di-hadron based

transversity extraction

or
 the importance of di-hadron fragmentation (DiFF or IFF)

Marco Radici

IN N Paxia
Istituto Nazionale di Fisica Nucleare

In collaboration with
A. Bacchetta (Univ. Pavia)
A. Bianconi (Univ. Brescia)
A. Courtoy (Univ. Liege)

Outline

- What are DiFF and Where to extract them
-Why do we need them ? the quest for transversity: Collins vs. IFF
- Who did what? (= the present situation)
- Which are the latest "press news" ?
- Perspectives

the What and the Where

General framework

Single-hadron fragmentation

- K_{T}-dependent fragmentation functions
from q-q correlator Δ project out :

$$
\operatorname{Tr}\left[\Delta \gamma^{-}\right] \quad \longrightarrow D_{1}^{q \rightarrow h}\left(z, K_{T}^{2}\right)
$$

$\operatorname{Tr}\left[\Delta i \sigma^{i-} \gamma_{5}\right] \longrightarrow H_{1}^{\perp q \rightarrow h}\left(z, K_{T}^{2}\right)$

Single-hadron fragmentation

- Integrate over the transverse momentum

- Standard fragmentation functions

$$
D_{1}^{q \rightarrow h}(z)
$$

- No Collins fragmentation function

$$
H_{1}^{\perp q \rightarrow h}(z)
$$

Single-hadron fragmentation

- Integrate over the transverse momentum

- Standard fragmentation functions

$$
D_{1}^{q \rightarrow h}(z)
$$

- No Collins fragmentation function

Di-hadron fragmentation

- K_{T}-dependent DiFF
from q-q correlator $\Delta\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathbf{K}_{\mathrm{T}}, \mathbf{R}_{\mathrm{T}}\right)$ project out :

$\operatorname{Tr}\left[\Delta \gamma^{-}\right] \quad \longrightarrow \quad D_{1}^{q \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, K_{T}^{2}, R_{T}^{2}, \mathbf{K}_{T} \cdot \mathbf{R}_{T}\right)$

Di-hadron fragmentation

- Integrate over the transverse momentum

Di-hadron fragmentation

- Integrate over the transverse momentum

$$
|\boldsymbol{R}|=\frac{M_{h}}{2} \sqrt{1-\frac{4 m_{\pi}^{2}}{M_{h}^{2}}}
$$

$$
\int d \mathbf{K}_{T} D_{1}^{q \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, K_{T}^{2}, R_{T}^{2}, \mathbf{K}_{T} \cdot \mathbf{R}_{T}\right) \quad \longrightarrow \quad D_{1}^{q \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, R_{T}^{2}\right)
$$

$$
\int d \mathbf{K}_{T}\left(\mathbf{S}_{T}^{q} \times \mathbf{K}_{T}\right) H_{1}^{\perp q \rightarrow h_{1} h_{2}}+\left(\mathbf{S}_{T}^{q} \times \mathbf{R}_{T}\right) H_{1}^{\varangle q \rightarrow h_{1} h_{2}} \quad \longrightarrow \quad\left(\mathbf{S}_{T}^{q} \times \mathbf{R}_{T}\right) H_{1}^{\varangle q \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, R_{T}^{2}\right)
$$

- Chiral-odd $H_{1}^{\varangle q \rightarrow h_{1} h_{2}}$ survives! (memo: $\mathrm{h}_{1}, \mathrm{~h}_{2}$ must be distinguishable!)

Where do DiFF occur?

SIDIS

$$
e^{-} e^{+} \text {to pions }
$$

$p-p$ to pions

Where do DiFF occur?

Factorization

at NLO \& LL, same DGLAP as single-h case
F.Ceccopieri, M.R., A.Bacchetta, P.L.B650(07))

Universality

SIDIS

$$
e^{-} e^{+} \text {to pions }
$$

$p-p$ to pions

Where do DiFF occur?

Factorization
(at NLO \& LL, same DGLAP as single-h case
F.Ceccopieri, M.R., A.Bacchetta, P.L.B650(07))

Universality

$$
e^{-} e^{+} \text {to pions }
$$

$e+e-$

- Invariant mass spectrum

OPAL, ZPC56 (92)

Non trivial!

hadron collisions

- Invariant mass spectrum

STAR, PRL92 (04)

- In-medium modifications
- Mass shifts (@)
- Jet quenching

SIDIS

- Invariant mass spectrum

HERMES, JHEPO6 (08)

the Why

how to extract transversity: Collins vs. IFF

The Collins mechanism

$\mathbf{k} \times \mathbf{P}_{h} \cdot \mathbf{S}_{T} \propto \cos \left(\frac{\pi}{2}-\phi\right)=\sin \phi$
transverse motion of hadron
=
spin analyzer of fragmenting quark

The Collins mechanism

$\mathbf{k} \times \mathbf{P}_{h} \cdot \mathbf{S}_{T} \propto \cos \left(\frac{\pi}{2}-\phi\right)=\sin \phi$
transverse motion of hadron
spin analyzer of fragmenting quark

Effects ofTMD evolution

Effects ofTMD evolution

is it similar for Collins effect ? Need to check..

SIDIS
(2.5 GeV²)

Comparison with models

[0] M. Anselmino et al., arXiv:0812.4366
[1-8] models

TMD factorization \rightarrow TMD evolution

- Convolution
- Soft factors
- Evolution and Sudakov form factors

is there a way to skip all this ?

TMD factorization \rightarrow TMD evolution

- Convolution
- Soft factors
- Evolution and Sudakov form factors

is there a way to skip all this ?

The IFF mechanism

Collins, Heppelman, Ladinsky, NP B420 (94)

azimuthal orientation of hadron pair
spin analyzer of fragmenting quark

SIDIS SSA: Collins vs. IFF

$$
A_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}\left(x, y, z, P_{h \perp}^{2}\right)=-\frac{1-y}{1-y+y^{2} / 2} \frac{\sum_{q} e_{q}^{2}\left[h_{1}^{q} \otimes H_{1, q \rightarrow h}^{\perp}\right]\left(x, z, P_{h \perp}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, q \rightarrow \pi}(z)}
$$

M.R.et al., PR D65 (02); A. Bacchetta \& M.R., PR D67 (03)

$$
\begin{gathered}
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h}^{2}\right)=-\frac{1-y}{1-y+y^{2} / 2} \frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1, q \rightarrow \pi^{+} \pi^{-}}^{\varangle}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}\right)} \\
|\boldsymbol{R}|=\frac{M_{h}}{2} \sqrt{1-\frac{4 m_{\pi}^{2}}{M_{h}^{2}}}
\end{gathered}
$$

SIDIS SSA: Collins vs. IFF

$$
A_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}\left(x, y, z, P_{h \perp}^{2}\right)=-\frac{1-y}{1-y+y^{2} / 2} \frac{\sum_{q} e\left(h_{1}^{q} \otimes H_{1, q \rightarrow h}^{\perp}\left(x, z, P_{h \perp}^{2}\right)\right.}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, q \rightarrow \pi}(z)}
$$

M.R.et al., PR D65 (02); A. Bacchetta \& M.R., PR D67 (03)

$$
\begin{gathered}
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h}^{2}\right)=-\frac{1-y}{1-y+y^{2} / 2} \frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} \epsilon_{q}^{2} h_{1}^{q}(x) H_{1, q \rightarrow \pi^{+} \pi^{-}}^{\varangle}}{\sum_{q} e_{q}^{2} \frac{\left.f_{1}^{q}(w) M_{h}^{2}\right)}{D_{1, q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}\right)}} \\
|\boldsymbol{R}|=\frac{M_{h}}{2} \sqrt{1-\frac{4 m_{\pi}^{2}}{M_{h}^{2}}}
\end{gathered}
$$

one technical detail, first..

$\begin{aligned} & \pi^{+} \pi^{-} \mathrm{CM} \\ & \text { frame } \end{aligned}$	$A P_{\pi^{+}}$
$P_{\pi^{-}}$	P_{h}

$$
\begin{aligned}
H_{1}^{\varangle q}\left(z_{1}, z_{2}, M_{h}^{2}\right) \rightarrow z & =z_{1}+z_{2} \\
\zeta & =\frac{z_{1}-z_{2}}{z}=a+b \cos \theta
\end{aligned}
$$

one technical detail, first..

$$
\begin{aligned}
H_{1}^{\varangle q}\left(z_{1}, z_{2}, M_{h}^{2}\right) \rightarrow z & =z_{1}+z_{2} \\
\zeta & =\frac{z_{1}-z_{2}}{z}=a+b \cos \theta
\end{aligned}
$$

one technical detail, first..

$$
\begin{array}{cc}
H_{1}^{\varangle q}\left(z_{1}, z_{2}, M_{h}^{2}\right) \rightarrow z=z_{1}+z_{2} & \approx H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right)+\cos \theta H_{1, p p}^{\varangle q} \\
\zeta=\frac{z_{1}-z_{2}}{z}=a+b \cos \theta & \\
\text { partial wave expansion } & \text { weight of } \\
\text { in Legendre polinomials } & \text { interference } \\
\text { of } \cos \theta & \left(\pi^{+} \pi^{-}\right)_{\mathrm{s}} \text { and }\left(\pi^{+} \pi^{-}\right)_{\mathrm{p}}
\end{array}
$$

one technical detail, first..

$$
\begin{array}{cc}
H_{1}^{\varangle q}\left(z_{1}, z_{2}, M_{h}^{2}\right) \rightarrow z=z_{1}+z_{2} & \approx H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right)+\cos \theta H_{1, p p}^{\varangle q} \\
\zeta=\frac{z_{1}-z_{2}}{z}=a+b \cos \theta & \\
\text { partial wave expansion } & \text { weight of } \\
\text { in Legendre polinomials } & \text { interference } \\
\text { of } \cos \theta & \left(\pi^{+} \pi^{-}\right)_{\mathrm{s}} \text { and }\left(\pi^{+} \pi^{-}\right)_{\mathrm{p}}
\end{array}
$$

SIDIS

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h}^{2}\right)=-\frac{1-y}{1-y+y^{2} / 2} \frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}\left(z, M_{h}^{2}\right)}
$$

one technical detail, first..

$$
\begin{array}{cc}
H_{1}^{\varangle q}\left(z_{1}, z_{2}, M_{h}^{2}\right) \rightarrow z=z_{1}+z_{2} & \approx H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right)+\cos \theta H_{1, p p}^{\varangle q} \\
\zeta=\frac{z_{1}-z_{2}}{z}=a+b \cos \theta & \\
\text { partial wave expansion } & \text { weight of } \\
\text { in Legendre polinomials } & \text { interference } \\
\text { of } \cos \theta & \left(\pi^{+} \pi^{-}\right)_{\mathrm{s}} \text { and }\left(\pi^{+} \pi^{-}\right)_{\mathrm{p}}
\end{array}
$$

SIDIS

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h}^{2}\right)=-\frac{1-y}{1-y+y^{2} / 2} \frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}\left(z, M_{h}^{2}\right)}
$$

$e^{+} e^{-}$

$$
A^{\cos \left(\phi_{R}+\bar{\phi}_{R}\right)}\left(\cos \theta_{2}, z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right)=\quad \mathrm{a}_{12}=\quad \text { notation of Belle paper }
$$

$$
\frac{\sin ^{2} \theta_{2}}{1+\cos ^{2} \theta_{2}} \frac{|\boldsymbol{R}| \sin \theta}{M_{h}} \frac{|\overline{\boldsymbol{R}}| \sin \bar{\theta}}{\bar{M}_{h}} \frac{\sum_{q} e_{q}^{2} H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right) H_{1, s p}^{\varangle \bar{z}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) D_{1}^{\bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}
$$

one technical detail, first..

$$
\begin{array}{cc}
H_{1}^{\varangle q}\left(z_{1}, z_{2}, M_{h}^{2}\right) \rightarrow z=z_{1}+z_{2} & \approx H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right)+\cos \theta H_{1, p p}^{\varangle q} \\
\zeta=\frac{z_{1}-z_{2}}{z}=a+b \cos \theta & \\
\text { partial wave expansion } & \text { weight of } \\
\text { in Legendre polinomials } & \text { interference } \\
\text { of } \cos \theta & \left(\pi^{+} \pi^{-}\right)_{\mathrm{s}} \text { and }\left(\pi^{+} \pi^{-}\right)_{\mathrm{p}}
\end{array}
$$

SIDIS $A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h}^{2}\right)=-\frac{1-y}{1-y+y^{2} / 2} \frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}\left(z, M_{h}^{2}\right)}$
$e^{+} e^{-}$ $A^{\cos \left(\phi_{R}+\bar{\phi}_{R}\right)}\left(\cos \theta_{2}, z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right)=\mathrm{a}_{12}=\quad$ notation of Belle paper
need two pairs for polariz. IFF

$$
\frac{\sin ^{2} \theta_{2}}{1+\cos ^{2} \theta_{2}} \frac{|\boldsymbol{R}| \sin \theta}{M_{h}} \frac{|\overline{\boldsymbol{R}}| \sin \bar{\theta}}{\bar{M}_{h}} \frac{\sum_{q} e_{q}^{2} H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right) H_{1, s p}^{\varangle \bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) D_{1}^{\bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}
$$

Advantages of IFF mechanism

- Simple products instead of convolutions
- No complications in factorization
- Evolution equations understood
- Universality ok
" "cleaner" e+e- extraction (less background)

Who did what?

<2008 : the "model" era

1. $\mathrm{q} \rightarrow \mathrm{O} \mathrm{X}_{1} \rightarrow \pi^{+} \pi \cdot \mathrm{X}_{1}$
2. $q \rightarrow \omega X_{2} \rightarrow \pi^{+} \pi X_{2}$
3. $q \rightarrow \omega \mathrm{X}^{\prime}{ }_{3} \rightarrow \pi^{+} \pi^{-}\left(\pi^{0} \mathrm{X}_{3}\right)$
4. $q \rightarrow \eta X_{4} \rightarrow \pi^{+} \pi-X_{4}$
5. $q \rightarrow K^{0} \mathrm{X}_{5} \rightarrow \pi^{+} \pi \cdot \mathrm{X}_{5}$
6. All-(1.+2.+3.) =backgr
7.

parameters tuned to HERMES MC
\rightarrow predict asymmetry

2008 : the "data" era HERMES

$0.2 \leq \mathrm{z}$
$0.5 \leq M_{h} \leq 1 \mathrm{GeV}$

- flavor symmetry:

$$
D_{1}^{u}=D_{1}^{d}=D_{1}^{\bar{u}}=D_{1}^{\bar{d}} ; \quad H_{1}^{\varangle u}=H_{1}^{\varangle \bar{d}}=-H_{1}^{\varangle d}=-H_{1}^{\varangle \bar{u}}
$$

- Using Torino's transversity without errors
- Model has to be reduced by a factor

model prediction + fitting normalization

A.Bacchetta, F.Ceccopieri, A.Mukherjee, M.R., PR D79 (09)

2011 : the "parametrization" era

 $\mathrm{e}^{+} \mathrm{e}^{-}$Belle dataA. Vossen et al. (Belle), PRL 107 (11)

fitting the Belle data

A.Courtoy, A.Bacchetta, M.R., A.Bianconi, PRD 85 (12)

$$
d \sigma(\text { two pairs })=\frac{1}{4 \pi^{2}} d \sigma^{0}\left(1+\cos \left(\phi_{R}+\bar{\phi}_{R}\right) A\right)
$$

fitting the Belle data

$$
d \sigma(\text { two pairs })=\frac{1}{4 \pi^{2}} d \sigma^{0}\left(1+\cos \left(\phi_{R}+\bar{\phi}_{R}\right) A\right)
$$

1. parametrize $\operatorname{DiFF}\left(z, \mathrm{M}_{\mathrm{h}}\right)$ at $\mathrm{Q}_{0}{ }^{2}=1 \mathrm{GeV}$ inspired by model
2. evolve DiFF's at $\mathrm{Q}_{\text {Belle }}{ }^{2}=100 \mathrm{GeV}$ (LO, no gluons)
3. integrate $\mathrm{d} \sigma^{0}$ to get $\mathrm{d} \sigma^{0}(1$ pair $) \propto \mathrm{D}_{1}\left(\mathrm{z}, \mathrm{M}_{\mathrm{h}}\right)$ no unpol. data \Rightarrow fit output of PYTHIA Monte Carlo for $\left(\pi^{+}, \pi^{-}\right)$emission at Belle kin.
4. fit Belle data for asymmetry $\mathrm{A} \Rightarrow$ extract $H_{1}^{\varangle q}$
fitting D_{1} from M.C.

$$
\frac{d \sigma^{0}}{d z d M_{h}}=\frac{4 \pi \alpha^{2}}{Q^{2}} \sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}\right)
$$

fitting D_{1} from M.C.

$$
\frac{d \sigma^{0}}{d z d M_{h}}=\frac{4 \pi \alpha^{2}}{Q^{2}} \sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}\right)
$$

- $\sum_{\mathrm{MC}}=647.26 \mathrm{pb}^{-1} \leftrightarrow>2 \mathrm{M}$ events $\sim 2 \mathrm{n}_{\pi+\pi-} \quad$ no cuts in acceptance
- $\mathbf{4 0}(\mathrm{z}) \times \mathbf{5 0}(\mathrm{Mh}) \times 4$ flavors $\times 4$ channels $=\mathbf{3 2 K}$ bins

$$
(\mathrm{u}, \mathrm{~d}, \mathrm{~s}, \mathrm{c}) \quad\left(\varrho, \omega, \mathrm{K}^{0} \text { decays }+ \text { continuum }\right)
$$

- $2 \mathrm{~m}_{\pi} \leq \mathrm{M}_{\mathrm{h}} \leq 1.3 \mathrm{GeV} \quad 0.2 \leq \mathrm{z} \quad 1 \gg 2 \mathrm{M}_{\mathrm{h}} / \mathrm{zQ} \quad$ ($\Rightarrow 31585$ bins $)$
- isospin symmetry + charge conjugation: $\mathrm{u}=\overline{\mathrm{u}}=\mathrm{d}=\overline{\mathrm{d}} \quad \mathrm{s}=\overline{\mathrm{s}} \quad \mathrm{c}=\overline{\mathrm{c}}$

$$
\left(\text { except } \mathrm{K}^{0} \rightarrow \pi^{+} \pi^{-}\right)
$$

- general form:
parameters
$\begin{array}{ccc}\mathbf{1 7}(\text { continuum }) \\ 1.69 & \mathbf{1 . 2 8}(\mathrm{Q})+\underset{1.68}{20}(\omega)+\underset{1.85}{22}\left(\mathrm{~K}^{0}\right)= & \mathbf{7 9} \\ 1.62\end{array}$
fitting D_{1} from M.C.

$$
\frac{d \sigma^{0}}{d z d M_{h}}=\frac{4 \pi \alpha^{2}}{Q^{2}} \sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}\right)
$$

- $\sum_{\mathrm{MC}}=647.26 \mathrm{pb}^{-1} \leftrightarrow>2 \mathrm{M}$ events $\sim 2 \mathrm{n}_{\pi+\pi-} \quad$ no cuts in acceptance
- $\mathbf{4 0}(\mathrm{z}) \times \mathbf{5 0}(\mathrm{Mh}) \times 4$ flavors $\times 4$ channels $=\mathbf{3 2 K}$ bins

$$
(\mathrm{u}, \mathrm{~d}, \mathrm{~s}, \mathrm{c}) \quad\left(\varrho, \omega, \mathrm{K}^{0} \text { decays }+ \text { continuum }\right)
$$

- $2 \mathrm{~m}_{\pi} \leq \mathrm{M}_{\mathrm{h}} \leq 1.3 \mathrm{GeV} \quad 0.2 \leq \mathrm{z} \quad 1 \gg 2 \mathrm{M}_{\mathrm{h}} / \mathrm{zQ} \quad$ ($\Rightarrow 31585$ bins $)$
- isospin symmetry + charge conjugation: $\mathrm{u}=\overline{\mathrm{u}}=\mathrm{d}=\overline{\mathrm{d}} \quad \mathrm{s}=\overline{\mathrm{s}} \quad \mathrm{c}=\overline{\mathrm{c}}$ (except $\mathrm{K}^{0} \rightarrow \pi^{+} \pi^{-}$)
- general form: $D_{1}^{q}\left(z, M_{h}\right) \sim z^{\alpha_{1}}(1-z)^{\alpha_{2}} 2|\mathbf{R}|^{\beta} \operatorname{BW}\left(M_{h}\right) \exp \left[d_{\{\delta\}}(z)+h_{\{\lambda\}}\left(M_{h}\right)-f_{\{\gamma\}}\left(z M_{h}\right)\right\}$ parameters $17($ continuum $)+20(\varrho)+20(\omega)+22\left(\mathrm{~K}^{0}\right)=79$ $\begin{array}{lllll}1.69 & 1.28 & 1.68 & 1.85 & 1.62\end{array}$
fitting D_{1} from M.C.

$$
\frac{d \sigma^{0}}{d z d M_{h}}=\frac{4 \pi \alpha^{2}}{Q^{2}} \sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}\right)
$$

- $\sum_{\mathrm{MC}}=647.26 \mathrm{pb}^{-1} \leftrightarrow>2 \mathrm{M}$ events $\sim 2 \mathrm{n}_{\pi+\pi-} \quad$ no cuts in acceptance
- $\mathbf{4 0}(\mathrm{z}) \times \mathbf{5 0}(\mathrm{Mh}) \times 4$ flavors $\times 4$ channels $=\mathbf{3 2 K}$ bins

$$
(\mathrm{u}, \mathrm{~d}, \mathrm{~s}, \mathrm{c}) \quad\left(\varrho, \omega, \mathrm{K}^{0} \text { decays }+ \text { continuum }\right)
$$

- $2 \mathrm{~m}_{\pi} \leq \mathrm{M}_{\mathrm{h}} \leq 1.3 \mathrm{GeV} \quad 0.2 \leq \mathrm{z} \quad 1 \gg 2 \mathrm{M}_{\mathrm{h}} / \mathrm{zQ} \quad$ ($\Rightarrow 31585$ bins $)$
- isospin symmetry + charge conjugation: $\mathrm{u}=\overline{\mathrm{u}}=\mathrm{d}=\overline{\mathrm{d}} \quad \mathrm{s}=\overline{\mathrm{s}} \quad \mathrm{c}=\overline{\mathrm{c}}$ (except $\mathrm{K}^{0} \rightarrow \pi^{+} \pi^{-}$)
- general form: $D_{1}^{q}\left(z, M_{h}\right) \sim z^{\alpha_{1}}(1-z)^{\alpha_{2}} 2|\mathbf{R}|^{\beta} \mathrm{BW}\left(M_{h}\right) \exp \left[d_{\{\delta\}}(z)+h_{\{\lambda\}}\left(M_{h}\right)-f_{\{\gamma\}}\left(z M_{h}\right)\right]$ parameters $\quad 17$ (continuum) $+20(\mathrm{Q})+20(\omega)+22\left(\mathrm{~K}^{0}\right)=79$
$\begin{array}{lllllll}-\chi_{\mathrm{ch}}^{2}=\sum_{q} \sum_{i j} \frac{\left(N_{i j}^{\mathrm{ch}, q}-\mathcal{L}_{M C}\left(d \sigma_{\mathrm{ch}}^{0, q}\right)_{i j}\right)^{2}}{\mathcal{L}_{M C}\left(d \sigma_{\mathrm{ch}}^{0 . q}\right)_{i j}} & 1.69 & 1.28 & 1.68 & 1.85 & 1.62\end{array}$

results for unpolarized $\operatorname{DiFF} \quad \mathrm{D}_{1} \mathrm{q}$

$$
\begin{aligned}
& \mathrm{Q}_{0}{ }^{2}=1 \\
& \mathrm{D}_{1}{ }^{\mathrm{q}}
\end{aligned}
$$

A.Courtoy, A.Bacchetta, M.R., A.Bianconi, PRD 85 (12)

fitting Belle Asymmetry

$$
A\left(\cos \theta_{2}, z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right)=\frac{\sin ^{2} \theta_{2}}{1+\cos ^{2} \theta_{2}} \frac{|\boldsymbol{R}| \sin \theta}{M_{h}} \frac{|\overline{\boldsymbol{R}}| \sin \bar{\theta}}{\bar{M}_{h}} \frac{\sum_{q} e_{q}^{2} H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right) H_{1, s p}^{\varangle \bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) D_{1}^{\bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}
$$

fitting Belle Asymmetry

$A\left(\cos \theta_{2}, z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right)=\frac{\sin ^{2} \theta_{2}}{1+\cos ^{2} \theta_{2}} \frac{|\boldsymbol{R}| \sin \theta}{M_{h}} \frac{|\overline{\boldsymbol{R}}| \sin \bar{\theta}}{\bar{M}_{h}} \frac{\sum_{q} e_{q}^{2} H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right) H_{1, s p}^{\varangle \bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) D_{1}^{\bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}$
$<>$ average bin value of each angle
$\#\left(\pi^{+}, \pi^{-}\right)$pairs $\quad n_{q}\left(Q^{2}\right)=\int d z \int d M_{h}^{2} D_{1}^{q}\left(z, M_{h}^{2}, Q^{2}\right)$
\# pol. $\left(\pi^{+}, \pi\right)$ pairs $n_{q}^{\uparrow}\left(Q^{2}\right)=\int d z \int d M_{h}^{2} \frac{|\mathbf{R}|}{M_{h}} H_{1, s p}^{\triangleleft q}\left(z, M_{h}^{2}, Q^{2}\right)$

fitting Belle Asymmetry

$A\left(\cos \theta_{2}, z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right)=\frac{\sin ^{2} \theta_{2}}{1+\cos ^{2} \theta_{2}} \frac{|\boldsymbol{R}| \sin \theta}{M_{h}} \frac{|\overline{\boldsymbol{R}}| \sin \bar{\theta}}{\bar{M}_{h}} \frac{\sum_{q} e_{q}^{2} H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right) H_{1, s p}^{\varangle \bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) D_{1}^{\bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}$
$<>$ average bin value of each angle
$\#\left(\pi^{+}, \pi^{-}\right)$pairs $\quad n_{q}\left(Q^{2}\right)=\int d z \int d M_{h}^{2} D_{1}^{q}\left(z, M_{h}^{2}, Q^{2}\right)$
\# pol. $\left(\pi^{+}, \pi^{-}\right)$pairs $n_{q}^{\uparrow}\left(Q^{2}\right)=\int d z \int d M_{h}^{2} \frac{|\mathbf{R}|}{M_{h}} H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}, Q^{2}\right)$

$$
A\left(z, M_{h}^{2}, Q^{2}\right)=\frac{\left\langle\sin ^{2} \theta_{2}\right\rangle}{\left\langle 1+\cos ^{2} \theta_{2}\right\rangle} \frac{|\boldsymbol{R}|\langle\sin \theta\rangle\langle\sin \bar{\theta}\rangle}{M_{h}} \frac{\sum_{q} e_{q}^{2} H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right) n_{\bar{q}}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) n_{q}\left(Q^{2}\right)}
$$

fitting Belle Asymmetry

$A\left(\cos \theta_{2}, z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right)=\frac{\sin ^{2} \theta_{2}}{1+\cos ^{2} \theta_{2}} \frac{|\boldsymbol{R}| \sin \theta}{M_{h}} \frac{|\overline{\boldsymbol{R}}| \sin \bar{\theta}}{\bar{M}_{h}} \frac{\sum_{q} e_{q}^{2} H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right) H_{1, s p}^{\varangle \bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) D_{1}^{\bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}$
$<>$ average bin value of each angle
$\#\left(\pi^{+}, \pi^{-}\right)$pairs $\quad n_{q}\left(Q^{2}\right)=\int d z \int d M_{h}^{2} D_{1}^{q}\left(z, M_{h}^{2}, Q^{2}\right)$
\# pol. $\left(\pi^{+}, \pi^{-}\right)$pairs $n_{q}^{\uparrow}\left(Q^{2}\right)=\int d z \int d M_{h}^{2} \frac{|\mathbf{R}|}{M_{h}} H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}, Q^{2}\right)$

$$
A\left(z, M_{h}^{2}, Q^{2}\right)=\frac{\left\langle\sin ^{2} \theta_{2}\right\rangle}{\left\langle 1+\cos ^{2} \theta_{2}\right\rangle} \frac{|\boldsymbol{R}|\langle\sin \theta\rangle\langle\sin \bar{\theta}\rangle}{M_{h}} \frac{\sum_{q} e_{q}^{2} H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right) n_{\bar{q}}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) n_{q}\left(Q^{2}\right)}
$$

isospin symmetry + charge conjugation $\mathrm{u}=-\mathrm{d}=-\overline{\mathrm{u}}=\overline{\mathrm{d}}$

fitting Belle Asymmetry

$A\left(\cos \theta_{2}, z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right)=\frac{\sin ^{2} \theta_{2}}{1+\cos ^{2} \theta_{2}} \frac{|\boldsymbol{R}| \sin \theta}{M_{h}} \frac{|\overline{\boldsymbol{R}}| \sin \bar{\theta}}{\bar{M}_{h}} \frac{\sum_{q} e_{q}^{2} H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right) H_{1, s p}^{\varangle \bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) D_{1}^{\bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}$
$<>$ average bin value of each angle
$\#\left(\pi^{+}, \pi^{-}\right)$pairs $\quad n_{q}\left(Q^{2}\right)=\int d z \int d M_{h}^{2} D_{1}^{q}\left(z, M_{h}^{2}, Q^{2}\right)$
\# pol. $\left(\pi^{+}, \pi^{-}\right)$pairs $n_{q}^{\uparrow}\left(Q^{2}\right)=\int d z \int d M_{h}^{2} \frac{|\mathbf{R}|}{M_{h}} H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}, Q^{2}\right)$

$$
A\left(z, M_{h}^{2}, Q^{2}\right)=\frac{\left\langle\sin ^{2} \theta_{2}\right\rangle}{\left\langle 1+\cos ^{2} \theta_{2}\right\rangle} \frac{|\boldsymbol{R}|\langle\sin \theta\rangle\langle\sin \bar{\theta}\rangle}{M_{h}} \frac{\sum_{q} e_{q}^{2} H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right) n_{\bar{q}}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) n_{q}\left(Q^{2}\right)}
$$

isospin symmetry + charge conjugation $\mathrm{u}=-\mathrm{d}=-\overline{\mathrm{u}}=\overline{\mathrm{d}}$

$$
A\left(z, M_{h}^{2}, Q^{2}\right) \approx-\frac{\left\langle\sin ^{2} \theta_{2}\right\rangle}{\left\langle 1+\cos ^{2} \theta_{2}\right\rangle}\langle\sin \theta\rangle\langle\sin \bar{\theta}\rangle \frac{5}{9} \frac{\frac{|\boldsymbol{R}|}{M_{h}} H_{1, s p}^{\varangle u}\left(z, M_{h}^{2}\right) n_{u}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) n_{q}\left(Q^{2}\right)}
$$

continued

$$
A\left(z, M_{h}^{2}, Q^{2}\right) \approx-\frac{\left\langle\sin ^{2} \theta_{2}\right\rangle}{\left\langle 1+\cos ^{2} \theta_{2}\right\rangle}\langle\sin \theta\rangle\langle\sin \bar{\theta}\rangle \frac{5}{9} \frac{\frac{|\boldsymbol{R}|}{M_{h}} H_{1, s p}^{\varangle u}\left(z, M_{h}^{2}\right) n_{u}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) n_{q}\left(Q^{2}\right)}
$$

continued

$$
A\left(z, M_{h}^{2}, Q^{2}\right) \approx-\frac{\left\langle\sin ^{2} \theta_{2}\right\rangle}{\left\langle 1+\cos ^{2} \theta_{2}\right\rangle}\langle\sin \theta\rangle\langle\sin \bar{\theta}\rangle \frac{5}{9} \frac{5 \frac{|\boldsymbol{R}|}{M_{h}} H_{1, s p}^{\varangle}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{\top}\left(z, M_{h}^{2}\right)} n_{q}\left(Q^{2}\right)
$$

continued

$$
\begin{gathered}
A\left(z, M_{h}^{2}, Q^{2}\right) \approx-\frac{\left\langle\sin ^{2} \theta_{2}\right\rangle}{\left\langle 1+\cos ^{2} \theta_{2}\right\rangle}\langle\sin \theta\rangle\langle\sin \bar{\theta}\rangle \frac{5}{9} \frac{\frac{|\boldsymbol{R}|}{M_{h}} H_{1, s p}^{\varangle u}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right)} n_{u}^{\uparrow}\left(Q^{2}\right) \\
\int d z \int d Q_{h}^{2} A\left(z, M_{h}^{2}, Q^{2}\right) \times\left[\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) n_{q}\left(Q^{2}\right)\right] \times\left[-\frac{\left\langle 1+\cos ^{2} \theta_{2}\right\rangle}{\left\langle\sin ^{2} \theta_{2}\right\rangle} \frac{1}{\langle\sin \theta\rangle\langle\sin \bar{\theta}\rangle} \frac{9}{5}\right]=\left[n_{u}^{\uparrow}\left(Q^{2}\right)\right]^{2}
\end{gathered}
$$

continued

$$
\begin{gathered}
A\left(z, M_{h}^{2}, Q^{2}\right) \approx-\frac{\left\langle\sin ^{2} \theta_{2}\right\rangle}{\left\langle 1+\cos ^{2} \theta_{2}\right\rangle}\langle\sin \theta\rangle\langle\sin \bar{\theta}\rangle \frac{5 \frac{|\boldsymbol{R}|}{M_{h}} H_{1, s p}^{\varangle u}\left(z, M_{h}^{2}\right)}{9} \frac{n_{u}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{\varphi}\left(z, M_{h}^{2}\right)} n_{q}\left(Q^{2}\right) \\
\int d z \int d M_{h}^{2} A\left(z, M_{h}^{2}, Q^{2}\right) \times\left[\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) n_{q}\left(Q^{2}\right)\right] \times\left[-\frac{\left\langle 1+\cos ^{2} \theta_{2}\right\rangle}{\left\langle\sin ^{2} \theta_{2}\right\rangle} \frac{1}{\langle\sin \theta\rangle\langle\sin \bar{\theta}\rangle} \frac{9}{5}\right]=\left[n_{u}^{\uparrow}\left(Q^{2}\right)\right]^{2}
\end{gathered}
$$

- general form at $\mathrm{Q}_{0}{ }^{2}=1: \quad H_{1, s p}^{\varangle q}\left(z, M_{h}\right) \sim(1-z) 2|\mathbf{R}| \operatorname{BW}\left(M_{h}\right) \exp \left[d_{\{\delta\}}(z)+h_{\{\lambda\}}\left(M_{h}\right)\right] f_{\{\gamma\}}\left(z M_{h}\right)$
- 9 parameters
- chiral-odd LO evolution with ad-hoc modified HOPPET (M.Guagnelli-Pavia)
- $8(\mathrm{z}) \times 8\left(\mathrm{M}_{\mathrm{h}}\right)-\left\{\mathrm{z} \in[0.8,1], \mathrm{M}_{\mathrm{h}} \in[1.5,2]\right\}=46$ bins
- $\chi^{2} /$ dof $=0.57$
- errors dominated by Belle exp. A

results for polarized DiFF $H_{1}^{\varangle q}$

A.Courtoy, A.Bacchetta, M.R., A.Bianconi, PRD 85 (12)

$$
\begin{aligned}
& \mathrm{Q}_{0}{ }^{2}=1 \\
& \frac{|\mathbf{R}|}{M_{h}} \frac{H_{1}^{\varangle u}}{D_{1}^{u}}
\end{aligned}
$$

$$
0.27 \leq \mathrm{z} \leq 0.33
$$

$\mathrm{Q}^{2}=100$
A

first glances at transversity via HERMES data

A.Bacchetta, A. Courtoy, M. R., PRL 107 (11)

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h}^{2}\right)=-\frac{1-y}{1-y+y^{2} / 2} \frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}\left(z, M_{h}^{2}\right)}
$$

$$
D_{1}^{u}=D_{1}^{d}=D_{1}^{\bar{u}}=D_{1}^{\bar{d}}
$$

$$
D_{1}^{s}=D_{1}^{\bar{s}}
$$

$$
D_{1}^{c}=D_{1}^{\bar{c}}
$$

$$
\begin{gathered}
H_{1}^{\varangle u}=-H_{1}^{\varangle d}=-H_{1}^{\varangle \bar{u}}=H_{1}^{\varangle \bar{d}} \\
H_{1}^{\varangle s}=-H_{1}^{\varangle \bar{s}}=H_{1}^{\varangle c}=-H_{1}^{\varangle \bar{c}}=0
\end{gathered}
$$

first glances at transversity via HERMES data

A.Bacchetta, A. Courtoy, M. R., PRL 107 (11)

$$
\begin{gathered}
\qquad \begin{array}{c}
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h}^{2}\right)=-\frac{1-y}{1-y+y^{2} / 2} \frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}\left(z, M_{h}^{2}\right)} \\
D_{1}^{u}=D_{1}^{d}=D_{1}^{\bar{u}}=D_{1}^{\bar{d}} \\
D_{1}^{s}=D_{1}^{\bar{s}} \\
D_{1}^{c}=D_{1}^{\bar{c}} \\
\text { recall }
\end{array} \\
H_{1}^{\varangle u}=-H_{1}^{\varangle d}=-H_{1}^{\varangle \bar{u}}=H_{1}^{\varangle \bar{d}} \\
H_{1}^{\varangle s}=-H_{1}^{\varangle \bar{s}}=H_{1}^{\varangle c}=-H_{1}^{\varangle \bar{c}}=0
\end{gathered}
$$

first glances at transversity via HERMES data

A.Bacchetta, A. Courtoy, M. R., PRL 107 (11)

$$
\begin{gathered}
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h}^{2}\right)=-\frac{1-y}{1-y+y^{2} / 2} \frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}\left(z, M_{h}^{2}\right)} \\
D_{1}^{u}=D_{1}^{d}=D_{1}^{\bar{u}}=D_{1}^{\bar{d}} \\
D_{1}^{s}=D_{1}^{\bar{s}} \\
D_{1}^{c}=D_{1}^{\bar{c}} \\
\text { recall } \\
H_{1}^{\varangle u}=-H_{1}^{\varangle d}=-H_{1}^{\varangle \bar{u}}=H_{1}^{\varangle \bar{d}} \\
H_{1}^{\varangle s}=-H_{1}^{\varangle \bar{s}}=H_{1}^{\varangle c}=-H_{1}^{\varangle \bar{c}}=0
\end{gathered}
$$

first glances at transversity via HERMES data

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h}^{2}\right)=-\frac{1-y}{1-y+y^{2} / 2} \frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}\left(z, M_{h}^{2}\right)}
$$

recall

$$
\begin{aligned}
D_{1}^{u}=D_{1}^{d} & =D_{1}^{\bar{u}}=D_{1}^{\bar{d}} \\
D_{1}^{s} & =D_{1}^{\bar{s}} \\
D_{1}^{c} & =D_{1}^{\bar{c}}
\end{aligned}
$$

$$
H_{1}^{\varangle u}=-H_{1}^{\varangle d}=-H_{1}^{\varangle \bar{u}}=H_{1}^{\varangle \bar{d}}
$$

evolved from

$$
H_{1}^{\varangle s}=-H_{1}^{\varangle \bar{s}}=H_{1}^{\varangle c}=-H_{1}^{\varangle \bar{c}}=0
$$ down to

$A_{U T} \approx-\langle C(y)\rangle \frac{x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right)}{x f_{1}^{u+\bar{u}}\left(x, Q^{2}\right)+\frac{1}{4} x f_{1}^{d+\bar{d}}\left(x, Q^{2}\right)+\frac{1}{4} \frac{n_{s}\left(Q^{2}\right)}{n_{u}\left(Q^{2}\right)} x f_{1}^{s+\bar{s}}\left(x, Q^{2}\right)} \frac{n_{u}^{\uparrow}\left(Q^{2}\right)}{n_{u}\left(Q^{2}\right)}=-0.259$ (11\% error)
from data

1
 MSTW08LO

first glances at transversity via HERMES data

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h}^{2}\right)=-\frac{1-y}{1-y+y^{2} / 2} \frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}\left(z, M_{h}^{2}\right)}
$$

from data

recall

$$
\begin{aligned}
D_{1}^{u}=D_{1}^{d} & =D_{1}^{\bar{u}}=D_{1}^{\bar{d}} \\
D_{1}^{s} & =D_{1}^{\bar{s}} \\
D_{1}^{c} & =D_{1}^{\bar{c}}
\end{aligned}
$$

$$
H_{1}^{\varangle u}=-H_{1}^{\varangle d}=-H_{1}^{\varangle \bar{u}}=H_{1}^{\varangle \bar{d}}
$$

evolved from

$$
H_{1}^{\varangle s}=-H_{1}^{\varangle \bar{s}}=H_{1}^{\varangle c}=-H_{1}^{\varangle \bar{c}}=0
$$ down to

$$
A_{U T} \approx-\langle C(y)\rangle \frac{x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right)}{x f_{1}^{u+\bar{u}}\left(x, Q^{2}\right)+\frac{1}{4} x f_{1}^{d+\bar{d}}\left(x, Q^{2}\right)+\frac{1}{4} \frac{n_{s}\left(Q^{2}\right)}{n_{u}\left(Q^{2}\right)} x f_{1}^{s+\bar{s}}\left(x, Q^{2}\right)} \frac{n_{u}^{\uparrow}\left(Q^{2}\right)}{n_{u}\left(Q^{2}\right)}=-0.259
$$

$$
<Q^{2}>=2.5
$$

2011 : the "collinear transversity" era

based on data from

uncertainty band from Collins effect
M.Anselmino et al.,

NP B191 (Proc.Supp.) (09)

2012: COMPASS data officially released

C.Adolph et al. (Compass), PL B713 (12)

2002-4 Deuteron Data

2007 Proton Data

Pavia model prediction
A. Bacchetta \& M.R., PR D74 (06)

Which are the latest "press" news?

New extraction : proton data

$$
A_{U T} \approx-\langle C(y)\rangle \frac{x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right)}{x f_{1}^{u+\bar{u}}\left(x, Q^{2}\right)+\frac{1}{4} x f_{1}^{d+\bar{d}}\left(x, Q^{2}\right)+\frac{1}{4} \frac{n_{s}\left(Q^{2}\right)}{n_{u}\left(Q^{2}\right)} x f_{1}^{s+\bar{s}}\left(x, Q^{2}\right)} \frac{n_{u}^{\uparrow}\left(Q^{2}\right)}{n_{u}\left(Q^{2}\right)}
$$

New extraction : proton data

$A_{U T} \approx-\langle C(y)\rangle \frac{x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right)}{x f_{1}^{u+\bar{u}}\left(x, Q^{2}\right)+\frac{1}{4} x f_{1}^{d+\bar{d}}\left(x, Q^{2}\right)+\frac{1}{4} \frac{n_{s}\left(Q^{2}\right)}{n_{u}\left(Q^{2}\right)} x f_{1}^{s+\bar{s}}\left(x, Q^{2}\right)} \frac{n_{u}^{\uparrow}\left(Q^{2}\right)}{n_{u}\left(Q^{2}\right)}$
from data

New extraction : proton data

$$
A_{U T} \approx-\langle C(y)\rangle \frac{x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right)}{x f_{1}^{u+\bar{u}}\left(x, Q^{2}\right)+\frac{1}{4} x f_{1}^{d+\bar{d}}\left(x, Q^{2}\right)+\frac{1}{4} \frac{n_{s}\left(Q^{2}\right)}{n_{u}\left(Q^{2}\right)} x f_{1}^{s+\bar{s}}\left(x, Q^{2}\right)} \frac{n_{u}^{\uparrow}\left(Q^{2}\right)}{n_{u}\left(Q^{2}\right)}=-0.208
$$

from data

New extraction : proton data

uncertainty band from Collins effect

M.Anselmino et al.,

NP B191 (Proc.Supp.) (09)

New extraction : deuteron data

$$
A_{U T} \approx-\langle C(y)\rangle \frac{3}{5} \frac{x h_{1}^{u_{v}}\left(x, Q^{2}\right)+x h_{1}^{d_{v}}\left(x, Q^{2}\right)}{x f_{1}^{u+\bar{u}}\left(x, Q^{2}\right)+x f_{1}^{d+\bar{d}}\left(x, Q^{2}\right)+\frac{2}{5} \frac{n_{s}\left(Q^{2}\right)}{n_{u}\left(Q^{2}\right)} x f_{1}^{s+\bar{s}}\left(x, Q^{2}\right)} \frac{n_{u}^{\uparrow}\left(Q^{2}\right)}{n_{u}\left(Q^{2}\right)}=-0.208 \text { (9\% error) }
$$

from data

uncertainty band from Collins effect

M.Anselmino et al.,

NP B191 (Proc.Supp.) (09)

New extraction: deuteron data

$$
A_{U T} \approx-\langle C(y)\rangle \frac{3}{5} \frac{x h_{1}^{u_{v}}\left(x, Q^{2}\right)+x h_{1}^{d_{v}}\left(x, Q^{2}\right)}{x f_{1}^{u+\bar{u}}\left(x, Q^{2}\right)+x f_{1}^{d+\bar{d}}\left(x, Q^{2}\right)+\frac{2}{5} \frac{n_{s}\left(Q^{2}\right)}{n_{u}\left(Q^{2}\right)} x f_{1}^{s+\bar{s}}\left(x, Q^{2}\right)} \frac{n_{u}^{\uparrow}\left(Q^{2}\right)}{n_{u}\left(Q^{2}\right)}=-0.208 \quad(9 \% \text { error })
$$

from data

uncertainty band from Collins effect

M.Anselmino et al.,

NP B191 (Proc.Supp.) (09)

2012 : the "collinear transversity fitting" era

combining proton and deuteron data
\Rightarrow separate u_{v} and d_{v} components of h_{1}
\Rightarrow separately fit each component

2012 : the "collinear transversity fitting" era

combining proton and deuteron data \Rightarrow separate u_{v} and d_{v} components of h_{1} \Rightarrow separately fit each component
functional form

$$
x h_{1}^{q_{v}}(x)=\tanh \left[\sqrt{x}\left(A_{q}+B_{q} x+C_{q} x^{2}\right)\right]\left[\mathrm{SB}_{q}(x)+\mathrm{SB}_{\bar{q}}(x)\right]
$$

Soffer bound

$$
\mathrm{SB}_{q}(x)=\frac{1}{2}\left|f_{1}^{q}(x)+g_{1}^{q}(x)\right|
$$

2012 : the "collinear transversity fitting" era

combining proton and deuteron data \Rightarrow separate u_{v} and d_{v} components of h_{1}
\Rightarrow separately fit each component
functional form

$$
x h_{1}^{q_{v}}(x)=\tanh \left[\sqrt{x}\left(A_{q}+B_{q} x+C_{q} x^{2}\right)\right]\left[\mathrm{SB}_{q}(x)+\mathrm{SB}_{\bar{q}}(x)\right]
$$

Soffer bound

$$
\mathrm{SB}_{q}(x)=\frac{1}{2}\left|f_{1}^{q}(x)+g_{1}^{q}(x)\right|
$$

2012 : the "collinear transversity fitting" era

combining proton and deuteron data \Rightarrow separate u_{v} and d_{v} components of h_{1}
\Rightarrow separately fit each component
functional form

$$
x h_{1}^{q_{v}}(x)=\tanh \left[\sqrt{x}\left(A_{q}+B_{q} x+C_{q} x^{2}\right)\right]\left[\mathrm{SB}_{q}(x)+\mathrm{SB}_{\bar{q}}(x)\right]
$$

$\mathrm{SB}_{\mathrm{q}}+\mathrm{SB}_{\bar{q}} \rightarrow \infty \quad \mathrm{x} \rightarrow 0$
grants finite and stable tensor charge

Soffer bound
$\mathrm{SB}_{q}(x)=\frac{1}{2}\left|f_{1}^{q}(x)+g_{1}^{q}(x)\right|$

2012 : the "collinear transversity fitting" era

combining proton and deuteron data \Rightarrow separate u_{v} and d_{v} components of h_{1}
\Rightarrow separately fit each component
functional form

$$
x h_{1}^{q_{v}}(x)=\tanh \left[\sqrt{x}\left(A_{q}+B_{q} x+C_{q} x^{2}\right)\right]\left[\mathrm{SB}_{q}(x)+\mathrm{SB}_{\bar{q}}(x)\right]
$$

$\mathrm{SB}_{\mathrm{q}}+\mathrm{SB}_{\bar{q}} \rightarrow \infty \quad \mathrm{x} \rightarrow 0$ grants finite and stable tensor charge

"flexible" form (2 nodes)
we tried also
$\left(\mathrm{A}_{\mathrm{q}}+\mathrm{B}_{\mathrm{q}} \mathrm{x}\right) \quad$ "rigid" form

Soffer bound
$\mathrm{SB}_{q}(x)=\frac{1}{2}\left|f_{1}^{q}(x)+g_{1}^{q}(x)\right|$

DSSV

New results from fitting both p and D data

 1) Hessian methodPROTON

flexible functional form
$\chi^{2} /$ dof ~ 1.1

DEUTERON

New results for $h_{1}{ }^{u_{v}}$ and $h_{1}{ }^{d_{v}}$
 1) Hessian method
 A. Bacchetta, A.Courtoy, M.R., in preparation

"flexible" form

New results for $h_{1}{ }^{u_{v}}$ and $h_{1}{ }^{d_{v}}$
 1) Hessian method
 A. Bacchetta, A.Courtoy, M.R., in preparation

"rigid" form

New results from fitting both p and D data 2) Monte Carlo method

1. generate N replicas of data with Gaussian noise at 1σ
2. choose N such that keep same mean and std. deviation of data
3. fit N times the data $\Rightarrow \mathrm{N}$ different transversities
4. take 1σ confidence interval of the whole set (if Gaussian-distributed, it's $=68 \%$)

New results from fitting both p and D data 2) Monte Carlo method

1. generate N replicas of data with Gaussian noise at 1σ
2. choose N such that keep same mean and std. deviation of data
3. fit N times the data $\Rightarrow \mathrm{N}$ different transversities
4. take 1σ confidence interval of the whole set (if Gaussian-distributed, it's = 68\%)

New results from fitting both p and D data 2) Monte Carlo method

1. generate N replicas of data with Gaussian noise at 1σ
2. choose N such that keep same mean and std. deviation of data
3. fit N times the data $\Rightarrow \mathrm{N}$ different transversities
4. take 1σ confidence interval of the whole set (if Gaussian-distributed, it's $=68 \%$)

New results for $h_{1}{ }^{u_{v}}$ and $h_{1}{ }^{d_{v}}$

2) Monte Carlo method

"flexible" form

1σ error band from replicas @2.4 GeV²

Best fit central curve @2.4 GeV² and standard 1σ error band

New results for $h_{1}{ }^{u_{v}}$ and $h_{1}{ }^{d_{v}}$

2) Monte Carlo method

"flexible" form

1σ error band from replicas @2.4 GeV²

Best fit central curve @2.4 GeV² and standard 1σ error band

New results for $h_{1}{ }^{u_{v}}$ and $h_{1}{ }^{d_{v}}$

2) Monte Carlo method

"rigid" form

Can we find "unforeseen" replica?

Yes, here at $\mathbf{G e V}^{2}$

$X^{2} /$ dof
1.56557
1.42199
1.79911
2.07397
1.75523

Can we find "unforeseen" replica?

Yes, here at $1 \mathrm{GeV}^{2}$

$X^{2} /$ dof
1.56557
1.42199
1.79911
2.07397
1.75523

but most replicas "want" to merge

 to lower Soffer bound, driven by deuteron data

- Compass 2007 p +2004 D
- Compass $2010 p+2004$ D

工 Soffer bound evolved at $\mathrm{Q}^{2}=10 \mathrm{GeV}^{2}$ including error estimate $\Delta \mathrm{g}_{1}$ from

De Florian, Sassot, Stratmann, Vogelsang, PR D80 (09)

- Compass 2007 p +2004 D
- Compass $2010 p+2004$ D

工- Soffer bound evolved at $\mathrm{Q}^{2}=10 \mathrm{GeV}^{2}$ including error estimate Δg_{1} from

De Florian, Sassot, Stratmann, Vogelsang, PR D80 (09)

- Compass 2007 p +2004 D
- Compass $2010 \mathrm{p}+2004 \mathrm{D}$

is there anything going on ?

see Ralston, arXiv:0810.0871

A confining gauge theory violates the completeness of asymptotic states held as foundation points of the S-matrix. Spin-dependent experiments can yield results that appear to violate quantum mechanics. The point is illustrated by violation of the Soffer bound in QCD....

tensor charges

A. Bacchetta, A.Courtoy, M.R., in preparation

Tensor Charge

1-flexible
 2-hybrid
 3-rigid

where we have data

$$
\delta q=\int_{6.4 \times 10^{-3}}^{0.28} d x h_{1}^{q}(x)
$$

Truncated tensor charge d at $1 \mathrm{GeV}^{2}$

tensor charges

A. Bacchetta, A.Courtoy, M.R., in preparation

Tensor Charge

full range $10^{-10}-1$

Future?

PHENIX data

work on predictions for $p p^{\uparrow} \rightarrow\left(\pi^{+} \pi^{-}\right) X$ still in progress..

R.Yang, Beijing Transversity Workshop (08)

Status of transversity studies

