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e Introduction

e Detectors and physics programs

e Stable charged hadrons: 7=, K+, and p/p

e Neutral reconstructed hadrons: 1, K% K*0, ¢, A/A

e Results: all (4 or 5) flavors
light, cc and bb flavors
light g (vs q) jets
ag/q vs gluon jets

e Conclusion and outlook

Comparison
} with LEP,
ARGUS




Introduction: what is a Fragmentation Function?

e |deally, given a (hard) parton k=u,d,s,c,b,u,d,s,c,b,g with
energy Ex, momentum pkz,
and polarization jkSk

we want to know the probability density

h . " . A
F (M, f, jr, Ph, O, ¢n, Sh ; Ek, Pk, jk, Sk)
to find a hadron h in its jet with: mass mn, flavor f,

spin jn, polarization S,
momentum (PhSINBhCOSPh, PrSINOKSINGH, PHCOSON)

e We can integrate out/sum over many of these

e Today, consider: F.(xn), where xn = f(pn, Ex)
for several specific h = zt,K%,p/p, ...

and k=u/u/d/d/s/s/c/c/blb, u/t/d/d/s/s
u/u/d/d/s/s/cle, cfc, b/b, u/d/s, g




but partons do not appear alone
e rather, in colorless sets, e.g. 9qg, ggg, 9gqgg, ...

e how many jets are in these ete-— Z0—hadrons events?

e at BaBar, jets are much wider....




What do we mean by fragmentation?

e the process by which a (system of) hard quark(s) and/or
gluon(s) radiates more partons ...

. . ?— TD_I:%
e ... that combine into hadrons ... ISP .
‘)\) ¢ q’ :
e ... that decay ug':,’ﬂ.'A/;/‘”

Into “stable” _ Folo ol —
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e O some subset pg‘_‘?\
of these w2 O .
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e experimentally, we 4D Hadronization

push from the right: P>Fragmentation
measure e.g. all K+ Models —>
then 1) Experiment >

subtracting ¢ daughters gets closer to primary K=




The BaBar and SLD Experiments )
e ete- = y*— ul:dd:sS:cC e ete- — Z0— uu:dd:ss:cc:bb
1054 GeV 4:1:1:4 91.2 GeV 17:22:22:17:22
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— cm frame boosted In — Ccm,
the lab, By=0.55 lab frames the same
— excellent tracking, — excellent tracking
particle ID, y/n® recon particle 1D
— very high luminosity: — decentllgminosity: |
~200M hadronic events ~0.5 million hadronic

here use only 3 million events




Track Finding
e both detectors have very good tracking
— efficiency >90% within acceptance
— momentum, angular resolution more than adequate

e we must understand the efficiency as well as possible
— varies rapidly with momentum p below ~1 GeV/c

— calibrate using data and simulated Bhabha, t*t-,
exclusive hadronic final states (BaBar)
— uncertainties are strongly correlated across the full p
range
SLD: 1% norm.®(0.3—4.2)% (p=0—45.6 GeV/c)

BaBar: ~2.4—0.8% (p=0.2—1); 0.8% p>1 GeV/c
e we must understand the resolution well enough
— varies rapidly with (1/p) below ~1/(35 GeV/c)
— calibrated using known masses, Ks, ...
SLD: 4% in highest p bin
BaBar: not an issue due to low Ecwm, high B-field




Charged Hadron Identlflcatlon

e both detectors have excellent B ICT A
identification of (high quality) R G s

tracks as nt*, K=, p/p (or e*, u*)
— Ring Imaging Cherenkov
detectors, plus dE/dX (BaBar)

— >90% efficiency over much
of the p range

— few-% misidentification

— calibrated with data control
samples
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nt, K+, p/p Analysis

e select hadronic events
— nontrivial to get unbiased samples

— require 3-5 charged tracks, T-axis well within
acceptance, high visible energy

e select good tracks
— many measured coordinates, extrapolation near
the primary interaction point (IP)
convention: include tracks from Ks, s-baryon decays
e identify the particles
— count |D’d tracks, apply inverse of efficiency matrix
— check that they sum to the total number of tracks
e correct these spectra for
— physics backgrounds: few %, mostly t+t-
— interactions in detector material: up to 4% at low p,
SLD uses only p below 2 GeV/c
— efficiency, resolution, transform to ¢c.m. frame BaBar)




e extensive systematic cross checks
— compare data with MC in every variable
— compare positively and negatively charged tracks

— check for dependence on 6, ¢ ....

e BaBar makes ~independent g(en)b
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— different backgrounds, g T [rEes oo I
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o BaBar results, averaged over 0, in terms of xp_2p/ECM

— coverage from 0.2 GeV/c

to the kinematic limit,
5.27 GeV/c

— captures the bulk of
the K= and p/p spectra

— ...but just gets the peak
of the m* spectrum

e compares nicely with
previous data from ARGUS

— consistent everywhere
— generally more precise
— better high-xp, coverage

— ARGUS extends to
lower Xp for m*, nice
complementarity
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o SLD results
— coverage from 0.2 (r

Fraction

— just gets the peaks of all
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i e nice complementary results

from LEP
— DELPHI also uses RICH
hadron ID

— ALEPH, OPAL use dE/dx In
their tracking chambers

— all results strongly
correlated

11



Neutral Hadron Analyses

e reconstruct unstable particles by combining tracks

— same/similar event selection [T T T T T
e SLD Ks = mttrm —: - f SLD

— pairs of oppositely

charged tracks

— with loose pion identification:

— good vertex, inconsistent
with the 1P
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e SLD ¢ = K+K-:

— pairs of oppositely charged tracks

— both tightly identified as kaons

— good vertex consistent with the |IP
e SLD K*0 = K-+ (& c.C.):

— pairs of “[
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e BaBar n — vy:

— pairs of energy deposits in the

EM calorimeter
— not part of any n® candidate

— still, high background at low p
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e |n all cases, fit the invariant mass dlstn |n each P bm

— correct for efficiency, efCc.  [qbm, 5 ;gﬁ;
10.00F B
e SLD results: o ., fgi Lioc
— nice coverage for Ks, A%s | 2508, % | 0k e
< = ALEPH | ¢ ALEPH
— useful for K*0, ¢ 100 moPAL * OPAL * o0
— several LEP results | A
— all consistent, some | ﬁ""ﬁ,‘ Ny
complementarity i
= VSLD A’ i, #SLD ¢ ‘i; _§0'10
= 0 vaeen % | Laeen .
e BaBar results: v oPAL * OPAL § 100
rrrrrrrrrrrrrrprrrrrT T 0.10F ]
><Q1'O._ +++ BaBar 1 L. ... .kl e i
So8 ++ +ﬁ " Preliminary - o, =2 0
S 0.6F 4 ) -
oal s **44+ {— full coverage for n
2 . B A | n n
S 02 Y 1— big improvement over
0_{‘----!----!---’-!‘-‘#Al--i ARGUS
0.2 0.4 0.6 0.8




..and there’s plenty more from LEP

° a samplmg of spectra
measured at the Z°

e One representative
measurement shown
for each particle

e several interesting
features:
— pseudoscalar,

scalar, vector,
tensor mesons
seen

— octet, decuplet,
orbitally excited
baryons

— 710 consistent w/ t/210°

— KO below K+
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...and also CLEO and ARGUS...

e have observed a large number of light-flavor particles
— including most of those seen at the Z°

e but very few Spectra Hadron production in e'e —Hadrons

are measured é\ 10 _ 6 eecltl(()ll()%claelsa(l)ll'1 gnesons

— statistics, > L 2 Bavons 0™
momentum _ . E | e R
coverage limite 10 F

— measurements of & 02l
total rates are =
model dependent 2 107}

e still, total rates are 10

consistent with a st

simple scale factor 10+

relatlve to thOse at 10 6 i— For total particle+antiparticle rate:

the Z° F ) wrre et rgs omer

10

A BT L1 L1 'R BT B B R T A B R R N B A B R
O 02 04 06 08 1 12 14 16 18 2
Mass (GeV/cZ)
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Tests of Hadronization Models
0 this workshop’?

motivation for
e consider three

2

models representing

3 types of particle
production models

— JETSET: string,
many free
parameters

— UCLA: area law,
~1 free param

— HERWIG: clusters, 10
few free params

1/N dn/dx,
o

—i
o
o

—

1

o they work qualitatively "

— mostly minor issues with shapes
— some large problems with overall rates

Xp

IIIIII 1 I 1T 111 III 1 III.IIII.
? SLD hadronic -
O -
Z decays
7 "=.
R
E‘ / L ‘\‘
- .
\‘
%\
. \\
— 32 ’N
o/.
®
¢ php |
E v A/A (x0.2)
- — — JETSET
- —— UCLA
- . —. - HERWIG
IIIII | | IIIIIII | |
0.01 0.1 0.1 110
Xp




e similar results for
BaBar at lower Ecwm
— discrepancies are

larger in general

— but often of the
same sign ...

— and similar
structure

— perhaps the
models do a
reasonable job of
describing the
scaling properties?

10k

BaBar
Preliminary

® Data
— UCLA
— JETSET
— HERWIG

0.2

I N T TN TN T NN TN TR N 1
0.4 0.6 0.8
Scaled Momentum
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Scaling properties at high xp

e very relevant to this workshop
— but I'll just compare with models

e consider ntx data from BaBar, SLD and TASSO

— TASSO has most useful
high-xp data at an

intermediate Ecu i:

— LEP, ARGUS data give

the same conclusions

e strong scaling violation at
high-Xp
— also at low xp

e modeled well, at most
few-% changes Ig
data:MC ratios with Ecm
— JETSET shown

— UCLA, HERWIG show 10
similar scaling

—

(1/Ngyents) dn,/dx,

—
o

1
—

. ¢ SLD
T m TASSO

e BaBar Preliminary

— 91.2GeV JETSET 3

34
— 10.54

O 4 O 6
Scaled Momentum

1
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e now consider K= data from BaBar, SLD and TASSO

e again, strong scaling violation at high (and low) xp
- well, between at10.%4  —— —+—r ——F—+——r

and 91.2 GeV... ~ . e SLD ]
K = TASSO
— 34 Gev data not 10 | e BaBar Preliminary  _

— 912GeV UCLA 1
34 ;

precise enough

— 10.54

e only ~10% change in
models from 34-91 GeV
— due to changing flavor

composition ;
— UCLA shown, other ;

10'F

models similar ﬂ

e change from 10-91 GeV _
IS ~15% larger than in 2k
the data
— .. +~6% experimental 0 02 o vometm 08 1
— ...how uncertain are flavor composition effects?

(1/Nevents) dnk/dxp
1
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e now BaBar n data vs. p/p Vs.
ALEPH/L3 and CELLO/JADE SLD and TASSO

E — ¢ SLD

¢ ALEPH, L3 : 10
M s CELLO, JADE . p/p = TASSO
e BaBar Preliminary

e BaBar Preliminary

— 91.2 GeV JETSET
34 with
— 10.54 Pdiqu=0.085 _§

— 91.2 GeV JETSET |
34 .
— 10.54

(1/Neverts) dng/cix,

[ 1 S [ TN T N T N NN N BN | AT 1 [ I T R N B I B
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Scaled Momentum Scaled Momentum

o the MC vy and p scaling violations are ~25% and 50%
larger than the data at high xp

— is there something we don’t understand about heavy
particles, strange particles, baryons, ...?
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Tests of Modified-Leading-Log QCD

e Transform to xi = -In(xp), study low-p scaling

— fit spectra with (dlstorted) Gaussian function

M

=

: SLD
E 50 F .J‘I:i

g — Gaussian

3 40 t __} Distorted

0.15

0.1}

0.05 |-

()—

§= 'ln(xp) = In(E¢n/2pem) E=-In(x,)

— provides reasonable descriptions of the data




e measure peak positions, xi*

— MLLA QCD predicts a

logarithmic increase
with Ecwm for a given
particle

— data are consistent

— BaBar and Z° data
provide precise slope

— MLLA QCD predicts an

exponential decrease
with mass for a given

Ecwm
— meson data are
consistent

— baryons seem to follow
a different trajectory

o
o
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e a comparison of data
from different ZO°
experiments shows
their complementarity

— all are consistent

— two RICH and two
dE/dx

— good coverage by
combining all four

but we must take all
the correlations
Into account!!
between momenta
particles
RICH msmts
dE/dx msmts

1/N dn/dE

1/N dn/de
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Flavor Dependence

e heavy and light flavor events can be separated using

the flight distance of the leading heavy hadrons
— zoom of an e*e- — bb candidate event

e B hadrons travel
3 mm on average
before decaying

e Charmed
hadrons travel
1.3 mm on
average before
decaying

e Many techniques
developed to tag
c and b jets and
events

interaction

— e.d., search for good, secondary vertices, select

on flight distance, mass , ...
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e For inclusive spectra analyses, optimize low bias and
statistics by combining vertex info with the number of
tracks inconsistent with the interaction point

— define a track as significant if its extrapolation
misses the IP by at least 3o

60

— B hadrons tend to K
have several such N\
tracks :

— D hadrons have 1
or two

e define four
iIndependent samples

— no vertex & nsjg=0,
uds tag, 93% pure

— high-mass vix | nsig>2,
o1 ' A
b tag! 970/0 pure ° 1 : Number of Significant TraZ:ks ] °

— low-mass vix | nsig=1,2, ¢ tag, 64% pure
— the rest

+ Data

uds MC

N
o
T T I T T T

c MC

b MC

L uds-
-tag | ctag

N 7

Number of Events
S
|

N
o

> b-tag

/
%

—
o
T T I T T T

e
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e measure spectra in each sample unfold for sample
composmon and bias g,
— nice m*statistics .50

in all three flavors §*°

230

— K+, KO, p/p also 29
- - 1.0
Interesting 0.08

0.4

e
lmll

1/N dn/d

o
~

e
(0 0] oo
I T T 1

g

e the three flavor types,,,
are quite different s
— heavy-flavor =

events have

very few tracks o
at high xp/low xi

— ...but quite a few
medium-x, kaons -
from B, D decays ool

— all expected, but do we' g
understand the details???
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e can test models In terms of ratios

— reasonable TSP~ buds o] cuds O
description of ' e ke™ ]
J_Ei ratlos, 10: :: ................

: T —— S
except for | [ - JeTsET

HERWIG 0'5; %, I -~ HERWIG
— peaks in kaon oo} N R
ratios wrong by%.1 s

~10-30% 51 Oé

— shape of p/p 2 |
ratios ok, but &°°
too much 0.0
suppression
overall

X, = 2p/Egy | X, = 2p/Egy




e purists want to test the model predlctlons for Ilght
flavors only . | T
— same general [ SLD uu,dd,ss

issues as for all ;2
flavors :

— several small

differences in 1ot
scale factors 7

— slightly more
pronounced 10°k
shape 7
differences

1/N dn/dx,

—

0F v AA®X0.2)
- — — JETSET
- —— UCLA

- . —.- HERWIG

21 Ll
107001 0.1




e several similar LEP measurements
— all all-charged msmts consistent; also uds—n*, K+,p/p
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— and DELPHI and SLD on bb events
— also a different perspective in model tests

(1/N,,,

) dn /dg

SLD
c—flavor events
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Quark Jets vs. Antiquark Jets
e The SLC ran with a polarized e- beam

— switched randomly between left- and right-handed
polarization

e results in a large quark forward- backward asymmetry

— /0 decays prefer left-handed g  14F g=d.s.b
and right-handed Q s ol o7 -

— left-(right)handed e- pushes & N\ — p'=073 / -
the q forward (backward) S 0.}

e consider uds-tagged events E’Of’_ \

with left-handed beam and = 04

|lcosOihrustl > 0.15 0.2 _

— 73% of the forward hemispheres ol
contain a quark (rather than q) ~ cost,

— analyze particle, antiparticle separately in these jets

— assume CP symmetry: combine zi* from the g-tag
sample with - from g-tag sample, etc.




e subtract small heavy flavor background
— models checked against heavy-tagged data

e unfold to obtain spectra in uds quark (not uds) Jets

— clear hadron-antihadron
differences develop at
high Xp

— large excesses of
P,A over p,A above
~0.2

— even larger effects
for K- over K+, and
K*0 over K*0 develop

earlier, ~0.1
— a small excess of ntt

over - develops later,
~0.3

(1/2Ngyents) dn/dx;

—h
o|

10

o

—h

-3

10

10

u,d,s Jets
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® Conven_ient to take the
normalized differences
- O'q—vh — OE{—'H
Dh_ O'q—vh ~+ ()'El—vﬁ
— 0 < equal production

+1 < total dominance -
of one or the other

e Dy rises slowly, 0.1-0.3
— p contains valence
g only
—...but there’s always
a subleading p or n

Normalized Difference, D

e Dk- k* rise more smoothly
— s jets, need no
compensating K+

e D, rises very slowly
— competition between
u—+t and d—m-

08
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08

0.2

0.6

[ —— UCLA
| —— HERWIG

) j_ETSET S L D

0.0

e and yet more model tests
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Light quark vs. gluon jets
e consider 3-jet events
— JADE algorithm, ycut=0.35
e “identify” the jets

— assume the highest-energy
jetisaqgorq (93% correct)

— tag one of the othersas b orc
— then the third is a gluon jet

— ...or if neither is tagged,
they’re uds and g

— sometimes also tag the high-E jetas b orc

o perform analysis on these uds- g- b- and c-tagged
samples

e unfold to compare g and uds jets
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o quantify in terms of ratios of hadron fractions in

gluon:uds jets

— gluon jets are
richer in p/p and

— ...with lower m*

fraction, though
more tracks
overall

— consistent with
results from Y(1S)
decays

1.05

relative fractions
-,
o

0.9

-l

o
3]

= \\\\!

10
momentum(GeV/c)
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Gluon/duscb (g/duscb), / (g/duscb). ,y; o -

e the LEP eXperimentS have £ ~ | _epeemn -
done quite a few more & .| 1T fne s
studies RS |
— for example, a similar

study from DELPHI

— and a complementary
study from OPAL :

l Ech.
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6 | | T 1T | T T T 1 | T T 1 |_2 | .
5 : § gincl.je':S _:1 I
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Summary

e Inclusive spectra of several identified/reconstructed
hadrons measured precisely at SLD and BaBar

— SLD: 5=, K=, KO/KO, K*0/K*0, ¢, p/p and AY/A0
part of a large body of measurements at the Z0°
— Babar: ntt, n, K=, p/p

consistent with, improvement upon,
measurements from ARGUS

e Scaling properties measured precisely
— models tested - issues for n, p/p

— MLLA QCD predictions consistent with data

e SLD has isolated ui,dd,ss events, uds jets, and gluon
jets
— much additional information
— |et’s put it all together !!
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Inclusive (weakly decaying) B hadron FF

e estimate the energy of the B hadron
— use measured E/p, kinematic constraints

— achieve 10-20%
resolution

e this is one of the best
measured FFs

— covers the full
Kinematic range

— errors must be
considered a
shape envelope

— good precision on

<Xe>p = 0.702+0.008 |
(XE)max = 0.835+0.005

Normalized Cross-Section
N w
1 1 1 1 1 1 1 1

—
| | | | |

I
A
tog:

¢ :

} %:

3¢¥ +?

"“".0 +_
RSN | | {

o

1 1 1
0.2 0.4 0.6 0.8 1
Scaled Energy 2Eg/Ecym

e FFs for a few excited states measured imprecisely
— estimate that primary spectrum has <xg> ~ 0.722
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Tests of heavy quark fragmentation models

e can test models of the shape of the heavy quark FF
— some must/should be embedded in a MC generator

— best done before data Correctlon

— examples from SLD:

e most models excluded
— Bowler, Lund “good”; °

Kartvellshvnl UCLA
may be adequate

— similar results from
other experiments

— these are not
default in any, and
unavailable in many
generators

- HERWIG cld=0
- 1015117

IIIIIIIIIIII

JETSET + BCFY
" 105/16 o

_JETSET + Kart.
[ 32/16 ¢

JETSET + Bowler

T 17/15

- JETSET + Lund
T 17/15

- HERWIG cld=1
T 149/17

T JETSET +CS SLD

T 142/16 4

T JETSET + Peterson
T 70/16 )

IIIIIIIIIIII

¢
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D meson, baryon fragmentation functions

e can measure some of the FFs precisely
— no B background when running at Ecv<10.57 GeV

— ...or for x>O 48, the kmematlc limit for B decays

2.5
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—
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e the heavier particles have harder FFs
— shapes are similar for all mesons, also all baryons

— mesons have entries near x=1:

mesons have more of them

heavier/excited
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Model tests for Ac baryons

» models have been tested extensively for ~ Ea/ Mnad =2.3
the Ac FF

— some must be embedded in a MC generator

¢ most models can
be excluded

— Nno model has

2
a gOOd X 5 0. L) JETSET JETSET M,
N BOWIer, Lund Ok ﬁo_m - +Bowler +Peterson

— Kartvelishvili,
UCLA not too
bad; predict
meson-baryon
difference

— these are not ,
default OI’ even 0O 02 04 06 0.8 1 0.2 0.4XO.6 0.8 1 0.2 O.4XO.6 0.8 1
avallable In any generator
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