Motivation	Analysis Plans	Out
	0000	
	000	

Plans for Neutral Meson Analysis in e^+/e^- Annihilation at Belle

Hairong Li

Indiana University

November 11, 2012

(ロ)
(日)

Motivation	Analysis Plans	Outlook
	0000	
	000	

- Unpolarized Fragmentation Function for η and π^0
- Collins Effect for π^0 and η

2 Analysis Plans

- The Belle Detector
- Kinematic distributions for Pion and Eta
- Relative Error of Yield Vs Z

3 Outlook

Unpolarized Fragmentation Function for η and π^0

Motivation for the Unpolarized Fragmentation Function for $\boldsymbol{\eta}$

- Unpolarized yield needed as input for Global QCD analysis fragmentation function
- η fragmentation function has been studied at NLO accuracy.

C. Aidala, F. Ellinghaus, R. Sassot, J. Seele, M. Stratmann Phys.Rev. D83 (2011) 034002 arXiv:1009.6145 BaBar input data preliminary

π⁰ data will give x-check of π⁺, π⁻ yields (See Martin Leitgab's talk)

	Analysis Plans	Outlook
○ ● ○	0 0000 000	

Collins Effect for π^{\vee} and η

Collins Effect for π^0

Figure 1: Collins contribution to the neutral pion SSA

M. Anselmino, M. Boglione, U. D'Alesio, E. Leader, S.Melis, F. Murgia, A. Prokudin Phys.Rev. D86 (2012) 074032 arXiv:1107.4446 Collins Effect for π^0 and η^-

Measurement of η Collins FF to understand $A_N^\eta > A_N^{\pi^0}$

Figure 2: A_N vs. x_F at average pseudorapidity of 3.68 for π^0 and η .

L. Adamczyk et. al. Phys.Rev. D86 (2012) 051101 arXiv:1205.6826

Figure 3: Belle Detector.

Belle EMCAL: High granularity, good resolution

6/14

< ∃⇒

э

- Use only Barrel EMCAL
- minimum E_{γ} =100MeV
- Thrust cut of 0.8. Minimal effect on uds, but enables using on_resonance dataset
- Projections from 15.07 fb⁻¹ MC data
- Asymmetry cut 0.8
- Photon come from same jet

Cut optimization using FoM $S^2/(S+B)$

Figure 4: InvMass Vs A

Figure 5: $S^2/(S+B)$ Vs A

Invariant Mass distributions for select z bins

Figure 6: Invariant Mass of Pion(0.3 < z < 0.4).

Figure 8: Invariant Mass

Figure 7: Invariant Mass of Pion(0.8 < z < 0.9).

9/14

Pion Mass and Width

Figure 10: Pion M_{Inv} Vs Z

Figure 11: Pion Width Vs Z

Analysis Plan o oooo ●oo

Relative Error of Yield Vs Z

Relative Errors on Yield Vs Z (Off Resonance)

Figure 12: Error of Yield Vs Z (Pion).

Figure 13: Error of Yield Vs Z (Eta).

Relative Error of Yield Vs Z

Error of Yield Vs Z (On Resonance, with thrust cut)

Figure 14: Error of Yield Vs Z (Pion).

Figure 15: Relative Error of Yield Vs Z (Eta).

Relative Error of Yield Vs Z

Projections for π^+/π^0 - π^+/π^0 IFF

Motivation	Analysis Plans	
0	0	
00	0000	

- Analysis of neutral meson fragmentation functions started
- π^0 and η yields will give input to global analysis
- Collins fragmentation function for η and π^0 needed to interpret π^0 , ηA_N
- di-hadron IFF with π^0 in final state can be used for transversity extraction from RHIC data