belle.

- Cross sections in the 2 4 GeV region are compared with predictions based on QCD, systematically.
- Any comprehensive reproducibility by theoretical models is not obtained, yet.
 - Further comparison with theories is now possible.
- Belle discovers/confirms several interesting meson states produced in two-photon fusion:

 $\Gamma\gamma\gamma$ for $f_0(980)$ and $a_0(980)$ are measured


New charmonium-like states are found

$$Z(3930) = \chi_{c2}(2P)$$
, $X(3915)=Y(3940)$?, $X(4350)$

BaBar at PEP-II

 $e^+e^-{
ightarrow}Y(4S)$ and nearby continuum: $E_{cms}\sim 10.6~GeV$

Experimental Analysis; $\gamma\gamma \rightarrow \eta\eta$

Triggered by ECL triggers ($\Sigma E > 1.1 \text{GeV}$ or $\geq 4 \text{ clusters}$) $\sqrt{s} = 9.4 - 11.0 \text{ GeV}$ $\int L dt = 393 \text{ fb}^{-1}$

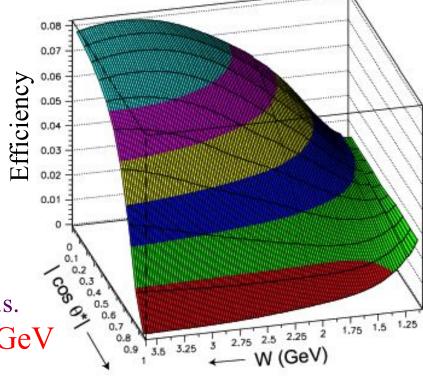
Selection of $\eta\eta$ signal events

-Just 4 y's with Ey>100 MeV, No π^0 candidate

η reconstruction

-Two 2γ sets each satisfying $0.52 < M\gamma\gamma < 0.57 GeV$

- Apply energy correction for each η , scaling to the nominal mass

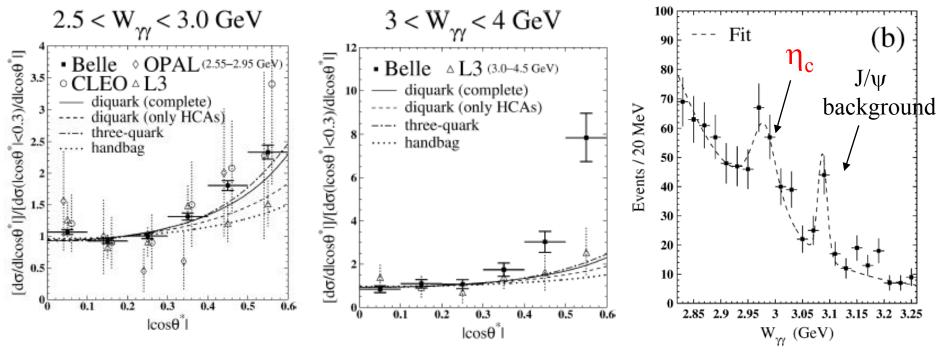

-p_t-balance < 50 MeV/c

W: γγ energy in its c.m.s.

 θ^* : scattering angle of the meson in the $\gamma\gamma$ c.m.s.

1.096GeV (mass threshold) < W < 3.8 GeV

 $|\cos \theta^*| < 0.9 \text{ or } < 1.0$

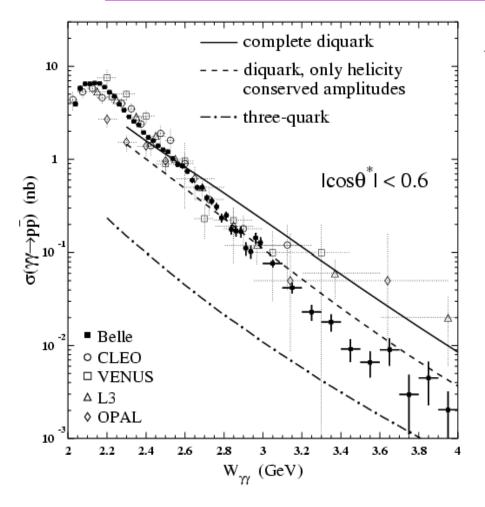

Baryon pair: $\gamma\gamma \rightarrow p\overline{p}$

PLB 621, 41 (2005)

Baryon production mechanism

Couple with a single quark?.. or a diquark?

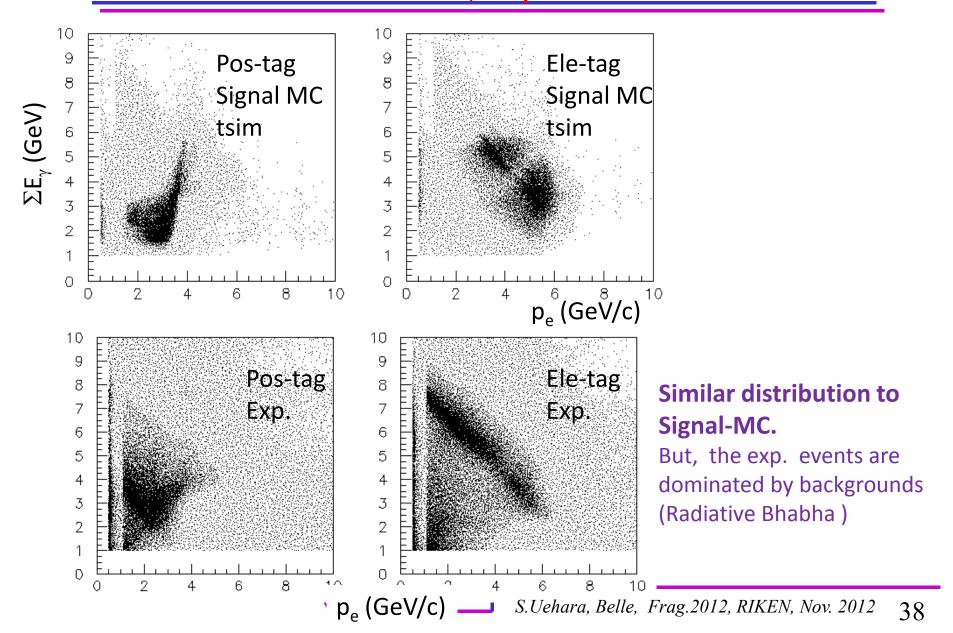
Angular and W dependences, Cross-section size



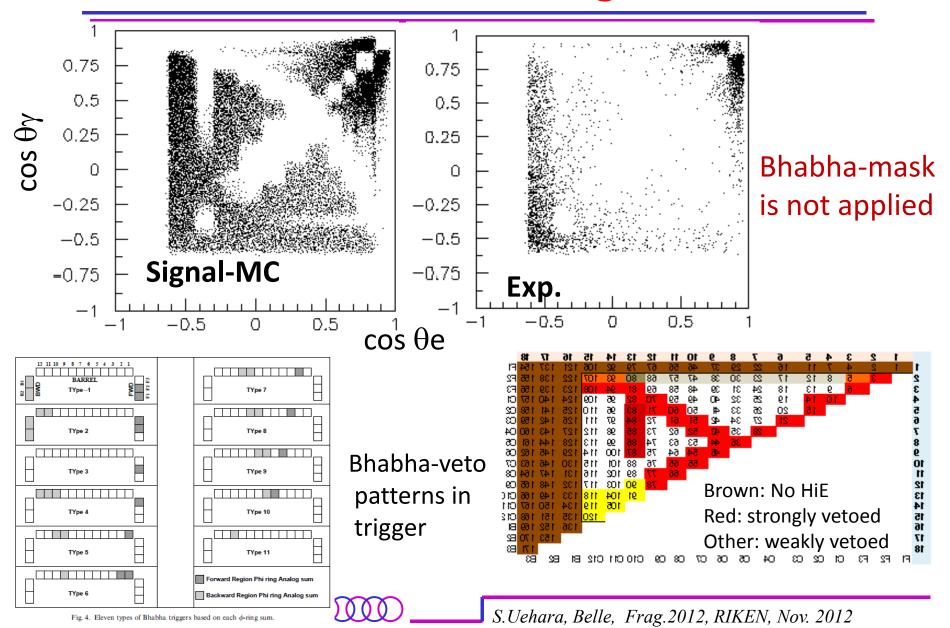
Model predictions are normalized for $|\cos\theta^*| < 0.3$. Agreement is not very good in W>3 GeV

 η_c :observation in this proces Subtract charmonium contributions

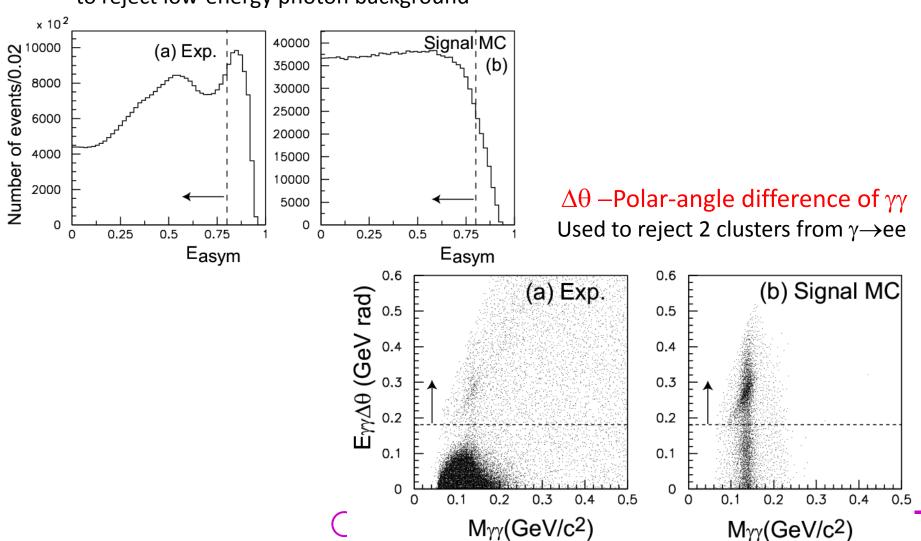
Cross sections; W dependence

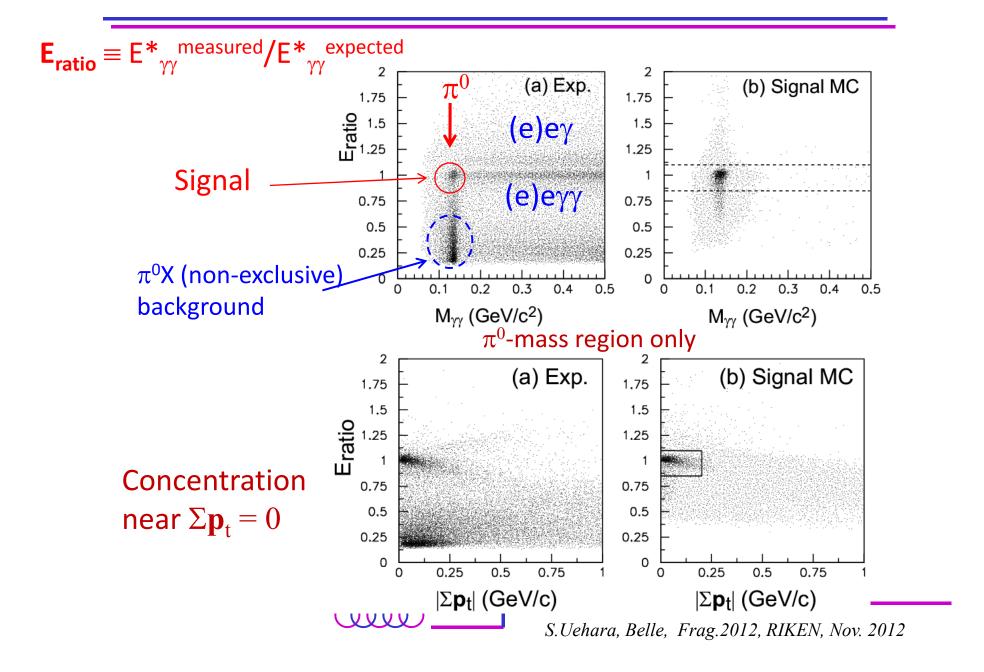


 $W_{\gamma\gamma}^{-n}$ dependence $n=15.1 \pm ^{0.8}_{1.1}$ @ 2.5-2.9 GeV $n=12.4 \pm ^{2.4}_{2.3}$ @ 3.2-4.0 GeV Might agree with a QCD prediction n=10at some energy above 3.1 GeV


Slope – steeper than meson pairs

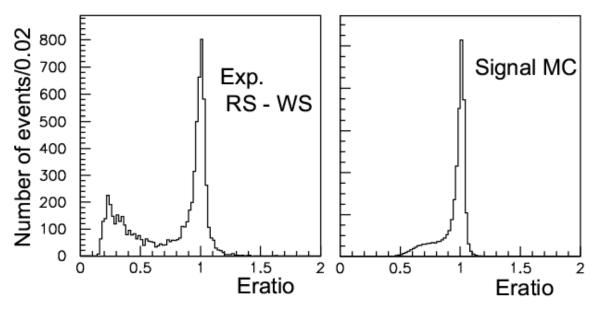
Energy-correlations in the skim file, $\Sigma E \gamma > 1.0 \text{ GeV}$


Effect of Bhabha-veto in angle correlation


$\gamma\gamma$ from π^0 and from backgrounds

Energy asymmetry

to reject low-energy photon background



Kenematical Criteria

E_{ratio} tail

Study of wrong-sign events defined by the charge vs direction relation.

The tail around E_{ratio} ~0.75 is consistent with the expected radiative tail of the signal process.

$M_{\gamma\gamma}$ Fit

Double Gaussian(for signal) + 2nd-O^{rder} Polynomial (background)

$$f(x) \sim a + bx + cx^2 + \frac{A}{\sqrt{2\pi}\sigma} \left\{ re^{-\frac{(x-m)^2}{2\sigma^2}} + \frac{1-r}{k} e^{-\frac{\{x-(m+\Delta m)\}^2}{2(k\sigma)^2}} \right\}$$

Conversion factor for |F(Q²)|: 2A(Q²)

```
Use the cross section formula by "Brodsky-Kinoshita-Terazawa" (PRD 4, 1532(1971)) Not using EPA --- not trivial cleo, PRD57, 33(1998) EPA – Equivalent Photon Approximation Assume being factorized as \sigma_{ee} \sim \int \sigma_{\gamma\gamma}(Q_1^2,Q_2^2) \; N_{\gamma}(Q_1^2) \; N_{\gamma}(Q_2^2) \; \text{ (we do not assume this)}
```

We assume only the form factors is factorized

$$\sigma_{ee} \sim \int a(Q_1^2, Q_2^2) |F(Q_1^2, Q_2^2)|^2$$
, and $F(Q_1^2, Q_2^2) = F(0, 0) f(Q_1^2) f(Q_2^2)$, $f(0) = 1$

Furthermore,

we assume $f(Q^2) = 1/(1+Q^2/m_\rho^2)$ when $Q^2 < m_\rho^2$ But, $f(Q^2)$ is unknown for $Q^2 > m_\rho^2$ (what we measure) Define as $F(Q^2) \equiv F(Q^2, 0) = F(0, Q^2) = F(0, 0) f(Q^2)$

Conversion factor for $|F(Q^2)|$ (cont.)

c = F(0, 0)
$$\rightarrow$$
 F (Q₁², Q₂²) = c f(Q₁²) f(Q₂²) = c f(Q₁²) /(1+Q₂²/m_p²) -- factorization assumption

Assume some values for c and $f(Q_1^2)$

$$\rightarrow$$
 d σ /dQ₁² = A(Q₁²) c² |f(Q₁²)|² (by BKT formula)

conversion factor $A(Q^2)$ is determined by the calculation

- Single-tag measurement dσ/dQ²

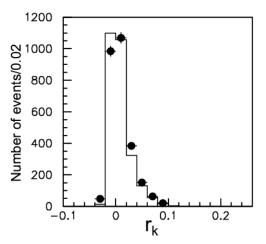
$$(d\sigma/dQ^2)/2A(Q^2) = c^2 |f(Q^2)|^2 = c^2 |f(Q^2)|^2 |f(0)|^2$$

= $|F(Q^2, 0)|^2 = |F(Q^2)|^2$

with the same scheme for the efficiency determination

and event generation → Signal MC

Calculation of A(Q²) coincides BaBar's calculation with the same BKT and the same $f(Q_2^2)$ within 0.1%.



ISR and Radiative Correction

 r_k --- Energy fraction of the ISR photon wrt. the beam energy

The r_k range for the signals is constrained by $\mathbf{E}_{\text{ratio}}$ cut which roughly corresponds to $-0.03 < r_k < 0.10$

MC event generation includes the ISR effect by exponentiation technique for $r_k < 0.25$

 r_k distribution is consistent between the data and the signal MC, The selected events are contained in r_k <0.10

Radiative correction for cross section

 $1+\delta=1.02$ (definition: $\sigma_{\text{LO+NLO}}=\sigma_{\text{LO}}(1+\delta)$, including +0.03 hadron-loop in vacuum polarization. with small Q² dependence (~1% effect).

1.4

1.2

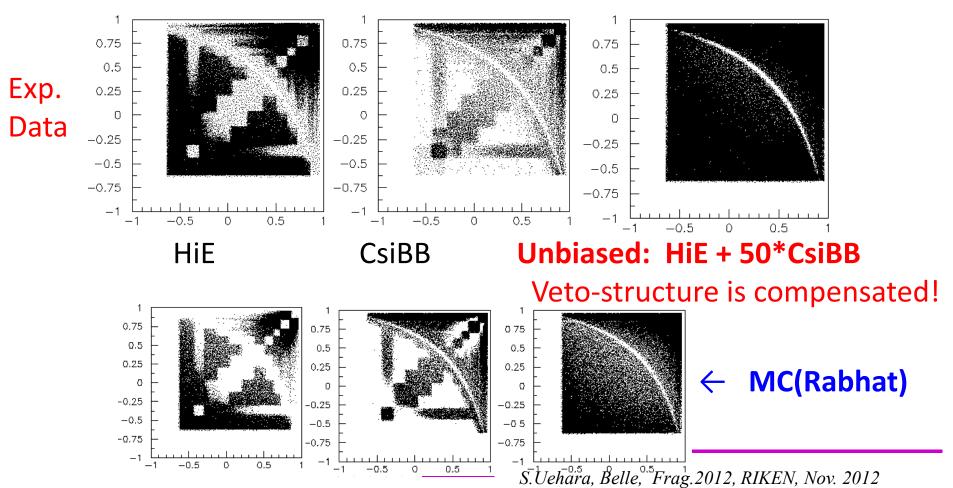
Eratio 8.0

0.6

0.4

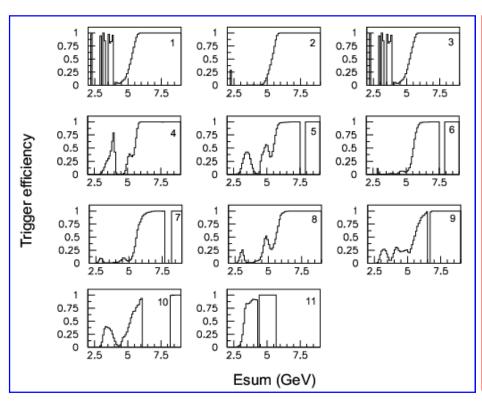
Signal MC

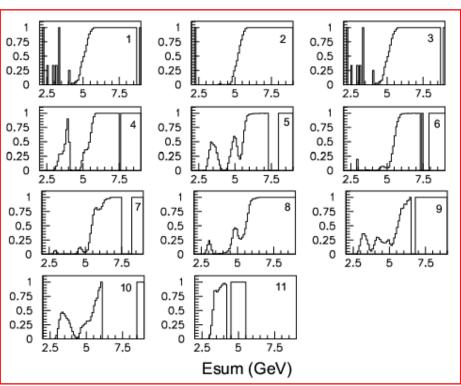
0.2


 r_{k}

Our cross section and TFF are converted to those for the LO.

Study of Radiative Bhabha samples


Experimental (e)e γ sample with the similar topology to (e)e π^0 **10,000 times larger statistics** (but physics is different...)

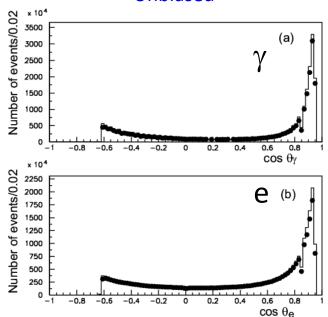

Angle-angle (cos θ_{γ} vs. cos θ_{e}) Bhabha-Veto pattern in Exp.data

Tuning of Bhabha-veto thresholds

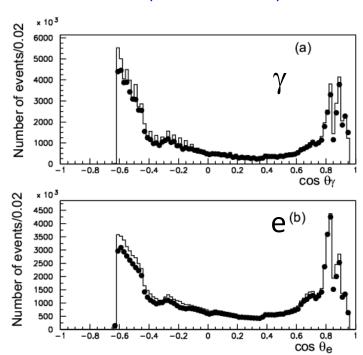
Looking at N(HiE)/N(Unbiased) as a function of E-deposit in Each ECL-Bhabha trigger segment

Experimental Rad.Bhabha sample

Tuned MC

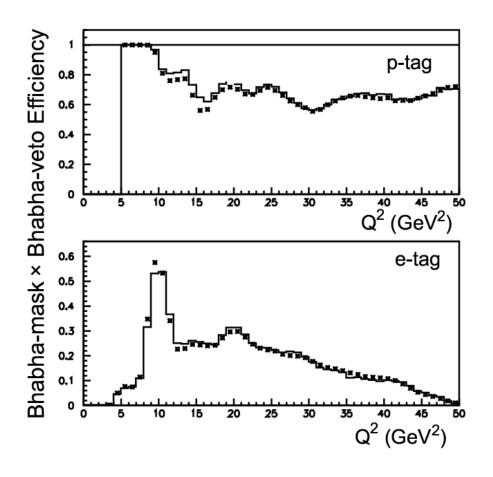


Comparisons of Radiative Bhabha (VC) samples


Dots: Exp.

Histograms: MC

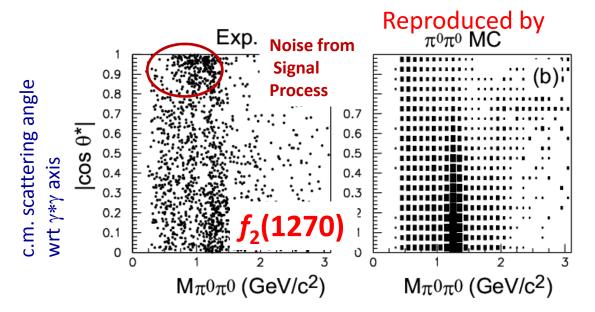
Angular $\cos \theta \in (-1, +1)$ distributions for γ and e Unbiased



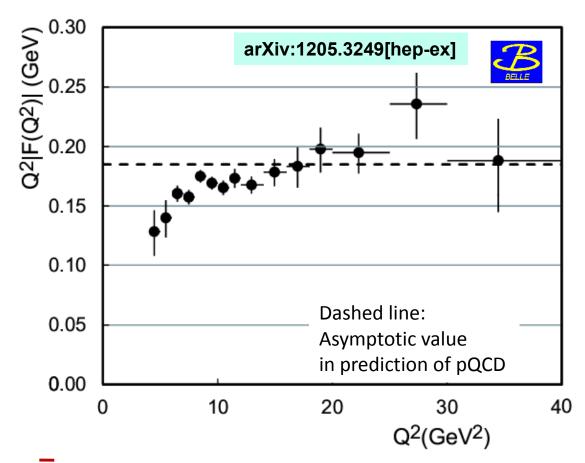
HiE (Bhabha-Masked)

Comparison of Bhabha Mask*Veto efficiency for Radiative Bhabha events

Asterisk: Exp.


Histogram: MC

Bhabha mask*veto efficiency from MC is confident Within 5 - 12% error depending on Q^2


$\pi^0\pi^0$ background MC

Experimentally identified $\gamma \gamma * \rightarrow \pi^0 \pi^0$

Background contamination in signal is estimated by the $\pi^0\pi^0$ background MC which is normalized to the observation, as 2%

Transition Form Factor

Representative value Q² is used for each Q² bin

 Q^2 point that gives the cross section with the same size as the mean over the bin calculated using an approximated dependence, $d\sigma/dQ^2 \sim Q^{-7}$

BaBar's Efficiency and Cross section

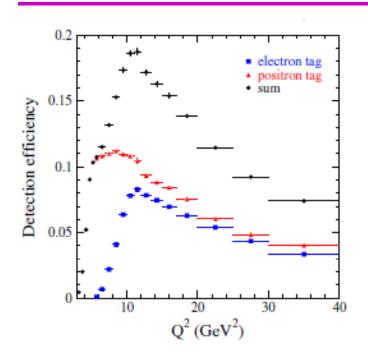
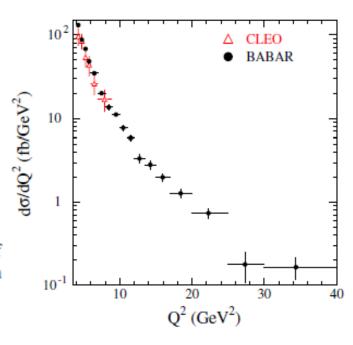
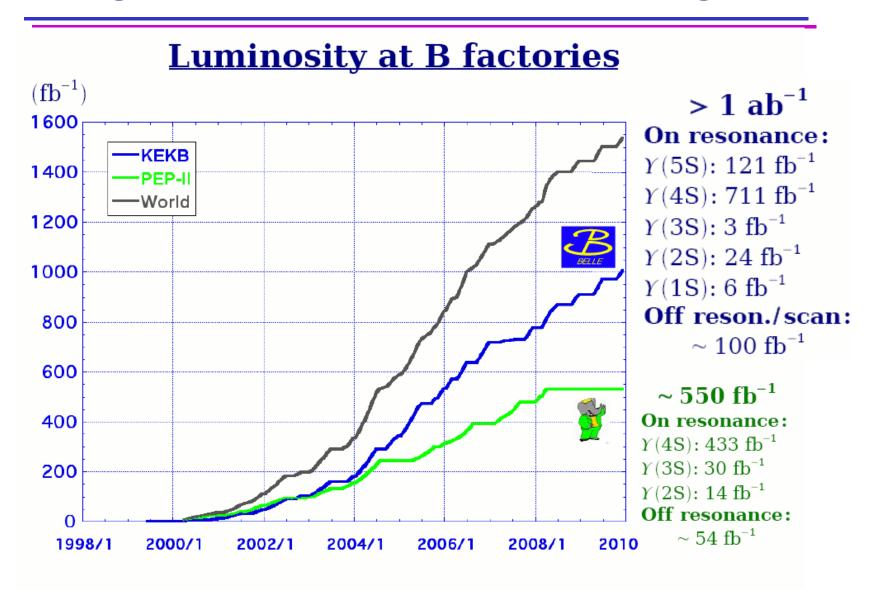
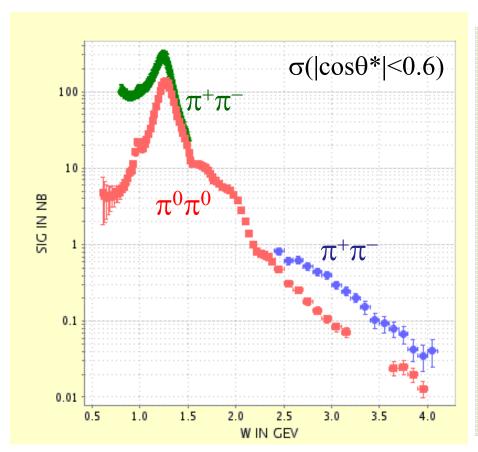
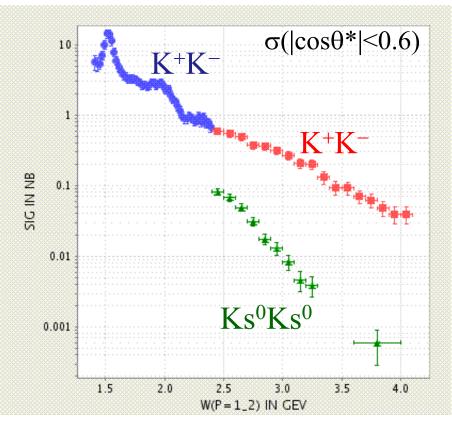


FIG. 4 (color online). The detection efficiency as a function of the momentum transfer squared for events with a tagged electron (squares), a tagged positron (triangles), and their sum (circles).

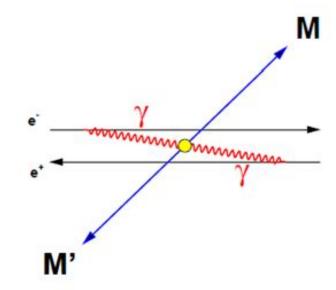
BaBar, PRD 80, 052009 (2009)


FIG. 21 (color online). The $e^+e^- \rightarrow e^+e^-\pi^0$ differential cross section obtained in this experiment compared to that from the CLEO experiment [12].

Integrated luminosities and beam energies

Cross sections integrated over angle


♠ Those for $ηπ^0$ and ηη are shown in other slides

Zero-tag measurement

- e⁺e⁻ escape down beam pipe at small recoil angles.
- Reactions involve small virtuality photons with $\left|\sum_{i}\overrightarrow{p_{t}}(M_{i})\right|\sim0$.
- $\frac{d\sigma}{d|\cos\theta^*|} = \frac{\Delta N}{\Delta W \Delta |\cos\theta^*| \frac{dL_{\gamma\gamma}}{dW} \text{ effi } \int \mathcal{L}dt}$, $\frac{dL_{\gamma\gamma}}{dW}$: Luminosity Function
- For a resonance R, two-photon decay width $\Gamma_{\gamma\gamma}$ is measured from

$$\sigma(W) = 8\pi (2J+1) \frac{\Gamma_{\gamma\gamma}(R)\Gamma_R \mathcal{B}(R \to \text{final states})}{(W^2 - M_R^2)^2 + M_R^2 \Gamma_R^2}$$

$$W = M(\gamma \gamma) = M(Mesons)$$