Fragmentation function measurements @ Rific

Fragmentation Function workshop
November 2012, RIKEN

Francesca Giordano

Tradimentation procase

Tradimentation procase

(a)

Tradmentation mrocesc

Tradmentation mrocess

- Fragmentation function describes the process of hadronization of a parton

Tradmentation mrocess

- Fragmentation function describes the process of hadronization of a parton
- Strictly related to quark confinement

Tradmentation_mrocess

- Fragmentation function describes the process of hadronization of a parton
- Strictly related to quark confinement

ITradimentration orocesc

e+e- annihilation cleanest reaction no additional non-perturbative terms

World Data (Sel.) for $\mathrm{e}^{+} \mathrm{e}^{*} \rightarrow \pi^{*}+\mathrm{X}$. Multiplicities

- Fragmentation function describes the process of hadronization of a parton
- Strictly related to quark confinement

Tradimentration orocesc

2007: First unpolarized FF extraction
with estimated uncertainties!

- Fragmentation function describes the process of hadronization of a parton
- Strictly related to quark confinement

Tradmentration nrocesc

ITradimentration procesc

ITradimentration oracesc

hadron reactions

pDFs Aut $A_{l l}$
Evolution

$e^{+} e^{-}$annihilation

\downarrow No charge separation possible $\left(\pi^{+}+\pi^{-}, K^{+}+K^{-}, \ldots\right)$

$e^{+} e^{-}$annihilation

\star No charge separation possible $\left(\pi^{+}+\pi^{-}, K^{+}+K^{-}, \ldots\right)$
\uparrow Only flavor singlet combination accessible (u+ $\bar{u}, d+\bar{d}, \ldots)$

$e^{+} e^{-}$annihilation

\uparrow No charge separation possible $\left(\pi^{+}+\pi^{-}, K^{+}+K^{-}, \ldots\right)$
\star Only flavor singlet combination accessible (u+ū, $d+\bar{d}, .$.)

- Weakly sensitive to gluons

$e^{+} e^{-}$annihilation

e+e- annihilation cleanest reaction no additional non-perturbative terms

$$
\sigma^{e^{+} e^{-} \rightarrow h X} \propto \sum_{i=q \bar{q}} \sigma^{e^{+} e^{-} \rightarrow q \bar{q}} \times D_{q}^{h}
$$

\star No charge separation possible $\left(\pi^{+}+\pi^{-}, K^{+}+K^{-}, \ldots\right)$
\uparrow Only flavor singlet combination accessible (u+ū, $d+\bar{d}$,

- Weakly sensitive to gluons

ITradimentration procesc

ITradimentration oracesc

e+e- annihilation cleanest reaction no additional non-perturbative terms

Universal!

$$
\sigma^{e^{+} e^{-} \rightarrow h X} \propto \sum_{i=q \bar{q}} \sigma^{e^{+} e^{-} \rightarrow q \bar{q}} \times D_{q}^{h}
$$

chlobpi amplustic

Hadronic interations

hadron reactions

Proton-Proton collider
 ?

Proton-Proton collider

Phemir:

Central Arms:

$$
|\eta|<0.35
$$

Forward Arms:
Even more forward: MPC

Tracking, Momentum and PID for: wcharged and neutral hadrons *direct photons

$$
1.2<|\eta|<2.4
$$

$3.1<|\eta|<3.9$

』 $\mathrm{e}+\mathrm{e}-$

Stram

Central Spectrometer:

$$
|\eta|<1
$$

Tracking, Momentum and PID for: «Charged and neutral hadrons, jets

Endcap Calo
$1<|\eta|<2$

$$
\approx \pi^{0}, \eta
$$

~ π^{0}, η, jets

Forward region:

Forward meson spectrometer

$$
2<|\eta|<4
$$

Brahme

Central Arm:

$$
0<\eta<1.5
$$

Tracking, Momentum and PID for: *Charged hadrons

Forward Arm:

$$
1.5<\eta<4
$$

Tracking, Momentum and PID for: *Charged hadrons

Brahme

Central Arm:

$$
0<\eta<1.5
$$

Tracking, Momentum and PID for: «Charged hadrons

Forward Arm:

$$
1.5<\eta<4
$$

Tracking, Momentum and PID for: *Charged hadrons

Clobal fit resultas pions

de Florian, Sassot, Stratmann Phys. Rev. D 75, 114010 (2007) and Phys. Rev D 76, 074033 (2007)

Clolbal fit resultite laroms

de Florian, Sassot, Stratmann
Phys. Rev. D 75, 114010 (2007) and
Phys. Rev D 76, 074033 (2007)

Albino, Kniehl, Kramer Nucl. Phys. B 803, 42 (2008)

$$
p p \rightarrow K^{ \pm}+X
$$

clobal fit resultise mroton

de Florian, Sassot, Stratmann
Phys. Rev D 76, 074033 (2007)

Albino, Kniehl, Kramer Nucl. Phys. B 803, 42 (2008)

Clobal fith reswitis

Epele, Llubaroff, Sassot, Stratmann
arXiv:1209.3240 [hep-ph]

Phenir: data

PRI 98, 012002

Phenir data
 PRD'79:012003
 PRL 98, 012002

Phenix dat?
 PRD79:012003

PRL 98, 012002

Phenix dat?

PRD'79:012003

16

PRL 98, 012002

Phenix dat?

PRD'79:012003

Phenix dotat?

Strar olato

Star data

Stror olato?

PRL 108, 72302

PRD 86, 051101

Star data

PRL 108, 7230 2

PRD 86, 051101

Brahme dot?
 PRL 98, 252001

Brahms data

BRAHMS Preliminary

Brahme of tat?

BRAHMS Preliminary

Symmermy

It is possible to describe a variety of data from different reactions and energy by using a pQCD framework + factorization theorem

Syummaryy

It is possible to describe a variety of data from different reactions and energy by using a pQCD framework + factorization theorem

Universality and factorization hold!

Symmermy

It is possible to describe a variety of data from different reactions and energy by using a pQCD framework + factorization theorem

Universality and factorization hold!

Various reactions provide access to different aspects of the fragmentation process

