Workshop on Fragmentation Functions and QCD 2012 (Fragmentation 2012)

Friday 09 November 2012 - Sunday 11 November 2012

RIKEN Wako, Nishina Hall

Precision Measurement of Charged Pion and Kaon Multiplicities in e⁺e⁻ Annihilation at Belle

Improving Knowledge of Nucleon Structure/ Hadronization by Measuring at 1) Low Q² 2) High z, for 3) Identified Hadrons

Martin Leitgab, University of Illinois at Urbana-Champaign, for the Belle collaboration

1. Application of Measurement: Use of Unpolarized Fragmentation Functions

- Direct Insight into Non-perturbative Hadronization Mechanism
- FF input quantities for analyses of nucleon structure:
 - extraction of **quark** & **antiquark**, **gluon helicity** distributions in **SIDIS** (Hermes, Compass, JLab 12 GeV) and **pp** (RHIC experiments)

2. Theory Introduction: Extractions of FFs from Experimental Data

• In LO: FF D_i^h describes probability for a parton i to fragment into a hadron h

- FF at different energy scales relatable by DGLAP evolution equations
- FFs D_i^h can be extracted from e+e- data in pQCD analysis:

2. Theory Introduction: Extractions of FFs from Experimental Data

Recent FF extraction including uncertainties (e+e-): - Albino, Kniehl, Kramer; Nucl. Phys. B 725, 181 (2005)

- Hirai, Kumano, Nagai, Sudoh ; Phys. Rev. D 75, 094009 (2007)

'Global' Analyses: - Albino, Kniehl, Kramer (e+e-, pp); Nucl. Phys. B 803. 42 (2008)

- de Florian, Sassot, Stratmann (e+e-, SIDIS, pp); Phys. Rev. D 75, 114010 (2007): 76, 074033 (2007)

Improve knowledge of FF and nucleon structure via high precision hadron measurement at low Q²

3. Belle Experiment

- KEK-B: asymmetric e⁺ (3.5 GeV) e⁻ (8 GeV)_collider:
 - \sqrt{s} = 10.58 GeV, e⁺e⁻→Y(4S)→B \overline{B}
 - \sqrt{s} = 10.52 GeV, e⁺e⁻ -> qqbar (u,d,s,c) 'continuum production'
- ideal detector for high precision measurements:
 - tracking acceptance θ [17 °;150°]: Silicon Vertex Detector, Drift Chamber
 - particle identification (PID): dE/dx, Cherenkov, ToF, EMcal, Mu detector
 - available data:
 - ~1.8 *10⁹ events at 10.58 GeV,
 - ~220 *10⁶ events at 10.52 GeV

• Particle misidentification expected to be largest uncertainty:

particle identification probabilities $p_{(i \rightarrow j)}$: probability that particle of species *i* PID-selected as particle of species *j*.

 D^0

→ K⁻

Experimental data based extraction of PID probabilities by decay sample study ٠

a) Kinematically reconstruct D*

completed extensive data-based PID calibration by extraction of probabilities $p(\pi, \kappa \rightarrow j)$ from D* decay sample, $p(\pi, p \rightarrow j)$ from Λ decay sample, $p(e, \mu \rightarrow j)$ from J/ ψ decay sample.

- All PID probabilities for negative track charge (~3500).
- Bins with fill pattern has extrapolated probabilities (tendency of experimental data & MC)

4. Measurement and Corrections Measurement Sample Impurities

- For same luminosity, compare qq, ττ, 2γ Monte Carlo samples generated by resp. cross sections after analysis cuts
- At high z, main impurities for pions from τ events: up to 35%.

4. Measurement and Corrections Initial/Final State Treatment

- Measurement result should only contain events closer to nominal sqrt(s) than O(~1%) (= theoretical uncertainty on Q^2 evolution).
- In this analysis, all tracks from events further than 0.5% to sqrt(s) excluded, exclusion fractions from generic Belle MC.
- Exclusion fractions dependent on shape of MC- studied 12 tunes (100M events each), assign spread of exclusion fractions as systematic uncertainty (insignificant to max. z).

```
generic Belle MC, , particles from Evtgen & GEANT.
```

Fraction of tracks from high ISR/FSR events, Belle MC

Self-generated Pythia tunes, no GEANT, 100M events each.

4. Measurement and Corrections Initial/Final State Treatment

- Remaining ISR/FSR: causes smearing.
- Calculated actual versus nominal z (with correct boost)
- Systematic uncertainty from integrated bin-by-bin overall smearing.

Systematic uncertainty a) from MC shape

4. Measurement and Corrections Additional Corrections

• Monte Carlo-based correction for kinematical smearing.

10⁹ Monte Carlo events after analysis cuts

- Further corrections:
 - Decay-in-flight,
 - Detector Interaction/ shower particles,
 - Detector/tracking efficiencies,
 - Analysis acceptance

5. Results and Discussion Preliminary Results

- Binning in z: width = 0.01; yields normalized to hadronic cross section
- Systematic uncertainties: z ~0.6: 1% (2%) for π (K); z ~0.9: 14% (50%) for π (K)

Improvement of precision: cf. slide 16, 17.

5. Results and Discussion Hadrons from Strong and Weak Decays

- Preliminary results include hadrons from all strong and weak decays (e.g. recovered decay-in-flight)
- Additional Belle MC-based relative fractions of strong vs. weak decay hadrons quoted.

5. Results and Discussion Comparison to Monte Carlo

- Ratio of samples from generic Belle MC and self-generated CDF, Atlas, Aleph, general LHC tunes over experimental data, all for events e⁺e⁻ -> qqbar (u,d,s,c) at sqrt(s) = 10.6 GeV.
- Pions and kaons:
 - Belle tune undershoots experimental multiplicities by ~1/3 at high z.
 - general LHC and Aleph tune overshoot experimental data by factor 5 at max z.
 - Atlas and CDF tunes stay within 20% of experimental data for all z.
- Spread of ratios above and below experimental data suggests consistency of measurement.

5. Results and Discussion Comparison to World Data

- With BaBar provides first measurements of z dependence of hadron multiplicities at high z > 0.7.
- comparable or better precision than all compared datasets despite high z resolution, especially for measurements at low energy scales.

5. Results and Discussion Comparison to World Data

- With BaBar provides first measurements of z dependence of hadron multiplicities at high z > 0.7.
- comparable or better precision than all compared datasets despite high z resolution, especially for measurements at low energy scales.

6. Unpolarized FFs at Belle- Summary & Outlook

- Completed precision measurement of charged pion and kaon multiplicities at low sqrt(s) up to high z at Belle.
- Improvements of extractions of unpolarized FFs expected.
- Systematic studies finished, now working on publication.
- Preliminary results with uncertainties available for interested groups.

Backup

1. Introduction to Fragmentation Functions (FF)

- Fragmentation: creating color-charge neutral objects from parton in final state of hard scattering reactions.
- e⁺e⁻ annihilation into quark-antiquark pair:

$$z \equiv \frac{E_h^{cms}}{\sqrt{Q^2/2}}$$

$$Q^2 = q^2 = (p_{e^-} + p_{e^+})^2 = s$$

• In LO QCD: FF D_i^h describes probability for a parton *i* to fragment into a hadron *h*

$$\frac{d\sigma(e^+e^- \to hX)}{dz} \propto \sum_{i=q,\overline{q}} e_i^2 \cdot D_i^h(z,Q^2)$$

• Sum rules:
$$\sum_h \int_0^1 z \cdot D_q^h(z,Q^2) = 1$$
$$\sum_q \int_{z_{\min}}^1 \left[D_q^h(z,Q^2) + D_{\overline{q}}^h(z,Q^2) \right] dz = n_h$$

1. Introduction to Fragmentation Functions- Evolution

 Fragmentation Functions from different energy scales can be related by evolution equations (DGLAP) from first principles QCD:

$$\frac{d}{d\ln Q^2} D^h_{\Sigma}(z, Q^2) \propto P_{qq} \otimes D^h_{\Sigma} + P_{gq} \otimes D^h_g, \qquad D^h_{\Sigma} \equiv \sum_q (D^h_q + D^h_{\overline{q}})$$

• Evolution enables to relate fragmentation functions/ cross sections from different energy scales/ experiments:

$$\frac{d\sigma(e^+e^- \to hX)}{dz} \propto \sum_{i=a,\overline{a}} e_i^2 \cdot D_i^h(z,Q^2)$$

1. Introduction to Fragmentation Functions-Universality

• Fragmentation Funtions also found in deep inelastic scattering (DIS) processes:

• Parton distribution functions (PDF) Φi gives probability to find parton in proton with momentum fraction x.

$$\frac{d^2\sigma(e^-p^+ \to hX)}{dxdz} \propto \sum_{i=q,\overline{q}} \phi_i(x,Q^2) \cdot e_i^2 D_i^h(z,Q^2)$$

 FFs same in e+e- and SIDIS (universality) -> determination of nucelon structure/PDFs via semi-inclusive DIS (SIDIS, e.g. HERMES experiment) will benefit from precise knowledge of fragmentation functions.

1. Introduction to Fragmentation Functions-Universality

• Fragmentation Functions also show up in proton proton collisions:

$$\frac{d^3\sigma(p^+p^+\to hX)}{dx_1dx_2dz} \propto \phi_g(x_1,Q^2) \cdot \phi_q(x_2,Q^2) \cdot \frac{d^2\hat{\sigma}(gq\to gq)}{dx_1dx_2} D_q^h(z,Q^2) + \dots$$

• Also present for spin dependent case:

$$\frac{d^{3}\Delta\sigma(p^{+\uparrow}p^{+\downarrow}\to hX)}{dx_{1}dx_{2}dz} \propto \Delta\phi_{g}(x_{1},Q^{2})\cdot\Delta\phi_{q}(x_{2},Q^{2})\cdot\frac{d^{2}\hat{\sigma}(gq\to gq)}{dx_{1}dx_{2}}D_{q}^{h}(z,Q^{2})+\dots$$

1. Introduction to Fragmentation Functions-Summary

- Fragmentation Funtions describe formation of hadrons from partons
- Need good knowledge of fragmentation functions to enable best extractions of quark and gluon distribution functions from experimental data:

 Extraction of fragmentation functions: use relations with measured (normalized) cross sections from e⁺e⁻, SIDIS, pp

2. Extraction of FF from experimental data- History

• Fits of **e**+**e**- annihilation data:

- Kretzer, <u>Phys. Rev. D 62, 054001 (2000)</u>

- Kniehl, Kramer, Poetter, Nucl. Phys. B582, 514 (2000)

- Albino, Kniehl, Kramer, <u>Nucl. Phys. **B725**</u>, 181 (2005) <u>Nucl. Phys. **B734**</u>, 50 (2006)
- Fits of **e**+**e** annihilation data fully propagating experimental **uncertainties**:

- Hirai, Kumano, Nagai, Sudoh (HKNS), KEK, Phys. Rev. D 75, 094009 (2007)

• Fits of **e**+**e**- annihilation, **SIDIS** and **pp** data with uncertainties:

- de Florian, Sassot, Stratmann (**DSS**), BNL, <u>Phys. Rev. D **75**,114010 (2007)</u> <u>Phys. Rev. D **76**, 074033 (2007)</u>

2. Extraction of FF from experimental data- Extraction Scheme

• Extract FF via NLO global pQCD analysis. e.g. e⁺e⁻ annihilation:

• parameterize of **D**_i^h at initial scale **Q**₀²

HKNS
$$D_i^h(z, Q_0^2) = M_{HKNS,i}^h z^{\alpha_i^\eta} (1-z)^{\beta_i^\eta}$$

DSS $D_i^h(z, Q_0^2) = M_{DSS,i}^h z^{\alpha_i^\eta} (1-z)^{\beta_i^\eta} \left[1 + \gamma_i^h (1-z)^{\delta_i^h} \right]$

 Evolve expressions for normalized cross sections to Q² of fitted datasets via DGLAP equations and simultaneously fit all datasets.

2. Extraction of FF from experimental data- Limitations I

• Lack of experimental data and high uncertainties on existing data at high z

Effect: high z behaviour of hadron multiplicities weakly constrained-

-> large uncertainties on extracted fragmentation functions at high z

2. Extraction of FF from experimental data- Limitations II a)

• Lack of precise data at low energy scales (far from LEP)

Effects:

a) Large uncertainties after evolution to small energy scales (fragmentation functions needed as input in SIDIS and pp measurements)

2. Extraction of FF from experimental data- Limitations II b)

• Lack of precise data at low energy scales (far from LEP)

Effects:

b) **gluon fragmentation function:** quark-gluon mixing in evolution weak & only enters cross section weekly at NLO -> **only loose constraints**

2. Extraction of FF from experimental data- Summary

- Most recent extractions of fragmentation functions suffer from :
 - Lack of precise data at low energy scales (far from LEP)
 - Lack of precise data at high z
- Motivation of present analysis: improve knowledge of fragmentation functions by

3. The Belle Experiment

4. Particle Identification: Time-of-Flight Detector

• concept: measure time-of-flight of particle and combine with measured momentum from track curvature in magnetic field

$$v = \frac{\Delta l}{\Delta t_{ToF}}, \ p = m\gamma v$$

• at Belle: start signal for timing measurement given by collider RF clock, stop by plastic scintillator signal

4. Particle Identification: PID Probabilities

 not possible to unambiguously assign species to measured particle because of likelihood character of PID

Reconstructed particle

particle identification probabilities p(i->j):
 probability that particle of species i is reconstructed as particle of species j.

$$[P]_{ij} = \begin{pmatrix} p(e->\tilde{e}) & p(\mu->\tilde{e}) & p(\pi->\tilde{e}) & p(K->\tilde{e}) & p(p->\tilde{e}) \\ p(e->\tilde{\mu}) & p(\mu->\tilde{\mu}) & p(\pi->\tilde{\mu}) & p(K->\tilde{\mu}) & p(p->\tilde{\mu}) \\ p(e->\tilde{\pi}) & p(\mu->\tilde{\pi}) & p(\pi->\tilde{\pi}) & p(K->\tilde{\pi}) & p(p->\tilde{\pi}) \\ p(e->\tilde{K}) & p(\mu->\tilde{K}) & p(\pi->\tilde{K}) & p(K->\tilde{K}) & p(p->\tilde{K}) \\ p(e->\tilde{p}) & p(\mu->\tilde{p}) & p(\pi->\tilde{p}) & p(K->\tilde{p}) & p(p->\tilde{p}) \end{pmatrix}$$

off-diagonal elements ~ O(10%) -> correct for particle mis-identification

5. Particle Identification Correction

• correction by inversion of PID probability matrix:

- for inversion have to determine all elements of PID probability matrix
 - 'Monte Carlo Simulation': detailed statistical description of detector, based on detector properties and material interaction physics
 - response of PID detectors only modeled to ~10% accuracy

Extract PID probabilities/ 'calibrate' Belle PID based on experimental data

5. Particle Identification Correction- PID Calibration from data

- Belle experimental data-based calibrations exist (to resolve B meson decay particles)
- limitations:
 - calibration available only for limited kinematics ($z \le 0.5$)
 - only available for diagonal and largest off-diagonal elements

Intensive efforts needed to extend PID to full kinematic range

• Belle PID response depending on track kinematics – perform calibration on binning in laboratory frame momentum and scattering angle

Backup: 2. Extraction of Fragmentation Functions

]

$$N^{h}(z,Q^{2}) = \frac{1}{\sigma_{\text{tothad}}} \frac{d\sigma(e^{+}e^{-} \rightarrow hX)}{dz}$$

$$\stackrel{\text{LO QCD}}{=} \sum_{i=q,\bar{q}} e_{i}^{2} \cdot D_{i}^{h}(z,Q^{2}) / \sum_{i=q,\bar{q}} e_{i}^{2}$$

$$\stackrel{\text{NLO QCD}}{=} \sum_{i=q,\bar{q},g} C_{i}^{NLO}(z,\alpha_{s}) \otimes D_{i}^{h}(z,Q^{2})$$

$$= \sum_{i=q,\bar{q},g} \int_{z}^{1} \frac{dz'}{z'} C_{i}^{NLO}(z',\alpha_{s}(\mu),\frac{s}{\mu^{2}}) D_{i}^{h}(\frac{z}{z'},\mu^{2}) + O(\frac{1}{\sqrt{s}})$$

2c. FF Extractions by HKNS & DSS

• Method of extraction:

- parameterization of D_i^h at initial scale Q_0^2

HKNS
$$D_i^h(z, Q_0^2) = \frac{1}{B[2 + \alpha_i^h, \beta_i^h + 1]} M_i^h z^{\alpha_i^h} (1 - z)^{\beta_i^h}$$

DSS $D_i^h(z, Q_0^2) = \frac{1}{B[2 + \alpha_i^h, \beta_i^h + 1] + \gamma_i^h B[2 + \alpha_i^h, \beta_i^h + \delta_i^h + 1]} M_i^h z^{\alpha_i^h} (1 - z)^{\beta_i^h} [1 + \gamma_i^h (1 - z)^{\delta_i^h}]$

- evolution of (scale-dependent) D_i^h to Q^2 of fitted datasets via pQCD DGLAP evoluation equations and simulataneous fit of all datasets.

$$\frac{d}{d\ln Q^2} \vec{D}^h(z, Q^2) = [\hat{P}^{(T)} \otimes \vec{D}^h](z, Q^2);$$
$$\vec{D}^h = \begin{pmatrix} D_{\Sigma}^h \\ D_g^h \end{pmatrix}, \quad D_{\Sigma}^h = \sum_q (D_q^h + D_{\overline{q}}^h), \qquad \hat{P}^{(T)} = \begin{pmatrix} P_{qq}^{(T)} & 2n_f P_{gq}^{(T)} \\ \frac{1}{2n_f} P_{qg}^{(T)} & P_{gg}^{(T)} \end{pmatrix}$$

TABLE VII: Each χ^2 contribution in the pion analysis.

experiment	# of data	$\chi^2 (LO)$	$\chi^2 (\text{NLO})$
TASSO	29	52.1	51.9
TPC	18	33.5	27.3
HRS	2	1.1	2.0
TOPAZ	4	2.6	2.6
SLD (all)	29	11.3	10.6
SLD (u,d,s)	29	46.0	36.4
SLD (c)	29	24.4	26.1
SLD (b)	29	71.2	66.4
ALEPH	22	22.8	24.0
OPAL	22	45.4	45.8
DELPHI (all)	17	48.3	48.6
DELPHI (u,d,s)	17	29.6	31.1
DELPHI (b)	17	64.9	60.8
total	264	453.2	433.5
(/d.o.f.)		(1.81)	(1.73)

BELLE

2c. Fit Results DSS

1

1 1 - n + 1 if the second s	1
10^4 10^4 10^4 10^4 10^4 10^4 10^4 10^4 10^4	d
$\overline{\sigma}$ \overline{dz}	18.5
$= 10^{3}$ tot	1.9
10 SLD 0.4 "c tag" 0.94 9	5.7
$b = \frac{1}{2} \begin{bmatrix} 0.2 \\ 0 \end{bmatrix}$ "b tag" 0.94 9	7.4
10 10	30.1
$= -0.4 \stackrel{\text{m}}{\text{m}} = -0.4 $	20.5
¹⁰ (\times^{10}) $(\times^{$	14.0
$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & $	11.6
1 $-0.1 \leq -0.2 \leq -0.2 \leq -0.1 \leq -0.1 \leq -0.1 \leq -0.2 \leq -0.1 \leq -0.2 < -0.2 \leq -0.2 < -0.2 \leq -0.2 \leq -0.2 < -0.2 < -0.2 < -0.2 < -0.2 < -0.2 < -0.2 < -0.2 < -0.2 $	11.1
$\begin{bmatrix} not & \texttt{w}_{2} \\ \texttt{h}_{2} \\ \texttt$	33.2
10^{-1} miled 11^{-1} 10^{-1} 11^{-1} 10^{-2} ALEPH [11] incl. 0.97 22	38.3
DELPHI [12] incl. 1.0 17	42.3
10^{-2} 10^{-2} 10^{-2} $10^{-0.2}$ $10^{-0.2}$ $10^{-0.2}$	26.4
THIS FIT	42.8
10^{-3} KRE 10^{-3} OPAL 10^{-3} OPAL $13, 14$ incl. 1.0 21	9.2
$ (\times 0.01) $	11.8
10^{-4} -0.2 "d tag" 1.10 5	9.0
10^{-1} Z 1 10^{-1} Z 1 "s tag" 1.10 5	49.8
<i>"c</i> tag" 1.10 5	38.3
<i>"b</i> tag" 1.10 5	73.0
HERMES [18] π^+ 1.03 32	67.4
π^{-} 1.03 32	120.8
PHENIX [19] π^0 1.09 23	76.4
STAR [22] π^0 , $\langle \eta \rangle = 3.3$ 1.05 4	3.4
$\pi^0, \langle \eta \rangle = 3.7$ 1.05 5	9.8
BRAHMS [21] π^+ , $\langle \eta \rangle = 2.95$ 1.0 18	28.2
$\pi^-, \langle \eta \rangle = 2.95$ 1.0 18	43.0
TOTAL: 392	843.7

2c. Extracted FF HKNS

2c. Extracted FF DSS

- Inclusion of pp and SIDIS data provide better constraints at low Q² & high z
- Gluon FF still loosely constrained because

NLO corrections not large enough and

quark-gluon mixing from scaling evolution requires precise data far enough from M_z ,

large theoretical uncertainties in pp--remedied by precision measurement at low Q²

3. Particle Misidentification Correction– Lepton PID Probabilities from J/ Ψ -> l^+l^-

Real data exp[7;55], HadronBJ onres ~590 fb^-1, cont ~70fb^-1

Example fits

e-/ μ- with p_{lab} in [1.4; 1.6] GeV/c, cosθ_{lab} in [0.21; 0.36]

e and µ components not resolvable with kinematics only. S/N too low for KPID and pPID.

Cumulative Chisquare

distribution of all chisquares fitted with theoretical Chisquare distribution.

43/19

44/19

3. Particle Misidentification Correction– Lepton PID Probabilities from $J/\Psi \rightarrow l^+l^-$

3. Particle Misidentification Correction-**Pion and Kaon PID Probabilities from D***

$D^* \rightarrow \pi_{slow} (D^\circ \rightarrow \pi_{fast} K)$ Real data exp[7;55], HadronBJ onres ~590 fb^-1, cont ~70fb^-1 **Example fits** obshist[5][4][1][0][0] noPIDobshist[5][4][1][0][1] e/μ PI obshist[5][4][1][0][2] π PIDno PID cut e/µ PID cut **π PID cut** 120 5000 5000 E 100 80 60 40 1.33e-02 ± 2.40e-04 1.45e-01 ± 6.70e-06 2.47e-03 ± 4.44e-05 8.57e-03 ± 1.39e-03 1.46e-01 ± 9.45e-05 6.01e-04 ± 1.09e-04 4000 1.23e-02 ± 2.33e-04 1.45e-01 ± 7.10e-06 5.53e-04 ± 1.02e-05 p4 p5 p6 Π probstatflag = 0 bincorrsigyield = 133 probstat = 0.013 +- 0.001 probstatflag = 0 bincorrsigyield = 8534 probstat = 0.865 +- 0.016 probstatflag = 0 bincorrsigyield = 9861 2000 π- with 0.152 0.154 m_{treb.tr}-m_{treb}. [GeV/c^A2] 8.14 0.152 0.154 814 0.142 0 144 0.146 0 148 0.15 0.152 0.154 m_{trekto}.-m_{trekt}. [GeV/c^2] 0 142 0.146 0 14 p_{lab} in [1.4; 1.6] GeV/c, obshist[5][4][1][0][3] K PIDobshist[5][4][1][0][4] p PIDobshist[5][4][1][0][5] unsel PID- $\cos\theta_{lab}$ in [0.21; 0.36] p PID cut **K PID cut** Unsel. 180 160 120 100 80 60 40 20 500 400 200 200 100 1.45e-01 ± 2.35e-05 4.03e-04 ± 3.03e-05 1.45e-01 ± 4.19e-05 4.37e-04 ± 6.00e-05 candidate selection along BN 779, Nishida-san. probstatflag # 0 probstatflag = 0 bincorrsigyield = 907 robstat = 0.092 +- 0.003 bincorrsigyield = 290 probstat = 0.029 +- 0.002 stat = -5000.000 +- -5000.00 Good S/N. 0.152 0.154 m_{trete tr}-m_{trete} [GeV/c*2] 0.142 0.144 0.146 0.146 0.144 obshist[5][4][0][0][0] noPIDobshist[5][4][0][0][1] e/µ PI obshist[5][4][0][0][2] π PIDe/µ PID cut no PID cut π PID cut 700 E 1.21e-02 ± 2.32e-04 1.45e-01 ± 5.32e-06 2.40e-03 ± 4.57e-05 70 60 50 40 30 5.65e-03 ± 1.12e-03 1.45e-01 ± 1.11e-04 2.08e-03 ± 4.90e-04 1.28e-02 ± 7.24e-04 1.45e-01 ± 2.24e-05 3.74e-03 ± 2.36e-04 **K**p4 p5 4000 p4 p5 600 E 3000 400 probstatflag = 0 bincorrsigyield = 1212 2000 corrsigyield = 8740 stat = -5000.000 +- -5000.00 robstat = 0.012 +- 0.001 robstat = 0.139 +- 0.005 1000 E K-with 8 14 0.142 0.144 0.146 0.148 0.15 0.152 0.154 m_res.m.m.c. (GeVic^2) 0.152 0.154 m_{treb}.-m_{treb}. [GeV/c*2] 0.146 0.148 0.15 0.152 0.154 m_____m_(GeV/c^2) 0.14 0.142 0 TA 0 142 0 144 0.146 0.148 0.15 0.144 p_{lab} in [1.4; 1.6] GeV/c, obshist[5][4][0][0][3] obshist[5][4][0][0][4] n PID obshist[5][4][0][0][5] unsel PID-K PID- $\cos\theta_{lab}$ in [0.21; 0.36] p PID cut **K PID cut** Unsel. 4000 3500 E 7 6 5 4 3 2 250 2.06e-02 ± 1.85e-03 1.45e-01 ± 2.86e-05 5.19e-04 ± 4.82e-05 1.18e-02 1 2.41e-04 1.45e-01 1 7.78e-06 2.06e-03 1 4.00e-05 3000 E p5 p6 p5 200 2500 E 2000 E 150 1500 E probstatflag = 0 bincorrsigyield = 6949 probstat = 0.795 +- 0.016 probstatflag = 0 bincorrsigyield = 482 probstat = 0.055 +- 0.003 probstattlag = 3 bincorrsigyield = -5000 100 E obstat = -5000.000 +- -5000.000 1000 E 0.152 0.154 muniture (GeV/c*2) 8 4 0.144 0.146 0.148 0.15 0.152 0.154 m_{trektr} -m_{trekt} [GeV/c*2] 814 0.144 0.146 0.148 0.15

0.142

0.142

45/19

0.146 0.148

0.144

0.152 0.154 [GeV/c*2]

3. Particle Misidentification Correction– Pion and Kaon PID Probabilities from D*

46/19

47/19

3. Particle Misidentification Correction– Pion and Kaon PID Probabilities from D*

Good kinematic availability.

Т

Real data exp[7;55], onres ~580 fb^-1, cont ~65fb^-1

3. Particle Misidentification Correction– Pion and Kaon PID Probabilities from D*

3. Particle Misidentification Correction– Proton PID Probabilities from $\Lambda \rightarrow p \pi$

p- with

Example fits

р-

 p_{lab} in [1.4; 1.6] GeV/c, $\cos\theta_{lab}$ in [0.21; 0.36]

candidate selection along BN 670 (Majumder-san), BN 1126 (Yeh-san).

Good S/N, but candidate selection Ks- cuts -> non-linear background.

Cumulative Chisquare

distribution of all chisquares fitted with theoretical Chisquare distribution. 49/19

3. Particle Misidentification Correction– Proton PID Probabilities from $\Lambda \rightarrow p \pi$

Backup: Particle Misidentification Correction-Lepton PID Probabilities from $J/\Psi \rightarrow l^+l^-$

Real data exp[7;55], onres ~590 fb^-1, cont ~70 fb^-1

Kinematic extraction availability

Red/blue: good fits. Green: failed fits (no signal) White: by-hand-rejected.

Restricted kinematic phase space for decay leptons (J/ Ψ from B).

3 probstat >= 1.0

e/μ PID

Consistency Check

Agreement between the two methods within 1 sigma for all extracted probabilities.

Backup: Particle Misidentification Correction– Pion and Kaon PID Probabilities from D*

52/19

Real data exp[7;55], HadronBJ **Kinematic extraction** onres ~590 fb^-1, cont ~70fb^-1 availability 105 suff stats bins 135 suff stats bins 136 suff stats bins aoodfullfit 26 goodfullfit 131 goodfullfit 8 good0prob 0.4 0.4 badfite 0.4 -T 3 hadfite 0.2 0.2 -31 toolowstats 1 toolowstats e/µ PID cut -0.2 no PID cut -0.2 - π PID cut -0.4 -0.4 -----0.4 -Pin [GeV/c] 7 P_{im} [GeV/c] P. [GeV/c] **Red/blue**: good fits. Green: failed fits (no signal) 128 suff stats bins 122 suff stats bins 5 suff stats bins White: by-hand-rejected. 117 goodfullfit 5 goodfullfit 28 good0prob 4 good0prob 0.4 131 toolowstats 8 toolowstats 14 toolowstats 0.2 3 inherbadfit 0 --0.2 --0.2 --0.2 p PID cut **K PID cut** Unsel. .0.4 -0.4 -139 suff stats bins 111 suff stats bins 140 suff stats bins 16 goodfullfi 3 goodfullfit 30 goodfullf 3 good0prob **K**-0.4 good0prob 0.4 -10 badfits 0.2 29 toolowstats 1 toolowstats e/µ PID cut no PID cut -0.2 **π PID cut** Pip [GeV/c] P [GeV/c] P [GeV/c] 136 suff stats bins 140 suff stats bins 10 suff stats bins 124 goodfullfi 15 good0prob 130 toolowstats 0.4 -4 badfits 5 badfits 0.2 -4 toolowstats **K PID cut** Unsel. p PID cut -0.2 P [GeV/c P [GeV/c P [GeV/c]

Good availability.

Backup: Particle Misidentification Correction– Pion and Kaon PID Probabilities from D*

53/19

Backup: Particle Misidentification Correction-Obtain MC Probabilities from ,MCHadronBJ' Sample

- For extrapolation techniques need MC PID probabilities
- If PID correction performed with probabilities from generic uds charm MC: unphysical corrected spectra:

 e⁺ PID-corr Real Data (Stat. Uncert.)

uds charm generic MC cont exp7-55 3 streams, std cuts (lpdr, lpdz, NSVD, Evis)

In generic uds and charm MC, most high z electrons are created in pair production, most high z muons created in decay-in-flight -> high fake rates -> unphysical PID-corr. spectra

Backup: Particle Misidentification Correction-Obtain MC Probabilities from ,MCHadronBJ' Sample

- Include non-qqbar processes entering HadronBJ skim in MC probability sample
- Otherwise MC PID probabilities produce unphyiscal spectra in correction

type	cross section (nb)
tautau (KKMC)	0.9187 (+-0.0003)
eeee	40.9
eemumu	18.9
eeuu	11.7
eedd	0.798
eess	0.227
eecc	0.030
eetautau	0.018
mumu (KKmc)	1.005 +- 0.001
bhabha (BHLUMI)	123.5 +- 0.2

After extensive discussion with Caseysan, Inami-san provided tau, two-photon, muon and Bhabha MC on the Nagoya cluster.

All processes are generated in amounts according to their cross sections at the respective energy levels.

Backup: Particle Misidentification Correction-Obtain MC Probabilities from ,MCHadronBJ' Sample

Comparing, MCHadronBJ⁺ to real data HadronBJ skim for selected runs in exp41

IPdr < 13mm, IPdz < 4cm; $N_SVD(rphi + z) >= 3$; Evis > 7 GeV

IPdr < 13mm, IPdz < 4cm; N SVD(rphi + z) >= 3; Evis > 7 GeV

1

).2 <= cosθ_{tab} < 0.4

p [GeV/c]

57/19

Backup: Particle Misidentification Correction– Extrapolation of Real Data PID Probabilities

- Interpolate small gaps with real data PID probability
- Extrapolate high p_{lab} probabilities in high plab bins with Monte Carlo help.
- Color points: real data probabilities, gray points: generic MC probabilities.

Backup: Particle Misidentification Correction-PID Correction & averaging between T1) and T2)

Color: real data K- ->p- probs from K out of D* decays.

Gray: MCHadronBJ probabilities from all gen K reaching the detector after std cuts.

Black: method a) extrapolated probabilities.

Systematic uncertainties of PID correction consistent with positive proton yields at high z.

Backup. PID Probability Extraction

 Probability extraction p(i->j): building ratios between signal yields- integrated signal functions

Backup: HadronBJ Impurities

Process	σ (nb)
$b\bar{b}$	1.1
$q\bar{q}~(q=u,d,s,c)$	3.3
$ au^+ au^-$	0.93
$QED \ (25.551^o < \theta < 159.94^o)$	37.8
$\gamma\gamma \to q\bar{q} \ (w > 500 \text{ MeV})$	11.1

• In initial test study, following BN 390,

* QED background was neglected;

* Beam-gas background was also neglected, since only tracks within the ToF geometry acceptance and with z < 0.75 were considered in our analysis.

• upper bound is estimated for tautau (gamma gamma) events: additional directed systematic uncertainty of -1.8% (-1.4%) per z-bin.

Physics	$\sqrt{s}_{ m on \ re}$	$\sqrt{s}_{\rm cont} = 10.52 { m ~GeV}$	
Process	Cross Section [nb]	Relative Number of Events	Relative Number of Events
$B\overline{B}$	1.09	27.9%	<u>~</u>
$q\overline{q}$	2.62	67.0%	92.9%
$\tau^+\tau^-$	0.05	1.3%	1.8%
QED	$3 \cdot 10^{-3}$	$5\cdot 10^{-4}$	0.04%
$\gamma\gamma$	0.04	1.0%	1.4%
Beam-Gas	0.11	2.8%	3.9%

Backup - Binning for Particle Misidentification Correction

bin 0 = 0.5 - 0.65 GeV bin 1 = 0.65 - 0.8 GeV ... widths of 200 MeV bin 12 = 2.8 - 3.0 GeV bin 13 = 3.0 - 3.5 GeV bin 14 = 3.5 - 4.0 GeV bin 15 = 4.0 - 5.0 GeV

 $bin 16 = 5.0 - 8.0 \, GeV$

p_{lab} binning:

 $\cos\theta_{lab}$ binning: bin 0: -0.511 - -0.300 bin 1: -0.300 - -0.152 bin 2: -0.152 - 0.017 bin 3: 0.017 - 0.209 bin 4: 0.209 - 0.355 bin 5: 0.355 - 0.435 bin 6: 0.435 - 0.542 bin 7: 0.542 - 0.692 bin 8: 0.692 - 0.842

 Θ_{lab} binning within ToF acceptance ToF θ_{lab} [34;120)°, cos θ_{lab} in [0.829;-0.5).

 Θ_{lab} binning reflects ACC hardware segmentation.

Selected	Cuts on Likelihood Quantities						
Species j	$L_{ m eid}$ L_{μ}		$L_{K:\pi}$	$L_{K:p}$	$L_{\pi:p}$		
е	[0.85; 1.0]	[-5.0; 0.9)	-	-	_		
μ	[0.0; 0.85)	[0.9; 1.0]	-	-	-		
π	[0.0; 0.85)	[-5.0; 0.9)	[0.0; 0.6)	[0.0; 1.0]	[0.2; 1.0]		
Κ	[0.0; 0.85)	[-5.0; 0.9)	[0.6; 1.0]	[0.2; 1.0]	[0.2; 1.0]		
р	[0.0; 0.85)	[-5.0; 0.9)	[0.0; 0.6)	[0.0; 0.2)	[0.0; 0.2)		

]

Backup- CDC, ToF and ACC PID discrimination power

- CDC discrimination power via dE/dx
- ToF discrimination power via time-of-flight

Track	Times-of-Flight for Particle Species i [ns]				
Momentum $[\text{GeV}/c]$	е	μ	π	Κ	р
1.0	4.004	4.209	4.274	4.892	5.572
2.0	4.003	4.008	4.013	4.123	4.421
3.0	4.003	4.005	4.007	4.057	4.194

• ACC discrimination power via Cerenkov thresholds

Refractive	Cherenkov Threshold Momentum for Particle Species i						
Index	e $[MeV/c]$	$\mu \; [{\rm GeV}/c]$	$\pi \; [{\rm GeV}/c]$	K [GeV/ c]	p $[\text{GeV}/c]$		
1.010	3.6	0.75	0.98	3.48	6.62		
1.013	3.2	0.65	0.86	3.05	5.80		
1.015	2.9	0.61	0.80	2.84	5.40		
1.020	2.54	0.53	0.69	2.46	4.67		
1.028	2.14	0.44	0.59	2.07	3.94		

Backup: Particle Misidentification Correction-Uncertainty Propagation Procedure

- For inverse values: take analytical inverse.
- For uncertainties: Build MC ,instances' of original PID matrix by varying each element within its uncertainties, impose probability requirements, sample size **10**⁶

Backup- Accounting for Probability Nature of Matrix Elements in Uncertainty Propagation through Matrix Inversion for Sample PID Matrix

- green: all MC variants of original PID matrix.
- black: rejecting all variant matrices which are not complying with probability interpretation (columnsum > 1.0 || matrix element < 0.0).

4a. Correction for Particle Misidentification IV. PID Probability Extrapolation

- PID probabilities not extractable for entire kinematic plane from real data
- To obtain PID information and representative uncertainties also for highest z: extrapolate real data probabilities with MC information.
- To account for sample impurity of real data HadronBJ skim, extract MC information from ,MC HadronBJ' = uds + charm + 2gamma + QED events.
- Perform PID correction with probabilities from two different extrapolation methods. PID-corrected yields are average of corrections.

Color: real data probabilities. Gray: MC probabilities.

Black: method a) extrapolated probabilities. (Triangles below 0: internal indicators.)

4a. Correction for Particle Misidentification V. PID Probability Correction Results

4c. Acceptance Corrections

- MC-based correction for decay-in-flight losses, detector interaction, detector/tracking efficiencies, analysis acceptance.
- Account for dependence of correction factor on MC hadronic interaction package

10^7 MC continuum events

Backup: Pion decay-in-flight study

I) Absolute yields of all strongly generated particles, MC-tagged and analytically calculated DIF parents

10cm II) MC-tagged and analytically calculated DIF parents relative to all strongly generated particles

III) charge ratio of all strongly generated particles and MC-tagged DIF parents

BELLE

5. Acceptance Correction I

• for systematic uncertainty on ϵ_{global} : generated 1M particles each for pion/kaon, negative/positive, Fluka/Geisha/no hadronic interaction.

Backup: non-qqbar contributions in MCHadronBJ

Exp 41 stream# 1, 63 runs continuum;

generic uds + charm + 'Nagoya MC' vs real data HadronBJ skim IPdr < 13mm, IPdz < 4cm; N_SVD(rphi + z) >= 3; Evis > 7 GeV

]

Charged Pion and Kaon Multiplicities from Belle

Belle Monte Carlo data, ~500M events

3. Chiral-odd Fragmentation Functions for the extraction of transversity distribution

- To determine transverse quark spin distributions: **pp, SIDIS** measure: **transversity** X **Collins** FF: $\delta q \times H_1^{\perp}$ or **transversity** X **Interference** FF (IFF): $\delta q \times H_1^{\triangleleft}$
- Belle can measure: Collins X Collins or IFF X IFF by identifying two/four hadrons in two hemispheres in final state, e⁺e⁻→(h)(h) X / →(hh)(hh) X

3a. Collins Fragmentation Functions H_1^{\perp} at Belle

765/159

 $\vec{p}_{h\perp}$

3a. Collins Fragmentation Functions H_1^{\perp} at Belle

 Measure 'double ratios' of normalized two-pion yields -> access to favored-disfavored Collins FF (transverse spin asymmetries)

First published: Phys. Rev. Lett. 96, 232002 (2006) Larger data sample: Phys. Rev. D 78, 032011 (2008)

 first direct measurement of Collins effect

 significant, nonzero asymmetries implying significant spin-dependent effects in

$$e^+e^- \rightarrow q\overline{q} (q = u, d, s)$$

fragmentation

 this measurement used in first extraction of quark transversity distributions :
Phys. Rev. D 75, 054032 (2007), Update in Nucl. Phys. Proc. Suppl. 1 91, 98-107 (2009)

3b. Interference Fragmentation Functions H⁴ at Belle

- Again asymmetry would average out on single jet (unpolarized initial state at Belle, quark spin state not known)
- -> measure simultaneous azimuthal modulation of two pion pair yields in opposing hemispheres

 $A \propto \cos(\varphi_1 + \varphi_2) H_1^{\triangleleft}(z_1, m_1) \overline{H}_1^{\triangleleft}(z_2, m_2)$

Model predictions for IFF from:

Jaffe et al PRL **80**, (1998) Bacchetta et al. PRD **79**, **(2009)**

3b. Interference Fragmentation Functions H¹ **at Belle- Model predictions**

Red line: theory prediction + uncertainties, Bacchetta et al, PRD 79 (2009) Blue points: data (after sign change and cos moment, decay angular moments adjustment)

- Model prediction: IFF larger around invariant mass of correlating resonance, then fall-off
- Measured: ~ constant IFF at high invariant masses, raising IFF for increasing fractional energy

788/159