Fragmentation function measurements @ RHIC

Fragmentation Function workshop November 2012, RIKEN

 Fragmentation function describes the process of hadronization of a parton

 Fragmentation function describes the process of hadronization of a parton

> Strictly related to quark confinement

e+e- annihilation cleanest reaction no additional non-perturbative terms

 $\sigma^{e^+e^- \to hX} \propto \sum \sigma^{e^+e^- \to q\bar{q}} \times D^h_q$ $i = q\bar{q}$

 Fragmentation function describes the process of hadronization of a parton

> Strictly related to quark confinement

e

e+e- annihilation cleanest reaction no additional non-perturbative terms

 $\sigma^{e^+e^- \to hX} \propto \sum \sigma^{e^+e^- \to q\bar{q}} \times D^h_q$ $i = q\bar{q}$

 Fragmentation function describes the process of hadronization of a parton

> Strictly related to quark confinement

0.4 0.5 0.6 0.7 0.8 0.9

0.3

e+e- annihilation cleanest reaction no additional non-perturbative terms

$$\sigma^{e^+e^- \to hX} \propto \sum_{i=q\bar{q}} \sigma^{e^+e^- \to q\bar{q}} \times D^h_q$$

World Data (Sel.) for $e^+e^- \rightarrow \pi^{+,\cdot} + X$, Multiplicities

Hirai, Kumano, Nagai, Sudoh Phys. Rev. D 75, 094009 (2007)

2007: First unpolarized FF extraction with estimated uncertainties!

 Fragmentation function describes the process of hadronization of a parton

> Strictly related to quark confinement

e+e- annihilation cleanest reaction no additional non-perturbative terms

 $\sigma^{e^+e^- \to hX} \propto \sum \sigma^{e^+e^- \to q\bar{q}} \times D^h_q$ $i = q\bar{q}$

Universal!

e

e'e annihilation

e+e- annihilation cleanest reaction no additional non-perturbative terms

$$\sigma^{e^+e^- \to hX} \propto \sum_{i=q\bar{q}} \sigma^{e^+e^- \to q\bar{q}} \times D^h_q$$

• No charge separation possible $(\pi^+ + \pi^-, K^+ + K^-, ...)$

q

6

eter annihilation

e+e- annihilation cleanest reaction no additional non-perturbative terms

$$\sigma^{e^+e^- \to hX} \propto \sum_{i=q\bar{q}} \sigma^{e^+e^- \to q\bar{q}} \times D^h_q$$

• No charge separation possible $(\pi^+ + \pi^-, K^+ + K^-, ...)$

Q

• Only flavor singlet combination accessible $(u+\bar{u}, d+\bar{d}, ...)$

eter annihilation

e+e- annihilation cleanest reaction no additional non-perturbative terms

$$\sigma^{e^+e^- \to hX} \propto \sum_{i=q\bar{q}} \sigma^{e^+e^- \to q\bar{q}} \times D^h_q$$

• No charge separation possible $(\pi^+ + \pi^-, K^+ + K^-, ...)$

• Only flavor singlet combination accessible ($u+\bar{u}, d+\bar{d}, ...$)

Weakly sensitive to gluons

eter annihilation

Global analysis

Global analises: e+e-, SIDIS, pp: (including uncertainties)

> de Florian, Sassot, Stratmann Phys. Rev. D 75, 114010 (2007) and Phys. Rev D 76, 074033 (2007)

Epele, Llubaroff, Sassot, Stratmann arXiv:1209.3240 [hep-ph]

e+e-, pp:

Albino, Kniehl, Kramer Nucl. Phys. B 803, 42 (2008)

Hadronic interations

Proton-Proton collider

BROOKHAW

Proton-Proton collider

BROOKHAV

Hadron-Hadron collider \sqrt{s} of 62 GeV, 200 GeV, 500 GeV

PbSe PC1 PC1 PC1 TOF-E West Beam View East

RICH

Central Arms:

2011

TOF-W

Tracking, Momentum and PID for: *charged and neutral hadrons *direct photons *e+e-

|η| <0.35

PHENIX Detector

Central Magnet

TEC.

RICH

7.9 m =

26

PbGI

Forward Arms:

 $1.2 < |\eta| < 2.4$

Tracking and Momentum for: μ^{\pm}

Even more forward: MPC

 $3.1 < |\eta| < 3.9$

Central Spectrometer:

|η| < 1 Tracking, Momentum and PID for: *Charged and neutral hadrons, jets Coils Magnet Tracker Coils Magnet Tracker Calorimeter Time Projection Chamber Time Of Flight

Endcap Calo 1 < |n| < 2

Forward region:

$$\approx \pi^0$$
, η , jets

Forward meson spectrometer

Brahms

Central Arm: 0 < η < 1.5

Tracking, Momentum and PID for: *Charged hadrons

Forward Arm:

$1.5 < \eta < 4$

Tracking, Momentum and PID for: *Charged hadrons

Brahms

Central Arm: 0 < η < 1.5

Tracking, Momentum and PID for: *Charged hadrons

Forward Arm:

$1.5 < \eta < 4$

Tracking, Momentum and PID for: *Charged hadrons

Global fit results: pions

Global fit results: ka

de Florian, Sassot, Stratmann Phys. Rev. D 75, 114010 (2007) and Phys. Rev D 76, 074033 (2007)

Albino, Kniehl, Kramer Nucl. Phys. B 803, 42 (2008)

0

pp (p

 $pp (p\overline{p} \text{ for } C$

Global fit results: pr

de Florian, Sassot, Stratmann Phys. Rev D 76, 074033 (2007)

Albino, Kniehl, Kramer Nucl. Phys. B 803, 42 (2008)

Global fit results

PRL 98, 012002

PRD79:012003

PRL 98, 012002

10² (mb.GeV²c² PH ENIX π⁰ (π⁺+π⁻)/2 ₽¹⁰ , φ 10⁴ ω 10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 10 p_(GeV/c) 10⁴ 10.4 NLO pQCD (by W.Vogelsang) CTEQ6M PDF; KKP FF 10 μ= p₁/2, p₁, 2p₁ 10 (Data-pocD)/pocD 9.7% normalization uncertainty 1 is not included 0.5 0 -0.5 0 10 12 14 16 18 20 2 4 6 8 p_{_} (GeV/c)

10² (mb.GeV²c² PHENIX π⁰ (π⁺+π⁻)/2 . ₽¹⁰ ,6 10' 10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 10 p_(GeV/c) 10⁴ 10'7 NLO pQCD (by W.Vogelsang) CTEQ6M PDF; KKP FF 10 $\mu = p_{T}/2, p_{T}, 2p_{T}$ 10 (Data-pocD)/pocD 9.7% normalization uncertainty 1 is not included 0.5 0 -0.5 0 10 12 14 16 18 20 2 6 8 4 p_{_} (GeV/c)

PRD79:012003

PRD79:012003

PRD79:012003

PRL 108, 72302 10⁻² p+p p+p $\bullet \pi^-$ • π+ $\mathbf{\nabla} K_{S}^{0} \times 0.1$ $\frac{d^{2}N}{d^{2}N} \frac{2\pi p_{T}dp_{T}dy}{0} [(\text{GeV}/c)^{-2}]$ $\mathbf{k} \mathbf{K} \mathbf{\times} 0.1$ ■ <u>p</u>×0.001 $\blacktriangle K^+ \times 0.1$ 10⁻⁵ ■ *p* ×0.001 $\star \rho^0 \times 10$ À **AKK 2008** Au+Au central **AKK 2008** $\Rightarrow \rho^0 \diamond K^+ + p$ $\Rightarrow K^0_S \triangle K^- + \overline{p}$ 10⁻¹⁴ + DSS – DSS 10 12 14 10 12 8 8 4 6 6 14 4 p_{T} (GeV/c)

PRL 108, 72302

Brahms data

Brahms data

Brahms data

It is possible to describe a variety of data from different reactions and energy by using a pQCD framework + factorization theorem

It is possible to describe a variety of data from different reactions and energy by using a pQCD framework + factorization theorem

Universality and factorization hold!

e

It is possible to describe a variety of data from different reactions and energy by using a pQCD framework + factorization theorem

Universality and factorization hold!

Various reactions provide access to different aspects of

the fragmentation process

19

 $\boldsymbol{\sigma}$