

Fragmentation 2012 RIKEN, Nov. 09-11 2012

di-hadron based transversity extraction or the importance of di-hadron fragmentation (DiFF or IFF)

Marco Radici

In collaboration with A. Bacchetta (Univ. Pavia) A. Bianconi (Univ. Brescia) A. Courtoy (Univ. Liege)

Outline

• What are DiFF and Where to extract them

• Why do we need them ? the quest for transversity: Collins vs. IFF

- Who did what ? (= the present situation)
- Which are the latest "press news"?
- Perspectives

General framework

Single-hadron fragmentation

K_T-dependent fragmentation functions

Single-hadron fragmentation

Integrate over the transverse momentum

Standard fragmentation functions

 $D_1^{q \to h}(z)$

No Collins fragmentation function

Single-hadron fragmentation

Di-hadron fragmentation

K_T-dependent DiFF

from q-q correlator $\Delta(z_1, z_2, K_T, R_T)$ project out :

Di-hadron fragmentation

Integrate over the transverse momentum

$$\int d\mathbf{K}_T \left(\mathbf{S}_T^q \times \mathbf{K}_T \right) H_1^{\perp q \to h_1 h_2} + \left(\mathbf{S}_T^q \times \mathbf{R}_T \right) H_1^{\triangleleft q \to h_1 h_2} \longrightarrow \left(\mathbf{S}_T^q \times \mathbf{R}_T \right) H_1^{\triangleleft q \to h_1 h_2} (z_1, z_2, R_T^2)$$

Di-hadron fragmentation

 h_1

 $2R_T$

$$d\mathbf{K}_T \left(\mathbf{S}_T^q \times \mathbf{K}_T \right) H_1^{\perp q \to h_1 h_2} + \left(\mathbf{S}_T^q \times \mathbf{R}_T \right) H_1^{\triangleleft q \to h_1 h_2} \longrightarrow \left(\mathbf{S}_T^q \times \mathbf{R}_T \right) H_1^{\triangleleft q \to h_1 h_2} (z_1, z_2, R_T^2)$$

Chiral-odd $H_1^{\triangleleft q \to h_1 h_2}$ survives ! (memo: h₁,h₂ must be distinguishable!)

Where do DiFF occur?

Where do DiFF occur?

Factorization

(at NLO & LL, same DGLAP as single-h case

F.Ceccopieri, M.R., A.Bacchetta, P.L. **B650**(07)

Universality

Where do DiFF occur?

Invariant mass spectrum

*OPAL, ZP***C56** (92)

Non trivial !

hadron collisions

Invariant mass spectrum

- In-medium modifications
- Mass shifts (Q)

in the

SIDIS

Invariant mass spectrum

HERMES, JHEPO6 (08)

the Why

how to extract transversity: Collins vs. IFF

The Collins mechanism

J. Collins, NP**B396** (93)

$$\mathbf{k} \times \mathbf{P}_h \cdot \mathbf{S}_T \propto \cos\left(\frac{\pi}{2} - \phi\right) = \sin\phi$$

transverse motion of hadron = spin analyzer of fragmenting quark

The Collins mechanism

J. Collins, NP**B396** (93)

$$\mathbf{k} \times \mathbf{P}_h \cdot \mathbf{S}_T \propto \cos\left(\frac{\pi}{2} - \phi\right) = \sin\phi$$

transverse motion of hadron

spin analyzer of fragmenting quark

Effects of TMD evolution

Effects of TMD evolution

is it similar for Collins effect ? Need to check..

Comparison with models

 $\mathbf{x} \mathbf{h}_1(\mathbf{x})$

[0] M. Anselmino et al., arXiv:0812.4366

[1-8] models

TMD factorization \rightarrow TMD evolution

- Convolution
- Soft factors
- Evolution and Sudakov form factors

is there a way to skip all this?

TMD factorization \rightarrow TMD evolution

- Convolution
- Soft factors
- Evolution and Sudakov form factors

is there a way to skip all this ?

The IFF mechanism

Collins, Heppelman, Ladinsky, NP B420 (94)

azimuthal orientation of hadron pair

spin analyzer of fragmenting quark

SIDIS SSA: Collins vs. IFF

 ϕ_h Indiron plane P_h

M.R. et al., PR D65 (02); A. Bacchetta & M.R., PR D67 (03)

 M_h^2

relative to the lepton-scattering plane, of the target "↑" state. Twist-3 contribution polarized and unpolarized cross sections appear with different azimuthal depende

and

$$H_{1,q}^{\triangleleft}(z, M_{\pi\pi}, \cos\theta) \simeq H_{1,q}^{\triangleleft, sp}(z, M_{\pi\pi}) + H_{1,q}^{\triangleleft, pp}(z, M_{\pi\pi}) \cos\theta,$$

where the Legendre expansions are truncated to include only the s- and p-wave con assumed to be a valid approximation in the range of the invariant mas [43], which is typical of the present experiment.

In refs. [15, 37, 43], it was proposed to measure σ_{UU} and σ_{UT} integrated over θ , which has the advantage that in the resulting expression for these cross sections fragmentation functions that appear are $D_{1,q}(z, M_{\pi\pi})$ and $H_{1,q}^{\triangleleft,sp}(z, M_{\pi\pi})$ (see eqs. However, this requires an experimental acceptance that is complete in θ , which is to achieve, not only because of the geometrical acceptance of the detector, but als of the acceptance in the momentum of the detected pions. As the momentum $|P_{\pi}| > 1$ GeV strongly influences the θ distribution, the measured asymmetry kept differential in θ .

The single-spin asymmetry $A_{UT} \equiv \frac{1}{|S_T|} \sigma_{UT} / \sigma_{UU}$ Pontains components of a source of the model of the model of the model of the spin of the model interest here, which is related to the product of transversity and the fragmentation $H_1^{\triangleleft,sp}$, is defined as Carrering s θ do wedde sin (φρ

2 Ida

$$A_{UT}^{\sin(\phi_{R\perp}+\phi_{S})\sin\theta} \equiv \frac{2}{|S_{T}|} \frac{\int \operatorname{decs} \theta \, \mathrm{d}\varphi_{R\perp} \, \mathrm{d}\varphi_{S} \, \mathrm{d}\sigma_{UT}}{\int \operatorname{decs} \theta \, \mathrm{d}\varphi_{R\perp} \, \mathrm{d}\varphi_{S} \, \mathrm{d}\sigma_{U}}$$

$$\lim_{UT} (\varphi_{R}+\phi_{S})\sin\theta = -\frac{1-y}{1-y+y^{2}/2} \frac{|\mathbf{R}|^{2}}{M_{h}} \frac{\sum_{q} (\theta_{q}^{2} (h_{1}^{q}) \otimes \mathbf{H}_{1,q \to \pi}^{q} + \pi_{\pi}^{-1} (z, M_{h}^{2}))}{\sum_{q} (\theta_{q}^{2} - \theta_{T})^{2}} \frac{|\mathbf{R}|^{2}}{\sum_{q} (\theta_{q}^{2} (h_{1}^{q}) \otimes \mathbf{H}_{1,q \to \pi}^{q} + \pi_{\pi}^{-1} (z, M_{h}^{2}))|}{\int (1-y+y^{2})^{2}} \frac{|\mathbf{R}|^{2}}{M_{h}} \frac{\sum_{q} (\theta_{q}^{2} (h_{1}^{q}) \otimes \mathbf{H}_{1,q \to \pi}^{q} + \pi_{\pi}^{-1} (z, M_{h}^{2}))|}{\sum_{q} (1-y+y^{2})^{2}} \frac{|\mathbf{R}|^{2}}{2} \sqrt{1(z_{4} (M_{\pi\pi}^{2} + \theta_{T})^{2} + \theta_{T}^{2} + \theta_{T}$$

sabato 10 novembre 2012

$$\Lambda$$
 (m x M ϕ ϕ $0) = 1 N^{\uparrow} - N^{\downarrow}$

SIDIS SSA: Collins vs. IFF

 $1 \dots 0 M D D D (\neg / 0)$

relative to the lepton-scattering plane, of the target "\" state. Twist-3 contribution
polarized and unpolarized cross sections appear with different azimuthal depend
Both dihadron fragmentation functions
$$D_{1,q}$$
 and $H_{1,q}^{\triangleleft}$ can be expanded in
Legendre functions of $c g g q$ Rende $[43], \otimes H_{1,q}^{\perp,q} \to h]$ $(x, z, P_{h\perp}^2)$
 $\overline{1D_{1,q}(yM_{\pi\pi},ygg)} = \overline{D_{1,q}(z,M_{\pi\pi})} e^2 q^3 f g (M_{\pi\pi}) D g (zM_{\pi\pi}) \frac{1}{4}(3\cos^2 q)$
and

$$H_{1,q}^{\triangleleft}(z, M_{\pi\pi}, \cos\theta) \simeq H_{1,q}^{\triangleleft, sp}(z, M_{\pi\pi}) + H_{1,q}^{\triangleleft, pp}(z, M_{\pi\pi}) \cos\theta,$$

where the Legendre expansions are truncated to include only the s- and p-wave con is assumed to be a valid approximation in the range of the invariant mas [43], which is typical of the present experiment.

In refs. [15, 37, 43], it was proposed to measure σ_{UU} and σ_{UT} integrated over θ , which has the advantage that in the resulting expression for these cross sections fragmentation functions that appear are $D_{1,q}(z, M_{\pi\pi})$ and $H_{1,q}^{\triangleleft,sp}(z, M_{\pi\pi})$ (see eqs. However, this requires an experimental acceptance that is complete in θ , which is to achieve, not only because of the geometrical acceptance of the detector, but als of the acceptance in the momentum of the detected pions. As the momentum $|P_{\pi}| > 1$ GeV strongly influences the θ distribution, the measured asymmetry kept differential in θ .

The single-spin asymmetry $A_{UT} \equiv \frac{1}{|S_T|} \sigma_{UT} / \sigma_{UU}$ Pontains components of a source ous Fourier and Legendre expansion. The amplitude $A_{UT}^{\sin(\phi_R \perp \frac{P_R \phi_S}{h \phi_S}) \sin \theta}$ of the model. interest here, which is related to the product of transversity and the fragmentation $H_1^{\triangleleft,sp}$, is defined as

$$A_{UT}^{\sin(\phi_{R\perp}+\phi_{S})\sin\theta}(x,y,z,M_{h}^{2}) = -\frac{1-y}{1-y+y^{2}/2} \frac{|\mathbf{R}|}{M_{h}} \sum_{\substack{sin(\phi_{R\perp}+\phi_{S})\sin\theta}} \frac{2}{|\mathbf{S}_{T}|} \frac{\int d\cos\theta \, d\phi_{R\perp} \, d\phi_{S} \, d\phi_{R\perp} \, \phi_{S} \, d\sigma_{UT}^{7}/\sin\theta}{\int dcs\theta \, d\phi_{R\perp} \, d\phi_{S} \, d\sigma_{UT}^{7}/\sin\theta}}{\int dcs\theta \, d\phi_{R\perp} \, d\phi_{S} \, d\sigma_{UT}^{7}/\sin\theta}} |\mathbf{R}| = \frac{M_{h}}{2} \sqrt{1-\frac{4m_{\pi}^{2}}{M_{h}^{2}}}$$
Due to the factor e_{q}^{2} , the amplitude is expected to be up -quark dominated. The results reported here are extracted from the single-spin asymmetry

Due to the factor e_q^2 , the amplitude is expected to be *up*-quark dominated. The results reported here are extracted from the single-spin asymmetry

$$A_{\text{res}}(m \approx M - \phi_{\text{res}}, \theta) = \frac{1}{N^{\uparrow} - N^{\downarrow}}$$

sabato 10 novembre 2012

 $H_1^{\triangleleft q}(z_1, z_2, M_h^2) \rightarrow z = z_1 + z_2 \qquad \approx H_{1,sp}^{\triangleleft q}(z, M_h^2) + \cos \theta H_{1,pp}^{\triangleleft q}$ $\zeta = \frac{z_1 - z_2}{z} = a + b \cos \theta$

$$\begin{split} & \sum_{q} e_{q}^{2} h_{1}^{q}(x) \ H_{1,q \to \pi^{+}\pi^{-}}^{\triangleleft}(z, M_{h}^{2}) \\ & \sum_{q} e_{q}^{2} f_{1}^{q}(x) \ D_{1,q \to \pi^{+}\pi^{-}}(z, M_{h}^{2}) \\ & = \frac{M_{h}}{2} \sqrt{1 - \frac{4m_{\pi}^{2}}{M_{h}^{2}}} \end{split}$$

sabato 10 novembre 2012

$$H_1^{\triangleleft q}(z_1, z_2, M_h^2) \rightarrow z = z_1 + z_2 \qquad \approx H_{1,sp}^{\triangleleft q}(z, M_h^2) + \cos \theta H_{1,pp}^{\triangleleft q}$$
$$\zeta = \frac{z_1 - z_2}{z} = a + b \cos \theta$$

$$\begin{aligned} & \sum_{q} e_{q}^{2} h_{1}^{q}(x) \ H_{1,q \to \pi^{+}\pi^{-}}^{\triangleleft}(z, M_{h}^{2}) \\ & \sum_{q} e_{q}^{2} f_{1}^{q}(x) \ D_{1,q \to \pi^{+}\pi^{-}}(z, M_{h}^{2}) \end{aligned} \\ &= \frac{M_{h}}{2} \sqrt{1 - \frac{4m_{\pi}^{2}}{M_{h}^{2}}} \end{aligned}$$

sabato 10 novembre 2012

V

$$\begin{split} H_1^{\triangleleft q}(z_1,z_2,M_h^2) \to &z = z_1 + z_2 \\ \zeta &= \frac{z_1 - z_2}{z} = a + b \cos \theta \\ \text{partial wave expansion} \\ \text{in Legendre polinomials} \\ \text{of } \cos \theta \end{split} \approx H_{1,sp}^{\triangleleft q}(z,M_h^2) + \cos \theta H_{1,pp}^{\triangleleft q} \\ \swarrow \\ \chi \\ \text{weight of} \\ \text{interference} \\ (\pi^+\pi^-)_{\text{s}} \text{ and } (\pi^+\pi^-)_{\text{p}} \end{split}$$

$$\frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1,q \to \pi^{+}\pi^{-}}^{\triangleleft}(z, M_{h}^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1,q \to \pi^{+}\pi^{-}}(z, M_{h}^{2})}$$

$$M_{h} \int_{-1}^{-1} 4m_{\pi}^{2}$$

 $\overline{M_h^2}$

2

$$\begin{split} H_1^{\triangleleft q}(z_1,z_2,M_h^2) \to &z = z_1 + z_2 \\ \zeta &= \frac{z_1 - z_2}{z} = a + b \cos \theta \\ \text{partial wave expansion} \\ \text{in Legendre polinomials} \\ \text{of } \cos \theta \end{split} \approx H_{1,sp}^{\triangleleft q}(z,M_h^2) + \cos \theta H_{1,pp}^{\triangleleft q} \\ \swarrow \\ \chi \\ \text{weight of} \\ \text{interference} \\ (\pi^+\pi^-)_{\text{s}} \text{ and } (\pi^+\pi^-)_{\text{p}} \end{split}$$

$$\begin{aligned} \text{SIDIS} & A_{UT}^{\sin(\phi_R + \phi_S) \sin \theta}(x, y, z, M_h^2) = -\frac{1 - y}{1 - y + y^2/2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 h_1^q(x) \ H_{1,sp}^{\prec q}(z, M_h^2)}{\sum_q e_q^2 f_1^q(x) \ D_1(z, M_h^2)} \\ C_q \ e_q^2 \ f_1^q(x) \ D_{1,q \to \pi^+ \pi^-}(z, M_h^2) \end{aligned}$$

$$= \frac{M_h}{2} \sqrt{1 - \frac{4m_\pi^2}{M_h^2}}$$

$$\begin{split} H_1^{\triangleleft q}(z_1,z_2,M_h^2) \to &z = z_1 + z_2 \\ \zeta &= \frac{z_1 - z_2}{z} = a + b \cos \theta \\ \text{partial wave expansion} \\ \text{in Legendre polinomials} \\ \text{of } \cos \theta \end{split} \approx H_{1,sp}^{\triangleleft q}(z,M_h^2) + \cos \theta H_{1,pp}^{\triangleleft q} \\ \swarrow \\ \chi \\ \text{weight of} \\ \text{interference} \\ (\pi^+\pi^-)_{\text{s}} \text{ and } (\pi^+\pi^-)_{\text{p}} \end{split}$$

$$\begin{split} \text{SIDIS} & A_{UT}^{\sin(\phi_R + \phi_S) \sin \theta}(x, y, z, M_h^2) = -\frac{1 - y}{1 - y + y^2/2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 h_1^q(x) H_{1,sp}^{\triangleleft,q}(z, M_h^2)}{\sum_q e_q^2 f_1^q(x) D_{1,q \to \pi^+ \pi^-}(z, M_h^2)} \\ \sum_q e_q^2 f_1^q(x) D_{1,q \to \pi^+ \pi^-}(z, M_h^2) \\ e^+ e^- & A^{\cos(\phi_R + \overline{\phi}_R)}(\cos \theta_2, z, M_h^2, \overline{z}, \overline{M}_h^2) = a_{12} = \text{notation of Belle paper} \\ = \frac{M_h}{2} \sqrt{1 - \frac{4m_\pi^2}{M_h^2}} & \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \frac{|\mathbf{R}| \sin \theta}{M_h} \frac{|\overline{\mathbf{R}}| \sin \overline{\theta}}{\overline{M}_h} \frac{\sum_q e_q^2 H_{1,sp}^{\triangleleft,q}(z, M_h^2) H_{1,sp}^{\triangleleft,\overline{q}}(\overline{z}, \overline{M}_h^2)}{\sum_q e_q^2 D_1^q(z, M_h^2) D_1^{\overline{q}}(\overline{z}, \overline{M}_h^2)} \end{split}$$

X.Artru, J.Collins, ZPC **69** (96) D.Boer, R.Jakob, M.R., PR D**67** (03)

$$\begin{split} H_1^{\triangleleft q}(z_1,z_2,M_h^2) \to &z = z_1 + z_2 \\ \zeta &= \frac{z_1 - z_2}{z} = a + b \cos \theta \\ \text{partial wave expansion} \\ \text{in Legendre polinomials} \\ \text{of } \cos \theta \end{split} \approx H_{1,sp}^{\triangleleft q}(z,M_h^2) + \cos \theta H_{1,pp}^{\triangleleft q} \\ \swarrow \\ \chi \\ \text{weight of} \\ \text{interference} \\ (\pi^+\pi^-)_{\text{s}} \text{ and } (\pi^+\pi^-)_{\text{p}} \end{split}$$

$$\begin{split} \text{SIDIS} & A_{UT}^{\sin(\phi_{R}+\phi_{S})\sin\theta}(x,y,z,M_{h}^{2}) = -\frac{1-y}{1-y+y^{2}/2} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1,sp}^{4,q}(z,M_{h}^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1,q\to\pi^{+}\pi^{-}}(z,M_{h}^{2})} \\ \frac{2q}{D_{q}} e_{q}^{2} f_{1}^{q}(x) D_{1,q\to\pi^{+}\pi^{-}}(z,M_{h}^{2})}{e^{+} e^{-}} & A^{\cos(\phi_{R}+\overline{\phi}_{R})}(\cos\theta_{2},z,M_{h}^{2},\overline{z},\overline{M}_{h}^{2}) = a_{12} = \text{notation of Belle paper} \\ = \frac{M_{h}}{\sqrt{1-\frac{4m_{\pi}^{2}}{2}}} & \frac{\sin^{2}\theta_{2}}{1+\cos^{2}\theta_{2}} \frac{|\mathbf{R}|\sin\theta}{M_{h}} \frac{|\mathbf{\bar{R}}|\sin\bar{\theta}}{\overline{M}_{h}} \frac{\sum_{q} e_{q}^{2} H_{1,sp}^{4}(z,M_{h}^{2}) H_{1,sp}^{4}(\overline{z},\overline{M}_{h}^{2})}{\sum_{q} e_{q}^{2} D_{1}^{q}(z,M_{h}^{2}) D_{1}^{\bar{q}}(\overline{z},\overline{M}_{h}^{2})} \\ & \frac{\sin^{2}\theta_{2}}{1+\cos^{2}\theta_{2}} \frac{|\mathbf{R}|\sin\theta}{M_{h}} \frac{|\mathbf{\bar{R}}|\sin\bar{\theta}}{\overline{M}_{h}} \frac{\sum_{q} e_{q}^{2} H_{1,sp}^{4}(z,M_{h}^{2}) H_{1,sp}^{4}(\overline{z},\overline{M}_{h}^{2})}{\sum_{q} e_{q}^{2} D_{1}^{q}(z,M_{h}^{2}) D_{1}^{\bar{q}}(\overline{z},\overline{M}_{h}^{2})} \\ & \frac{X.Artru, J.Collins, ZPC 69 (96)}{D.Boer, R. Jakob, M.R., PR D67 (03)} \end{split}$$

Advantages of IFF mechanism

- Simple products instead of convolutions
- No complications in factorization
- Evolution equations understood
- Universality ok
- "cleaner" e+e- extraction (less background)

<2008 : the "model" era

A. Bacchetta & *M.R.*, *PR D***74** (06)

1. $q \rightarrow QX_1 \rightarrow \pi^+ \pi^- X_1$ 2. $q \rightarrow \omega X_2 \rightarrow \pi^+ \pi^- X_2$ 3. $q \rightarrow \omega X'_3 \rightarrow \pi^+ \pi^- (\pi^0 X_3)$ 4. $q \rightarrow \eta X_4 \rightarrow \pi^+ \pi^- X_4$ 5. $q \rightarrow K^0 X_5 \rightarrow \pi^+ \pi^- X_5$ 6. All-(1.+2.+3.)=backgr 7. All

→ predict asymmetry

2008 : the "data" era HERMES

HERMES, JHEPO6 (08)

 $0.2 \le z$ $0.5 \le M_h \le 1 \text{ GeV}$

flavor symmetry: $D_1^u = D_1^d = D_1^{\bar{u}} = D_1^{\bar{d}}$; $H_1^{\triangleleft u} = H_1^{\triangleleft \bar{d}} = -H_1^{\triangleleft d} = -H_1^{\triangleleft \bar{u}}$

Using Torino's transversity without errors

Model has to be reduced by a factor $0.32\pm0.06 (\chi^2/d.o.f.=1.26)$

model prediction +
fitting normalization

A.Bacchetta, F.Ceccopieri, A.Mukherjee, M.R., PR D79 (09)

A. Vossen et al. (Belle), PRL 107 (11)

sabato 10 novembre 2012

fitting the Belle data

A. Courtoy, A. Bacchetta, M.R., A. Bianconi, PRD 85 (12)

$$d\sigma$$
(two pairs) = $\frac{1}{4\pi^2} d\sigma^0 \left(1 + \cos(\phi_R + \overline{\phi}_R) A\right)$

fitting the Belle data

A. Courtoy, A. Bacchetta, M.R., A. Bianconi, PRD 85 (12)

$$d\sigma$$
(two pairs) = $\frac{1}{4\pi^2} d\sigma^0 \left(1 + \cos(\phi_R + \overline{\phi}_R) A\right)$

1. parametrize $DiFF(z, M_h)$ at $Q_0^2 = 1$ GeV inspired by model

2. evolve DiFF's at $Q_{Belle}^2 = 100 \text{ GeV}$ (LO, no gluons)

3. integrate $d\sigma^0$ to get $d\sigma^0(1 \text{ pair}) \propto D_1(z, M_h)$ no unpol. data \Rightarrow fit output of PYTHIA Monte Carlo for (π^+, π^-) emission at Belle kin.

4. fit Belle data for asymmetry $A \Rightarrow extract H_1^{\triangleleft q}$

 \overline{P}_1

 $P_2 \pi - \varphi_R$

 \overline{P}_h

• $\pounds_{MC} = 647.26 \text{ pb}^{-1} \iff >2M \text{ events } \sim 2 n_{\pi+\pi}$ no cuts in acceptance • $40(z) \times 50(Mh) \times 4 \text{ flavors } \times 4 \text{ channels } = 32K \text{ bins}$ $(u,d,s,c) \quad (Q,\omega,K^0 \text{ decays } + \text{ continuum})$ • $2m_{\pi} \le M_h \le 1.3 \text{ GeV}$ $0.2 \le z$ $1 >> 2M_h/zQ$ ($\Rightarrow 31585 \text{ bins}$) • isospin symmetry + charge conjugation: $u = \overline{u} = d = \overline{d}$ $s = \overline{s}$ $c = \overline{c}$ $(except K^0 \rightarrow \pi^+\pi^-)$

• general form: parameters $17(\text{continuum}) + 20(Q) + 20(\omega) + 22(K^0) = 79$ $1.69 \quad 1.28 \quad 1.68 \quad 1.85 \quad 1.62$

• $\mathcal{L}_{MC} = 647.26 \text{ pb}^{-1} \iff >2M \text{ events } \sim 2 \text{ n}_{\pi+\pi}$ no cuts in acceptance • $40(z) \times 50(Mh) \times 4 \text{ flavors } \times 4 \text{ channels } = 32K \text{ bins}$ (u,d,s,c) (Q, ω ,K⁰ decays + continuum) • $2m_{\pi} \leq M_{h} \leq 1.3 \text{ GeV}$ 0.2 $\leq z$ 1 $>> 2M_{h}/zQ$ (\Rightarrow 31585 bins) • isospin symmetry + charge conjugation: u = $\overline{u} = d = \overline{d}$ s = \overline{s} c = \overline{c} (except K⁰ $\Rightarrow \pi^{+}\pi^{-}$) • general form: $D_{1}^{q}(z, M_{h}) \sim z^{\alpha_{1}}(1-z)^{\alpha_{2}} 2|\mathbf{R}|^{\beta} \text{ BW}(M_{h}) \exp[d_{\{\delta\}}(z) + h_{\{\lambda\}}(M_{h}) + f_{\{\gamma\}}(zM_{h})]$ parameters 17(continuum) + 20(Q) + 20(ω) + 22(K⁰) = 79 • 1.69 1.28 1.68 1.85 1.62

• $\mathcal{L}_{MC} = 647.26 \text{ pb}^{-1} \iff >2M \text{ events } \sim 2 \text{ n}_{\pi+\pi}$ no cuts in acceptance • $40(z) \times 50(\text{Mh}) \times 4 \text{ flavors } \times 4 \text{ channels } = 32\text{K} \text{ bins}$ $(u,d,s,c) \quad (Q,\omega,K^0 \text{ decays } + \text{ continuum})$ • $2m_{\pi} \le M_h \le 1.3 \text{ GeV} \quad 0.2 \le z \quad 1 >> 2M_h/zQ \quad (\Rightarrow 31585 \text{ bins})$ • isospin symmetry + charge conjugation: $u = \overline{u} = d = \overline{d} \quad s = \overline{s} \quad c = \overline{c}$ $(except \ K^0 \rightarrow \pi^+\pi^-)$ • general form: $D_1^q(z, M_h) \sim z^{\alpha_1}(1-z)^{\alpha_2} 2|\mathbf{R}|^{\beta} \text{ BW}(M_h) \exp[d_{\{\delta\}}(z) + h_{\{\lambda\}}(M_h) + f_{\{\gamma\}}(zM_h)]$ parameters $17(\text{continuum}) + 20(Q) + 20(\omega) + 22(K^0) = 79$ • $\chi_{ch}^2 = \sum_q \sum_{ij} \frac{(N_{ij}^{ch,q} - \mathcal{L}_{MC}(d\sigma_{ch}^{0,q})_{ij})^2}{\mathcal{L}_{MC}(d\sigma_{ch}^{0,q})_{ij}} = 1.69 \quad 1.28 \quad 1.68 \quad 1.85 \quad 1.62$

results for unpolarized DiFF D_1^q

A. Courtoy, A. Bacchetta, M.R., A. Bianconi, PRD 85 (12)

 $A(\cos\theta_2, z, M_h^2, \overline{z}, \overline{M}_h^2) = \frac{\sin^2\theta_2}{1 + \cos^2\theta_2} \frac{|\mathbf{R}| \sin\theta}{M_h} \frac{|\mathbf{\overline{R}}| \sin\overline{\theta}}{\overline{M}_h} \frac{\sum_q e_q^2 H_{1,sp}^{\triangleleft q}(z, M_h^2) H_{1,sp}^{\triangleleft \overline{q}}(\overline{z}, \overline{M}_h^2)}{\sum_q e_q^2 D_1^q(z, M_h^2) D_1^{\overline{q}}(\overline{z}, \overline{M}_h^2)}$

$$A(\cos\theta_2, z, M_h^2, \overline{z}, \overline{M}_h^2) = \frac{\sin^2\theta_2}{1 + \cos^2\theta_2} \frac{|\mathbf{R}| \sin\theta}{M_h} \frac{|\overline{\mathbf{R}}| \sin\overline{\theta}}{\overline{M}_h} \frac{\sum_q e_q^2 H_{1,sp}^{\triangleleft q}(z, M_h^2) H_{1,sp}^{\triangleleft \overline{q}}(\overline{z}, \overline{M}_h^2)}{\sum_q e_q^2 D_1^q(z, M_h^2) D_1^{\overline{q}}(\overline{z}, \overline{M}_h^2)}$$

< > average bin value of each angle $\# (\pi^+, \pi^-) \text{ pairs} \qquad n_q(Q^2) = \int dz \int dM_h^2 D_1^q(z, M_h^2, Q^2)$ $\# \text{ pol.} (\pi^+, \pi^-) \text{ pairs} \qquad n_q^{\uparrow}(Q^2) = \int dz \int dM_h^2 \frac{|\mathbf{R}|}{M_h} H_{1,sp}^{\triangleleft q}(z, M_h^2, Q^2)$

$$A(\cos\theta_2, z, M_h^2, \overline{z}, \overline{M}_h^2) = \frac{\sin^2\theta_2}{1 + \cos^2\theta_2} \frac{|\mathbf{R}|\sin\theta}{M_h} \frac{|\overline{\mathbf{R}}|\sin\overline{\theta}}{\overline{M}_h} \frac{\sum_q e_q^2 H_{1,sp}^{\triangleleft q}(z, M_h^2) H_{1,sp}^{\triangleleft \overline{q}}(\overline{z}, \overline{M}_h^2)}{\sum_q e_q^2 D_1^q(z, M_h^2) D_1^{\overline{q}}(\overline{z}, \overline{M}_h^2)}$$

< > average bin value of each angle

$$\# (\pi^+, \pi^-) \text{ pairs } n_q(Q^2) = \int dz \int dM_h^2 D_1^q(z, M_h^2, Q^2)$$

pol. (π^+, π^-) pairs $n_q^{\uparrow}(Q^2) = \int dz \int dM_h^2 \frac{|\mathbf{R}|}{M_h} H_{1,sp}^{\triangleleft q}(z, M_h^2, Q^2)$

$$A(z, M_h^2, Q^2) = \frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle} \frac{|\mathbf{R}| \langle \sin \theta \rangle \langle \sin \overline{\theta} \rangle}{M_h} \frac{\sum_q e_q^2 H_{1,sp}^{\triangleleft q}(z, M_h^2) n_{\overline{q}}^{\uparrow}(Q^2)}{\sum_q e_q^2 D_1^q(z, M_h^2) n_q(Q^2)}$$

$$A(\cos\theta_2, z, M_h^2, \overline{z}, \overline{M}_h^2) = \frac{\sin^2\theta_2}{1 + \cos^2\theta_2} \frac{|\mathbf{R}| \sin\theta}{M_h} \frac{|\overline{\mathbf{R}}| \sin\overline{\theta}}{\overline{M}_h} \frac{\sum_q e_q^2 H_{1,sp}^{\triangleleft q}(z, M_h^2) H_{1,sp}^{\triangleleft \overline{q}}(\overline{z}, \overline{M}_h^2)}{\sum_q e_q^2 D_1^q(z, M_h^2) D_1^{\overline{q}}(\overline{z}, \overline{M}_h^2)}$$

< > average bin value of each angle

$$\# (\pi^+, \pi^-) \text{ pairs} \qquad n_q(Q^2) = \int dz \int dM_h^2 D_1^q(z, M_h^2, Q^2) \\ \# \text{ pol.} (\pi^+, \pi^-) \text{ pairs} \qquad n_q^{\uparrow}(Q^2) = \int dz \int dM_h^2 \frac{|\mathbf{R}|}{M_h} H_{1,sp}^{\triangleleft q}(z, M_h^2, Q^2)$$

$$A(z, M_h^2, Q^2) = \frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle} \frac{|\mathbf{R}| \langle \sin \theta \rangle \langle \sin \overline{\theta} \rangle}{M_h} \frac{\sum_q e_q^2 H_{1,sp}^{\triangleleft q}(z, M_h^2) n_{\overline{q}}^{\uparrow}(Q^2)}{\sum_q e_q^2 D_1^q(z, M_h^2) n_q(Q^2)}$$

isospin symmetry + charge conjugation $u = -d = -\overline{u} = \overline{d}$

$$A(\cos\theta_2, z, M_h^2, \overline{z}, \overline{M}_h^2) = \frac{\sin^2\theta_2}{1 + \cos^2\theta_2} \frac{|\mathbf{R}|\sin\theta}{M_h} \frac{|\overline{\mathbf{R}}|\sin\overline{\theta}}{\overline{M}_h} \frac{\sum_q e_q^2 H_{1,sp}^{\triangleleft q}(z, M_h^2) H_{1,sp}^{\triangleleft \overline{q}}(\overline{z}, \overline{M}_h^2)}{\sum_q e_q^2 D_1^q(z, M_h^2) D_1^{\overline{q}}(\overline{z}, \overline{M}_h^2)} - \frac{1}{2} \frac{|\mathbf{R}|\sin\theta}{\overline{M}_h} \frac{|\overline{\mathbf{R}}|\sin\theta}{\overline{M}_h} \frac{|\overline{\mathbf{R}}|\sin\theta}{\overline{M}_h} \frac{\sum_q e_q^2 H_{1,sp}^{\triangleleft q}(z, M_h^2) H_{1,sp}^{\triangleleft \overline{q}}(\overline{z}, \overline{M}_h^2)}{\sum_q e_q^2 D_1^q(z, M_h^2) D_1^{\overline{q}}(\overline{z}, \overline{M}_h^2)} - \frac{1}{2} \frac{|\mathbf{R}|\sin\theta}{\overline{M}_h} \frac{|\overline{\mathbf{R}}|\sin\theta}{\overline{M}_h} \frac{|\overline{\mathbf{R}}|\sin\theta}{\overline{M}_h} \frac{\sum_q e_q^2 H_{1,sp}^{\triangleleft q}(z, M_h^2) H_{1,sp}^{\triangleleft \overline{q}}(\overline{z}, \overline{M}_h^2)}{\sum_q e_q^2 D_1^q(z, M_h^2) D_1^{\overline{q}}(\overline{z}, \overline{M}_h^2)} - \frac{1}{2} \frac{|\overline{\mathbf{R}}|\sin\theta}{\overline{M}_h} \frac{|\overline{\mathbf{R}}|\sin\theta}{\overline{M}_h}$$

< > average bin value of each angle

$$\# (\pi^{+}, \pi^{-}) \text{ pairs } n_{q}(Q^{2}) = \int dz \int dM_{h}^{2} D_{1}^{q}(z, M_{h}^{2}, Q^{2})$$

$$\# \text{ pol. } (\pi^{+}, \pi^{-}) \text{ pairs } n_{q}^{\uparrow}(Q^{2}) = \int dz \int dM_{h}^{2} \frac{|\mathbf{R}|}{M_{h}} H_{1,sp}^{\triangleleft q}(z, M_{h}^{2}, Q^{2})$$

$$A(z, M_h^2, Q^2) = \frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle} \frac{|\mathbf{R}| \langle \sin \theta \rangle \langle \sin \overline{\theta} \rangle}{M_h} \frac{\sum_q e_q^2 H_{1,sp}^{\triangleleft q}(z, M_h^2) n_{\overline{q}}^{\uparrow}(Q^2)}{\sum_q e_q^2 D_1^q(z, M_h^2) n_q(Q^2)}$$

isospin symmetry + charge conjugation $u = -d = -\overline{u} = \overline{d}$

u —
$$\sim \pi^+$$

$$- \pi^{-}$$

$$\mathcal{A}(z, M_h^2, Q^2) \approx -\frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle} \left\langle \sin \theta \right\rangle \left\langle \sin \overline{\theta} \right\rangle \frac{5}{9} \frac{\frac{|\mathbf{R}|}{M_h} H_{1, sp}^{\triangleleft \, u}(z, M_h^2) \, n_u^{\uparrow}(Q^2)}{\sum_q e_q^2 \, D_1^q(z, M_h^2) \, n_q(Q^2)}$$

$$A(z, M_h^2, Q^2) \approx -\frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle} \left\langle \sin \theta \right\rangle \left\langle \sin \overline{\theta} \right\rangle \frac{5}{9} \frac{\frac{|\mathbf{R}|}{M_h} H_{1, sp}^{\triangleleft \, u}(z, M_h^2) \, n_u^{\uparrow}(Q^2)}{\sum_q e_q^2 \, D_1^q(z, M_h^2) \, n_q(Q^2)}$$

$$A(z, M_h^2, Q^2) \approx -\frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle} \left\langle \sin \theta \right\rangle \left\langle \sin \overline{\theta} \right\rangle \frac{5}{9} \frac{\frac{|\mathbf{R}|}{M_h} H_{1,sp}^{\triangleleft \, u}(z, M_h^2)}{\sum_q e_q^2 D_1^{\triangleleft}(z, M_h^2)} \frac{n_u^{\uparrow}(Q^2)}{n_q(Q^2)}$$

$$A(z, M_h^2, Q^2) \approx -\frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle} \langle \sin \theta \rangle \langle \sin \overline{\theta} \rangle \frac{5}{9} \frac{\frac{|\mathbf{R}|}{M_h} H_{1,sp}^{\triangleleft u}(z, M_h^2)}{\sum_q e_q^2 D_1^q(z, M_h^2) n_q(Q^2)}$$
$$\int dz \int dM_h^2 A(z, M_h^2, Q^2) \times \left[\sum_q e_q^2 D_1^q(z, M_h^2) n_q(Q^2) \right] \times \left[-\frac{\langle 1 + \cos^2 \theta_2 \rangle}{\langle \sin^2 \theta_2 \rangle} \frac{1}{\langle \sin \theta \rangle \langle \sin \overline{\theta} \rangle} \frac{9}{5} \right] = \left[n_u^{\uparrow}(Q^2) \right]^2$$

$$\begin{split} A(z, M_h^2, Q^2) \approx -\frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle} \left\langle \sin \theta \right\rangle \left\langle \sin \overline{\theta} \right\rangle \frac{5}{9} \frac{\frac{|\mathbf{R}|}{M_h} H_{1,sp}^{\triangleleft \, u}(z, M_h^2) n_u^{\uparrow}(Q^2)}{\sum_q e_q^2 D_1^q(z, M_h^2) n_q(Q^2)} \\ \int dz \int dM_h^2 A(z, M_h^2, Q^2) \times \left[\sum_q e_q^2 D_1^q(z, M_h^2) n_q(Q^2) \right] \times \left[-\frac{\langle 1 + \cos^2 \theta_2 \rangle}{\langle \sin^2 \theta_2 \rangle} \frac{1}{\langle \sin \theta \rangle \langle \sin \overline{\theta} \rangle} \frac{9}{5} \right] = \left[n_u^{\uparrow}(Q^2) \right] \end{split}$$

• general form at $Q_0^2 = 1$: $H_{1,sp}^{\triangleleft q}(z, M_h) \sim (1-z) 2 |\mathbf{R}| \operatorname{BW}(M_h) \exp[d_{\{\delta\}}(z) + h_{\{\lambda\}}(M_h)] f_{\{\gamma\}}(zM_h)$

- 9 parameters
- chiral-odd LO evolution with *ad-hoc* modified HOPPET (M.Guagnelli-Pavia)
- $8(z) \times 8(M_h) \{z \in [0.8, 1], M_h \in [1.5, 2]\} = 46$ bins
- $\chi^2/dof = 0.57$
- errors dominated by Belle exp. A

results for polarized DiFF $H_1^{\triangleleft q}$

A. Courtoy, A. Bacchetta, M.R., A. Bianconi, PRD 85 (12)

A.Bacchetta, A. Courtoy, M.R., PRL 107 (11)

$$A_{UT}^{\sin(\phi_R + \phi_S) \sin \theta}(x, y, z, M_h^2) = -\frac{1 - y}{1 - y + y^2/2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 h_1^q(x) H_{1,sp}^{\triangleleft q}(z, M_h^2)}{\sum_q e_q^2 f_1^q(x) D_1^q(z, M_h^2)}$$

$$\begin{array}{c} D_{1}^{u} = D_{1}^{d} = D_{1}^{\bar{u}} = D_{1}^{d} \\ D_{1}^{s} = D_{1}^{\bar{s}} \\ D_{1}^{c} = D_{1}^{\bar{c}} \end{array}$$
recall
$$\begin{array}{c} D_{1}^{c} = D_{1}^{\bar{c}} \\ D_{1}^{c} = D_{1}^{\bar{c}} \end{array}$$

$$H_1^{\triangleleft u} = -H_1^{\triangleleft d} = -H_1^{\triangleleft \bar{u}} = H_1^{\triangleleft \bar{d}}$$
$$H_1^{\triangleleft s} = -H_1^{\triangleleft \bar{s}} = H_1^{\triangleleft c} = -H_1^{\triangleleft \bar{c}} = 0$$

A.Bacchetta, A. Courtoy, M.R., PRL 107 (11)

$$A_{UT}^{\sin(\phi_R + \phi_S) \sin \theta}(x, y, z, M_h^2) = -\frac{1 - y}{1 - y + y^2/2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 h_1^q(x) H_{1,sp}^{\triangleleft q}(z, M_h^2)}{\sum_q e_q^2 f_1^q(x) D_1^q(z, M_h^2)}$$

$$\begin{array}{c} D_{1}^{u} = D_{1}^{d} = D_{1}^{\bar{u}} = D_{1}^{d} \\ D_{1}^{s} = D_{1}^{\bar{s}} \\ \textbf{recall} \\ D_{1}^{c} = D_{1}^{\bar{c}} \end{array}$$

$$H_1^{\triangleleft u} = -H_1^{\triangleleft d} = -H_1^{\triangleleft \bar{u}} = H_1^{\triangleleft \bar{d}}$$
$$H_1^{\triangleleft s} = -H_1^{\triangleleft \bar{s}} = H_1^{\triangleleft c} = -H_1^{\triangleleft \bar{c}} = 0$$

$$A_{UT} \approx -\langle C(y) \rangle \frac{xh_1^{u_v}(x,Q^2) - \frac{1}{4}xh_1^{d_v}(x,Q^2)}{xf_1^{u+\overline{u}}(x,Q^2) + \frac{1}{4}xf_1^{d+\overline{d}}(x,Q^2) + \frac{1}{4}\frac{n_s(Q^2)}{n_u(Q^2)}xf_1^{s+\overline{s}}(x,Q^2)} \frac{n_u^{\uparrow}(Q^2)}{n_u(Q^2)}$$

A. Bacchetta, A. Courtoy, M.R., PRL 107 (11)

$$A_{UT}^{\sin(\phi_R + \phi_S) \sin \theta}(x, y, z, M_h^2) = -\frac{1 - y}{1 - y + y^2/2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 h_1^q(x) H_{1,sp}^{\triangleleft q}(z, M_h^2)}{\sum_q e_q^2 f_1^q(x) D_1^q(z, M_h^2)}$$

 $\begin{array}{l} D_{1}^{u} = D_{1}^{d} = D_{1}^{\bar{u}} = D_{1}^{\bar{d}} \\ D_{1}^{s} = D_{1}^{\bar{s}} \\ D_{1}^{c} = D_{1}^{\bar{c}} \end{array}$ recall $\begin{array}{l} D_{1}^{c} = D_{1}^{\bar{c}} \end{array}$

$$H_1^{\triangleleft u} = -H_1^{\triangleleft d} = -H_1^{\triangleleft \bar{u}} = H_1^{\triangleleft \bar{d}}$$
$$H_1^{\triangleleft s} = -H_1^{\triangleleft \bar{s}} = H_1^{\triangleleft c} = -H_1^{\triangleleft \bar{c}} = 0$$

$$A_{UT} \approx -\langle C(y) \rangle \frac{x h_1^{u_v}(x, Q^2) - \frac{1}{4} x h_1^{d_v}(x, Q^2)}{x f_1^{u + \overline{u}}(x, Q^2) + \frac{1}{4} x f_1^{d + \overline{d}}(x, Q^2) + \frac{1}{4} \frac{n_s(Q^2)}{n_u(Q^2)} x f_1^{s + \overline{s}}(x, Q^2)} \frac{n_u^{\uparrow}(Q^2)}{n_u(Q^2)} = -0.259$$
(11% error)

A. Bacchetta, A. Courtoy, M.R., PRL 107 (11)

$$A_{UT}^{\sin(\phi_R + \phi_S) \sin \theta}(x, y, z, M_h^2) = -\frac{1 - y}{1 - y + y^2/2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 h_1^q(x) H_{1,sp}^{\triangleleft q}(z, M_h^2)}{\sum_q e_q^2 f_1^q(x) D_1^q(z, M_h^2)}$$

 $D_1^u = D_1^d = D_1^{\bar{u}} = D_1^d$ $D_1^s = D_1^{\bar{s}}$ $D_1^c = D_1^{\bar{c}}$

$$H_1^{\triangleleft u} = -H_1^{\triangleleft d} = -H_1^{\triangleleft \bar{u}} = H_1^{\triangleleft \bar{d}}$$
$$H_1^{\triangleleft s} = -H_1^{\triangleleft \bar{s}} = H_1^{\triangleleft c} = -H_1^{\triangleleft \bar{c}} = 0$$

$$A_{UT} \approx -\langle C(y) \rangle \frac{xh_1^{u_v}(x,Q^2) - \frac{1}{4}xh_1^{d_v}(x,Q^2)}{xf_1^{u+\overline{u}}(x,Q^2) + \frac{1}{4}xf_1^{d+\overline{d}}(x,Q^2) + \frac{1}{4}\frac{n_s(Q^2)}{n_u(Q^2)}xf_1^{s+\overline{s}}(x,Q^2)} \frac{n_u^{\uparrow}(Q^2)}{n_u(Q^2)} = -0.259$$
(11% error)
from data
MSTW08LO
MSTW08LO

A. Bacchetta, A. Courtoy, M.R., PRL 107 (11)

$$A_{UT}^{\sin(\phi_R + \phi_S) \sin \theta}(x, y, z, M_h^2) = -\frac{1 - y}{1 - y + y^2/2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 h_1^q(x) H_{1,sp}^{\triangleleft q}(z, M_h^2)}{\sum_q e_q^2 f_1^q(x) D_1^q(z, M_h^2)}$$

 $D_1^u = D_1^d = D_1^{\bar{u}} = D_1^d$ $D_1^s = D_1^{\bar{s}}$ $D_1^c = D_1^{\bar{c}}$

$$\begin{aligned} H_1^{\triangleleft u} &= -H_1^{\triangleleft d} = -H_1^{\triangleleft \bar{u}} = H_1^{\triangleleft \bar{d}} \\ H_1^{\triangleleft s} &= -H_1^{\triangleleft \bar{s}} = H_1^{\triangleleft c} = -H_1^{\triangleleft \bar{c}} = 0 \end{aligned}$$

$$A_{UT} \approx -\langle C(y) \rangle \frac{xh_1^{u_v}(x,Q^2) - \frac{1}{4}xh_1^{d_v}(x,Q^2)}{xf_1^{u+\overline{u}}(x,Q^2) + \frac{1}{4}xf_1^{d+\overline{d}}(x,Q^2) + \frac{1}{4}\frac{n_s(Q^2)}{n_u(Q^2)}xf_1^{s+\overline{s}}(x,Q^2)} \frac{n_u^{\dagger}(Q^2)}{n_u(Q^2)} = -0.259$$
(11% error)
(11% error)
(11% error)

nem

2011 : the "collinear transversity" era

A. Bacchetta, A. Courtoy, M.R., PRL 107 (11)

based on data from

uncertainty band from Collins effect

M.Anselmino et al., NP **B191** (Proc.Supp.) (09)

2012 : COMPASS data officially released © COMPASS & HERMES

2002-4 Deuteron Data

2007 Proton Data

 $0.2 \leq z$ $0.28 \leq M_h \leq 1.2 \text{ GeV}$

Pavia model prediction

A. Bacchetta & M.R., PR D74 (06)

Which are the latest "press" news ?

New extraction : proton data

$$A_{UT} \approx -\langle C(y) \rangle \frac{xh_1^{u_v}(x,Q^2) - \frac{1}{4}xh_1^{d_v}(x,Q^2)}{xf_1^{u+\overline{u}}(x,Q^2) + \frac{1}{4}xf_1^{d+\overline{d}}(x,Q^2) + \frac{1}{4}\frac{n_s(Q^2)}{n_u(Q^2)}xf_1^{s+\overline{s}}(x,Q^2)} \frac{n_u^{\uparrow}(Q^2)}{n_u(Q^2)} \frac{n_u^{\uparrow}(Q^2)}{n_u(Q^2)}$$

New extraction : proton data

$$A_{UT} \approx -\langle C(y) \rangle \frac{xh_1^{u_v}(x,Q^2) - \frac{1}{4}xh_1^{d_v}(x,Q^2)}{xf_1^{u+\bar{u}}(x,Q^2) + \frac{1}{4}xf_1^{d+\bar{d}}(x,Q^2) + \frac{1}{4}\frac{n_s(Q^2)}{n_u(Q^2)}xf_1^{s+\bar{s}}(x,Q^2)} \frac{n_u^{+}(Q^2)}{n_u(Q^2)}$$
from data

New extraction : proton data

$$A_{UT} \approx -\langle C(y) \rangle \frac{xh_1^{u+u}(x,Q^2) - \frac{1}{4}xh_1^{d+u}(x,Q^2)}{xf_1^{u+u}(x,Q^2) + \frac{1}{4}xf_1^{d+d}(x,Q^2) + \frac{1}{4}\frac{n_x(Q^2)}{n_u(Q^2)}xf_1^{s+s}(x,Q^2)} \frac{n_u^*(Q^2)}{n_u(Q^2)} = -0.208$$
(9% error)
from data

2012 : the "collinear transversity fitting" era

combining proton and deuteron data \Rightarrow separate u_v and d_v components of h_1 \Rightarrow separately fit each component

2012 : the "collinear transversity fitting" era

combining proton and deuteron data \Rightarrow separate u_v and d_v components of h_1 \Rightarrow separately fit each component

functional form

 $xh_1^{q_v}(x) = \tanh\left[\sqrt{x} \left(A_q + B_q x + C_q x^2\right)\right] \left[\operatorname{SB}_q(x) + \operatorname{SB}_{\bar{q}}(x)\right]$

Soffer bound

$$SB_q(x) = \frac{1}{2} |f_1^q(x) + g_1^q(x)|$$

2012 : the "collinear transversity fitting" era

combining proton and deuteron data \Rightarrow separate u_v and d_v components of h_1 \Rightarrow separately fit each component

functional form

 $xh_1^{q_v}(x) = \tanh\left[\sqrt{x} \left(A_q + B_q x + C_q x^2\right)\right] \left[\operatorname{SB}_q(x) + \operatorname{SB}_{\bar{q}}(x)\right]$

Soffer bound

$$SB_q(x) = \frac{1}{2} |f_1^q(x) + g_1^q(x)|$$

MSTW08LO DSSV
2012 : the "collinear transversity fitting" era

combining proton and deuteron data \Rightarrow separate u_v and d_v components of h_1 \Rightarrow separately fit each component

functional form

$$xh_{1}^{q_{v}}(x) = \tanh\left[\sqrt{x}\left(A_{q} + B_{q}x + C_{q}x^{2}\right)\right] \left[\operatorname{SB}_{q}(x) + \operatorname{SB}_{\bar{q}}(x)\right]$$

$$\operatorname{SB}_{q} + \operatorname{SB}_{\bar{q}} \rightarrow \infty x \rightarrow 0$$

$$\operatorname{Soffer}_{\text{grants finite and stable}}$$

$$\operatorname{SB}_{q}(x) = \frac{1}{2} |_{x}$$

$$\operatorname{SB}_{q}(x) = \frac{1}{2} |_{x}$$

fer bound $\frac{1}{2} |f_1^q(x) + g_1^q(x)|$ MSTW08LO DSSV

gra

2012 : the "collinear transversity fitting" era

combining proton and deuteron data \Rightarrow separate u_v and d_v components of h₁ \Rightarrow separately fit each component

functional form

$$xh_1^{q_v}(x) = \tanh\left[\sqrt{x} \left(A_q + B_q x + C_q x^2\right)\right] \left[\operatorname{SB}_q(x) + \operatorname{SB}_{\bar{q}}(x)\right]$$

 $SB_q+SB_{\bar{q}} \rightarrow \infty x \rightarrow 0$ grants finite and stable tensor charge

> "flexible" form (2 nodes) we tried also $(A_q + B_q x)$ "rigid" form

Soffer bound $SB_q(x) = \frac{1}{2} |f_1^q(x) + g_1^q(x)|$ MSTW08LO DSSV

New results from fitting both p and D data Comparison with extraction Messian method

PROTON

DEUTERON

sabato 10 novembre 2012

New results for $h_1^{u_v}$ and $h_1^{d_v}$ **Our Flexible Functional Form 2nd Order polynomial** "flexible" form

New results for $h_1^{u_v}$ and $h_1^{d_v}$ **Our Rigid Functional Form** *1st order polynomial* preparation "rigid" form

New results from fitting both p and D data 2) Monte Carlo method A. Bacchetta, A. Courtoy, M.R., in preparation

1. generate N replicas of data with Gaussian noise at 1σ

- 2. choose N such that keep same mean and std. deviation of data
- 3. fit N times the data \Rightarrow N different transversities
- 4. take 1σ confidence interval of the whole set (if Gaussian-distributed, it's = 68%)

New results from fitting both p and D data 2) Monte Carlo method A. Bacchetta, A. Courtoy, M.R., in preparation

1. generate N replicas of data with Gaussian noise at 1σ

- 2. choose N such that keep same mean and std. deviation of data
- 3. fit N times the data \Rightarrow N different transversities
- 4. take 1σ confidence interval of the whole set (if Gaussian-distributed, it's = 68%)

New results from fitting both p and D data 2) Monte Carlo method A. Bacchetta, A. Courtoy, M.R., in preparation

1. generate N replicas of data with Gaussian noise at 1σ

- 2. choose N such that keep same mean and std. deviation of data
- 3. fit N times the data \Rightarrow N different transversities
- 4. take 1σ confidence interval of the whole set (if Gaussian-distributed, it's = 68%)

New results for h_1^{uv} and h_1^{dv} **The Error Analysis**:Car**to motore Carlo** approach preparation **2nd order polynomial** "flexible" form

New results for h_1^{uv} and h_1^{dv} **The Error Analysis**:Car**to motore Carlo** approach preparation **2nd order polynomial** "flexible" form

New results for $h_1^{u_v}$ and $h_1^{d_v}$ 2) Monte Carlo method A. Bacchetta, A

A. Bacchetta, A. Courtoy, M.R., in preparation

"rigid" form $x h_1^{u_V}(x)$ 0.6 0.5 0.4 1σ error band from replicas @2.4 GeV² 0.3 0.2 0.1 0.0 $\mathbf{x} h_1^{d_V}(\mathbf{x})$ -0.1 0.01 0.1 0.2 х 0.1 0.0 -0.1 Best fit central curve @2.4 GeV² -0.2and standard 1σ error band -0.30.01 0.1 х

sabato 10 novembre 2012

Can we find "unforeseen" replica?

Yes, here at 1GeV²

2.07397 1.75523

sabato 10 novembre 2012

but most replicas "want" to merge to lower Soffer bound, driven by deuteron data

• Compass 2007 p + 2004 D

• Compass 2010 p + 2004 D

Soffer bound evolved at $Q^2=10 \text{ GeV}^2$ including error estimate Δg_1 from

> De Florian, Sassot, Stratmann, Vogelsang, PR D80 (09)

• Compass 2007 p + 2004 D

• Compass 2010 p + 2004 D

Soffer bound evolved at $Q^2=10 \text{ GeV}^2$ including error estimate Δg_1 from

> De Florian, Sassot, Stratmann, Vogelsang, PR D80 (09)

• Compass 2007 p + 2004 D

Compass 2010 p + 2004 D

is there anything going on ?

see Ralston, arXiv:0810.0871

A confining gauge theory violates the completeness of asymptotic states held as foundation points of the *S*-matrix. Spin-dependent experiments can yield results that appear to violate quantum mechanics. The point is illustrated by violation of the Soffer bound in *QCD*....

A. Bacchetta, A. Courtoy, M.R., in preparation

Tensor Charge

where we have data

A. Bacchetta, A. Courtoy, M.R., in preparation

Tensor Charge

full range 10⁻¹⁰- 1

Torino result @ different scale (0.8 GeV²)

1-flexible 2-hybrid 3-rigid

Future ?

PHENIX data

 ϕ

R.Yang, Beijing Transversity Workshop (08)

work on predictions for $pp^{\uparrow} \rightarrow (\pi^{+}\pi^{-})X$ still in progress..

Status of transversity studies