Inclusive Spectra in Hadronic Events at SLD and BaBar

David Muller SLAC

representing the SLD and BaBar collaborations

Workshop on Fragmentation Functions and QCD November 9-11, 2012, RIKEN

- Introduction
- Detectors and physics programs
- Stable charged hadrons: π[±], K[±], and p/p
- Neutral reconstructed hadrons: η , K⁰, K^{*0}, ϕ , $\Lambda/\overline{\Lambda}$
- Results: all (4 or 5) flavors light, cc̄ and bb̄ flavors light q (vs q̄) jets q/q̄ vs gluon jets
- Conclusion and outlook

Comparison

with LEP,

ARGUS

Introduction: what is a Fragmentation Function?

 Ideally, given a (hard) parton k=u,d,s,c,b,ū,d,s,c,b,g with energy E_k, momentum p_k2, and polarization j_kŝ_k

we want to know the probability density

 $F_{k}^{h}(m_{h}, f_{h}, j_{h}, p_{h}, \theta_{h}, \phi_{h}, \hat{S}_{h}; E_{k}, p_{k}, j_{k}, \hat{S}_{k})$

to find a hadron h in its jet with: mass m_h , flavor f_h , spin j_h , polarization \hat{s}_h , momentum ($p_h sin \theta_h cos \phi_h$, $p_h sin \theta_h sin \phi_h$, $p_h cos \theta_h$)

- We can integrate out/sum over many of these
- Today, consider: F^h_k(x_h), where x_h = f(p_h, E_k) for several specific h = π[±],K[±],p/p̄, ... and k=u/ū/d/d̄/s/s̄/c/c̄/b/b̄, u/ū/d/d̄/s/s̄ u/ū/d/d̄/s/s̄/c/c̄, c/c̄, b/b̄, u/d/s, g

but partons do not appear alone

- rather, in colorless sets, e.g. qq
 , qqg, qqg, ...
- how many jets are in these $e^+e^- \rightarrow Z^0 \rightarrow hadrons$ events?

• at BaBar, jets are much wider....

What do we mean by fragmentation?

 the process by which a (system of) hard quark(s) and/or gluon(s) radiates more partons ...

 γ^*/Z^0

Q

0000

2000

Perturbative

00000000

 K^0

... that combine into hadrons ...

e

 e^{+}

- ... that decay into "stable" particles ...
- ... that can be observed in a detector
- or some subset of these

← ElectroWeak →← \leftarrow Decays $\rightarrow \leftarrow$ Detector \rightarrow OCD experimentally, we Hadronization push from the right: →Fragmentation Theory→ measure e.g. all K[±] $Models \rightarrow$ Experiment · then ϕ subtracting ϕ daughters gets closer to primary K[±]

The BaBar and SLD Experiments

- → cm frame boosted in the lab, $\beta\gamma$ =0.55
- → excellent tracking, particle ID, γ/π^0 recon
- → very high luminosity: ~200M hadronic events here use only 3 million

• $e^+e^- \rightarrow Z^0 \rightarrow u\bar{u}:d\bar{d}:s\bar{s}:c\bar{c}:b\bar{b}$

- → cm, lab frames the same
- → excellent tracking particle ID
- → decent luminosity: ~0.5 million hadronic events

Track Finding

- both detectors have very good tracking

 → efficiency >90% within acceptance
 → momentum, angular resolution more than adequate
- we must understand the efficiency as well as possible
 - \rightarrow varies rapidly with momentum p below ~1 GeV/c
 - → calibrate using data and simulated Bhabha, $\tau^+\tau^-$, exclusive hadronic final states (BaBar)
 - → uncertainties are strongly correlated across the full p range
 - SLD: $1\% \text{ norm.} \oplus (0.3 \rightarrow 4.2)\%$ (p=0 \rightarrow 45.6 GeV/c) BaBar: ~2.4 \rightarrow 0.8% (p=0.2 \rightarrow 1); 0.8% p>1 GeV/c
- we must understand the resolution well enough
 → varies rapidly with (1/p) below ~1/(35 GeV/c)
 - → calibrated using known masses, K_S, ...
 - SLD: 4% in highest p bin
 - BaBar: not an issue due to low ECM, high B-field

Charged Hadron Identification

- both detectors have excellent identification of (high quality) tracks as π[±], K[±], p/p̄ (or e[±], μ[±])
 - → Ring Imaging Cherenkov detectors, plus dE/dx (BaBar)
 - → >90% efficiency over much of the p range
 - → few-% misidentification
 - → calibrated with data control samples

<u>π[±], K[±], p/p̄ Analysis</u>

- select hadronic events
 - → nontrivial to get unbiased samples
 - → require 3-5 charged tracks, T-axis well within acceptance, high visible energy
- select good tracks
 - → many measured coordinates, extrapolation near the primary interaction point (IP)
 - convention: include tracks from K_S, s-baryon decays
- identify the particles
 - → count ID'd tracks, apply inverse of efficiency matrix
 - → check that they sum to the total number of tracks
- correct these spectra for
 - \rightarrow physics backgrounds: few %, mostly $\tau^+\tau^-$
 - → interactions in detector material: up to 4% at low p, SLD uses only p̄ below 2 GeV/c
 - → efficiency, resolution, transform to c.m. frame (BaBar)

extensive systematic cross checks

- → compare data with MC in every variable
- → compare positively and negatively charged tracks
- \rightarrow check for dependence on $\theta,\,\phi$.
- BaBar makes ~independent msmts. in six θ regions
 - → different backgrounds, amounts of material, transforms to CM frame
 - → comparison gives powerful generation gives powerful generation gives powerful generation generat

• BaBar results, averaged over θ , in terms of $x_p = \frac{2p}{E_{CM}}$ → coverage from 0.2 GeV/c (1/N_{events}) dn_π/dx_p 00 05 05 05 01 00 05 BaBar π to the kinematic limit, **Preliminary** 5.27 GeV/c **BaBar** \rightarrow captures the bulk of ARGUS the K[±] and p/p spectra \rightarrow ...but just gets the peak (1/N_{events}) dn_K/dx_p K^{\pm} of the π^{\pm} spectrum compares nicely with previous data from ARGUS → consistent everywhere (1/N_{events}) dn_p/dx_p 50 51 0 0 0 0 p/p \rightarrow generally more precise \rightarrow better high-x_p coverage → ARGUS extends to lower x_p for π^{\pm} , nice 0.0 0.2 complementarity Scaled Momentum, $x_p = 2p / E_{CM}$

hadronic

Z⁰ decays

0.4

Xn

SLD

0.1

Neutral Hadron Analyses

SLD $\phi \rightarrow K^+K^-$:

→ pairs of oppositely charged tracks
→ both tightly identified as kaons
→ good vertex consistent with the IP

SLD $K^{*0} \rightarrow K^{-}\pi^{+}$ (& c.c.):

...and there's plenty more from LEP

- a sampling of spectra measured at the Z⁰
- one representative measurement shown for each particle
- several interesting features:
 - → pseudoscalar, scalar, vector, tensor mesons seen
 - → octet, decuplet, orbitally excited baryons
 - $\rightarrow \pi^0 \text{ consistent w/ } \pi^{\pm/2_{10^{-4}}}$

...and also CLEO and ARGUS...

- have observed a large number of light-flavor particles
 → including most of those seen at the Z⁰
- but very few spectra are measured
 → statistics,
 - momentum coverage limited
 - → measurements of total rates are model dependent
- still, total rates are consistent with a simple scale factor relative to those at the Z⁰

Tests of Hadronization Models

- not relevant to this workshop? motivation for
- consider three models representing 3 types of particle production models
 - → JETSET: string, many free parameters
 - → UCLA: area law, ~1 free param
 - → HERWIG: clusters, few free params
- they work qualitatively ^{10⁻²ℓ····ℓ} 0.01
 → mostly minor issues with shapes
 - → some large problems with overall rates

- similar results for BaBar at lower E_{CM}
 - → discrepancies are larger in general
 - → but often of the same sign ...
 - → and similar structure
 - → perhaps the models do a reasonable job of describing the scaling properties?

Scaling properties at high x_p very relevant to this workshop \rightarrow but I'll just compare with models consider π[±] data from BaBar, SLD and TASSO → TASSO has most useful SLD π^{\pm} high-xp data at an TASSO **BaBar Preliminary** intermediate ECM 10 91.2 GeV JETSET \rightarrow LEP, ARGUS data give 34 - 10.54 the same conclusions 10 strong scaling violation at $1/N_{events}$) dn_{π}/dx_p high-xp \rightarrow also at low x_p modeled well, at most few-% changes in 10 data:MC ratios with ECM \rightarrow JETSET shown \rightarrow UCLA, HERWIG show 10⁻²E 0.2 0.8 0.4 0.6 similar scaling Scaled Momentum

- now consider K[±] data from BaBar, SLD and TASSO
- again, strong scaling violation at high (and low) xp
 - → well, between at 10.54 and 91.2 GeV...
 - → 34 GeV data not precise enough
- only ~10% change in models from 34-91 GeV
 - → due to changing flavor composition
 - → UCLA shown, other models similar
- change from 10-91 GeV is ~15% larger than in the data
 - → .. ±~6% experimental
 - → ...how uncertain are flavor composition effects?

- the MC η and p scaling violations are ~25% and 50% larger than the data at high x_p
 - → is there something we don't understand about heavy particles, strange particles, baryons, …?

Tests of Modified-Leading-Log QCD

• Transform to $xi = -ln(x_p)$, study low-p scaling

- measure peak positions, xi*
 - → MLLA QCD predicts a logarithmic increase with E_{CM} for a given particle
 - → data are consistent
 - → BaBar and Z⁰ data provide precise slope
 - → MLLA QCD predicts an exponential decrease with mass for a given ECM
 - → meson data are consistent
 - → baryons seem to follow a different trajectory

- a comparison of data from different Z⁰ experiments shows their complementarity
 → all are consistent
 - → two RICH and two dE/dx
 - → good coverage by combining all four

but we must take all the correlations into account!! between momenta particles RICH msmts dE/dx msmts

Flavor Dependence

- heavy and light flavor events can be separated using the flight distance of the leading heavy hadrons
 → zoom of an e⁺e⁻ → bb candidate event
- B hadrons travel 3 mm on average before decaying
- Charmed hadrons travel 1.3 mm on average before decaying
- Many techniques developed to tag c and b jets and events

→ e.g., search for good, secondary vertices, select on flight distance, mass , ...

- For inclusive spectra analyses, optimize low bias and statistics by combining vertex info with the number of tracks inconsistent with the interaction point
 - \rightarrow define a track as significant if its extrapolation misses the IP by at least 3σ
 - → B hadrons tend to have several such tracks
 - → D hadrons have 1 or two
- define four independent samples
 - → no vertex & n_{sig}=0, uds tag, 93% pure
 - → high-mass vtx l n_{sig}>2, b tag, 97% pure

- \rightarrow low-mass vtx l n_{sig}=1,2, c tag, 64% pure
- \rightarrow the rest

- can test models in terms of ratios
 - \rightarrow reasonable 1.5 b:uds c:uds description of π^{\pm} ratios, 1.0 except for JETSET UCLA 0.5 HERWIG **SLD HERWIG** \rightarrow peaks in kaon 0.0 HH ratios wrong by plans
 ~10-30%
 shape of p/p ratios ok, but \rightarrow shape of p/p ratios ok, but too much 0.0 suppression 1.0 overall ♦ p/p Λ/Λ 0.5 <u>النط</u>0.0 0.01 0.01 01 01 $x_p = 2p/E_{CM}$ $x_p = 2p/E_{CM}$

- purists want to test the model predictions for light flavors only
 - → same general issues as for all 10² flavors
 - → several small differences in scale factors
 - → slightly more pronounced shape differences

→ and DELPHI and SLD on bb events → also a different perspective in model tests

Quark Jets vs. Antiquark Jets

- The SLC ran with a polarized e- beam
 - → switched randomly between left- and right-handed polarization
- results in a large quark forward-backward asymmetry
 - → Z⁰ decays prefer left-handed q and right-handed q
 - → left-(right)handed e⁻ pushes the q forward (backward)
- consider uds-tagged events with left-handed beam and $|\cos\theta_{thrust}| > 0.15$
 - → 73% of the forward hemispheres contain a quark (rather than q̄)
 - \rightarrow analyze particle, antiparticle separately in these jets
 - → assume CP symmetry: combine π^+ from the q-tag sample with π^- from \overline{q} -tag sample, etc.

- subtract small heavy flavor background
 → models checked against heavy-tagged data
- unfold to obtain spectra in uds quark (not uds) jets
 - → clear hadron-antihadron 10^2 of differences develop at high x_p
 - → large excesses of p,Λ over p̄,⊼ above ~0.2
 - → even larger effects for K⁻ over K⁺, and K^{*0} over K^{*0} develop earlier, ~0.1
 - → a small excess of π⁺ over π⁻ develops later, ~0.3

→ competition between $u \rightarrow \pi^+$ and $d \rightarrow \pi^-$

Light quark vs. gluon jets

- consider 3-jet events
 → JADE algorithm, y_{cut}=0.35
- "identify" the jets
 - \rightarrow assume the highest-energy jet is a q or \overline{q} (93% correct)
 - → tag one of the others as b or c
 - \rightarrow then the third is a gluon jet
 - → ...or if neither is tagged, they're uds and g

- \rightarrow sometimes also tag the high-E jet as b or c
- perform analysis on these uds- g- b- and c-tagged samples
- unfold to compare g and uds jets

quantify in terms of ratios of hadron fractions in gluon:uds jets

- → gluon jets are richer in p/p̄ and K±
- → ...with lower π[±] fraction, though more tracks overall
- → consistent with results from Y(1S) decays

<u>Summary</u>

- Inclusive spectra of several identified/reconstructed hadrons measured precisely at SLD and BaBar
 → SLD: π[±], K[±], K⁰/K⁰, K^{*0}/K^{*0}, φ, p/p̄ and Λ⁰/Λ̄⁰ part of a large body of measurements at the Z⁰
 - **→ Babar:** π[±], η, K[±], p/p̄

consistent with, improvement upon, measurements from ARGUS

- Scaling properties measured precisely
 - \rightarrow models tested issues for η , p/p
 - → MLLA QCD predictions consistent with data
- SLD has isolated uū,dd,ss events, uds jets, and gluon jets
 - → much additional information
 - → let's put it all together !!

Backup Slides

Inclusive (weakly decaying) B hadron FF

- estimate the energy of the B hadron
 - → use measured E/p, kinematic constraints
- \rightarrow achieve 10-20% resolution ALEPH this is one of the best OPAL measured FFs Vormalized Cross-Section SLD \rightarrow covers the full kinematic range \rightarrow errors must be considered a shape envelope \rightarrow good precision on $< x_E >_b = 0.702 \pm 0.008$ $(x_E)_{max} = 0.835 \pm 0.005$ 0.2 08 04 06 Scaled Energy 2E_B/E_{CM}
- FFs for a few excited states measured imprecisely \rightarrow estimate that primary spectrum has $\langle x_E \rangle \sim 0.722$

Tests of heavy quark fragmentation models

- can test models of the shape of the heavy quark FF
 - → some must/should be embedded in a MC generator
 - → best done before data correction
 - \rightarrow examples from SLD:
- most models excluded
 - → Bowler, Lund "good"; Kartvelishvili, UCLA may be adequate
 - → similar results from other experiments
 - → these are not default in any, and unavailable in many generators

D meson, baryon fragmentation functions

- can measure some of the FFs precisely
 - \rightarrow no B background when running at E_{CM}<10.57 GeV
 - \rightarrow ...or for x>0.48, the kinematic limit for B decays

- the heavier particles have harder FFs
 - \rightarrow shapes are similar for all mesons, also all baryons
 - → mesons have entries near x=1; heavier/excited mesons have more of them

Model tests for Λ_c baryons

- models have been tested extensively for $E_q / M_{had} = 2.3$ the Λ_c FF
 - → some must be embedded in a MC generator
- most models can be excluded
 - → no model has a good χ^2
 - → Bowler, Lund ok
 - → Kartvelishvili, UCLA not too bad; predict meson-baryon difference
 - → these are not default, or even available, in any generator

