Global analysis of fragmentation functions: AKK08 & ABKK12

Bernd Kniehl^a

kniehl@desy.de

II. Institute for Theoretical Physics University of Hamburg, Germany

Workshop on Fragmentation Functions and QCD 2012 RIKEN, 9–11 November 2012

^aIn collaboration with S. Albino, P. Bolzoni and G. Kramer

B. Kniehl (Hamburg University)

Fragmentation 2012, 9–11 November 2012

Global Analyses of Unpolarized FFs

light charged (l.c.h.) π^{\pm} , K^{\pm} , p/\bar{p} , strange neutral (s.n.h.) K_S^0 , $\Lambda/\overline{\Lambda}$

Hirai-Kumano-Nagai-Sudoh (2007)

- e^+e^- : OPAL, TASSO, etc.
- **•** OPAL u, d, s tagged
- FF exp. errors
- h^+ , h^- separately
- x > .05

Albino-Kramer-Kniehl (2005/6)

- e^+e^- : OPAL etc., $\sqrt{s} = M_Z$
- **•** OPAL u, d, s tagged
- h^+ , h^- not distinguished
- x > 0.1

de Florian-Sassot-Stratmann (2007)

- e^+e^- : OPAL, TASSO, etc.
- OPAL u, d, s tagged
- *pp*: BRAHMS, STAR, PHENIX
- ep: HERMES (π^{\pm} , K^{\pm})
- h^+ , h^- separately

Summary of AKK08 fit [NPB803(2008)42]

Experiment

- I.c.h. (π^{\pm} , K^{\pm} , p/\bar{p}) + s.n.h. (K^0_S , $\Lambda/\overline{\Lambda}$)
- e^+e^- , x > .05:
 - $\sqrt{s} = M_Z$ (opal, Aleph...)
 - l, c, b tag (OPAL: u, d, s, c, b)
 - + $12 \text{GeV} < \sqrt{s} < M_Z$ (TASSO...)
- $\checkmark pp$: brahms, star, phenix ($p_T>2~{
 m GeV}$)
- **•** norm. errors \in covariance matrix
- exclude ep: HERMES (π^{\pm} , K^{\pm}):

 - $ep(Q) \sim e^+ e^-(\sqrt{s})$
 - ${\ensuremath{\,{\rm ompare}\,}}$ compare low Q with low \sqrt{s}
 - different systematic theory error

Theory

- FF basis:
 - \pm sum (h^{\pm}) (e^+e^- : accurate)
 - \pm diff ($\Delta_c h^{\pm}$) (pp : less so)
- non pert. constraints:
 - Strong: $\mathsf{FF}(\sqrt{2}\mathrm{GeV}) = Nx^{\alpha}(1-x)^{\beta}$, $\times (1+\gamma(1-x)^{\delta})$ for h^{\pm}
 - Weak: SU(2) isospin $u \leftrightarrow d \in \pi^{\pm}$
 - Weaker: $D_{\bar{q}}^{(\Delta_c)h^{\pm}} = -D_q^{(\Delta_c)h^{\pm}}$ (QCD)
- hadron mass:
 - fitted (e^+e^-) → subtract low x, \sqrt{s} effects
 - baryons accurate (+1%)
 - mesons OK
- large x res. (e^+e^-) improves fit

General calculation

Factorization theorem I

$$\mathsf{IS} \to \sum_j \mathsf{parton} \ j + X \to h + X$$

$$\frac{d\sigma^{h}}{dx}(x,E) =$$

$$\sum_{j} \int_{x}^{1} \frac{dz}{z} \frac{d\sigma^{j}}{d(x/z)} \left(\frac{x}{z}, a_{s}(E), \frac{E}{M_{f}}\right) D_{j}^{h}(z, M_{f})$$

$$\left(E = \sqrt{s}, p_{T}\right)$$

Neglect higher twist O(1/E)

Scale:
$$\mu^2, M_f^2 = kE^2$$

 $(k = 1, 1/4, 4)$
Scheme: $\overline{\mathrm{MS}}$

Factorization theorem II DGLAP evolution

$$\frac{d}{d\ln M_f} D_i^h(x, M_f) = \sum_j \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z}, a_s(M_f)\right) D_j^h(z, M_f)$$

 $D_i^h(x, M_f)$ universal

$$D_q^h(x, M_f < m_q^t \sim m_q)$$
:
Extrinsic = 0,
Intrinsic not in evolution

Calculations to NLO CTEQ6.5S0 PDFs
$$\rightarrow \Lambda_5^{\overline{\mathrm{MS}}} = 226 \text{ MeV}$$

cesses

 $e^+e^- \rightarrow h + X$

ALEPH, DELPHI, TASSO, OPAL, ... \rightarrow precise $q \rightarrow h^{\pm}$ FFs (no s - d)

 \rightarrow remaining FFs (gluon, $q \rightarrow \Delta_c h^{\pm}$)

$pp(\overline{p})$ in Mellin Space

N- (Mellin) space $(f(N) = \int_0^1 dx x^{N-1} f(x))$: *x*-convolutions \longrightarrow products in *N*-space *N*-space calculations fast and accurate

 $pp(\overline{p}) \text{ XS from convolution with FFs:}$ $F\left(x = \frac{2p_T}{\sqrt{s}} \cosh y\right) = \int_x^1 \frac{dz}{z} \widehat{F}\left(\frac{x}{z}\right) zD(z)$ $\therefore F(N) = \widehat{F}(N)D(N+1)$ $\widehat{F}(N) \text{ analytic calculation impossible}$

solution: \widehat{F} as Chebyshev expansion $\widehat{F}(z)/\ln(1-x/z) = \sum_k c_k T_k(X)$ $-1 < X < 1 \leftarrow \text{linear map} \rightarrow x < z < 1$ \longrightarrow semi-analytic $\widehat{F}(N)$ $\longrightarrow F(x)$ calc. is quick, to few parts per mil

Systematic Errors

$$P(\{f_i^e\}, \{f_i^t\}) \propto \exp\left[-\frac{1}{2}\chi^2 = \sum_i \left(\frac{f_i^t - f_i^e}{\sigma_i}\right)^2\right]$$

 $pp(\overline{p})$, low $\sqrt{s} e^+e^-$: norm. uncertainty(s) = systematic error(s)

systematic error, *K*th source: $\Delta_{K} f_{i}^{e} = \lambda_{K} \sigma_{i}^{K}$ $\Delta_{K} f_{i}^{e} = \lambda_{K} \sigma_{i}^{K}$ $Minimize <math>\chi^{2}$ w.r.t. λ_{K} (Max prob): $\lambda_{K} = \sum_{i} \frac{f_{i}^{t} - f_{i}^{e}}{\sigma_{i}^{2}} \left(\sigma_{i}^{K} - \sum_{jkL} \sigma_{i}^{L} \sigma_{j}^{L} \left(C^{-1} \right)_{jk} \sigma_{k}^{K} \right)$ $P(\lambda_{K}) \propto \exp\left[-\frac{1}{2} \lambda_{K}^{2} \right]$ $(\rightarrow expect |\lambda_{K}| \leq 1)$ $\chi^{2} = \sum_{i} \left(\frac{f_{i}^{t} - f_{i}^{e} - \sum_{K} \lambda_{K} \sigma_{i}^{K}}{\sigma_{i}} \right)^{2} + \sum_{K} \lambda_{K}^{2}$ $(Covariance C_{ij} = \sigma_{i}^{2} \delta_{ij} + \sum_{K} \sigma_{i}^{K} \sigma_{j}^{K})$

> Unknown systematic effects: Cancel for data sets from large no. of different exps.(?)

Collaboration	\sqrt{s} (GeV)	# data	Norm. (%)	$\chi^2_{ m DF}$	λ_K	Shift (%)
TASSO	12	5	20	0.50	0.21	4.3
TASSO	14	10	8.5	0.92	-1.26	-10.7
TASSO	22	1	6.3	0.01	-0.08	-0.5
TASSO	30	4	20	0.57	0.69	13.8
TASSO	34	10	6	1.07	0.62	3.7
TASSO	44	7	6	1.99	0.66	3.9
ALEPH	91.2	22	3	0.61	-0.55	-1.6
BRAHMS, $y \in [2.9, 3]$	200	8	11,7,8(13),	0.96	-1.76, -1.12, -1.22, -0.32, -0.13	-19.4, -7.9, -9.7, -0.6, -0.1
$y \in [3.25, 3.35]$		7	2,1(3)	2.68	-2.01, -1.28, -1.80, -0.37, -0.32	-22.2, -9.0, -14.4, -0.7, -0.3
PHENIX (π^0), $ \eta < 0.35$	200	13	9.7	0.54	-0.48	-4.6
STAR (π^0), $\eta=3.3$	200	4	16	0.70	-0.70	-11.3
STAR (π^0), $\eta=3.8$	200	2	16	0.57	-0.31	-5.0
STAR, $ y < 0.5$	200	10	11.7	0.49	-0.34	-3.9

Collaboration	\sqrt{s} (GeV)	# data	Norm. (%)	$\chi^2_{ m DF}$	λ_K	Shift (%)
TASSO	12	3	20	0.49	-0.31	-6.2
TASSO	14	9	8.5	2.33	-0.58	-4.9
TASSO	22	9	6.3	1.36	-0.98	-6.2
TASSO	30	3	20	0.52	-0.82	-16.5
JADE	34	2	14	6.04	-0.82	-16.5
TASSO	34	7	6	1.12	-1.63	-9.8
ALEPH	91.2	18	3	0.62	-1.77	-5.3
BRAHMS, $y \in [2.9, 3]$	200	7	11,7,8(13),	2.38	-2.66, -1.69, -1.65, -0.48, -0.13	-29.3, -11.8, -13.2, -1.0, -0.1
$y \in [3.25, 3.35]$	200	5	2,1(3)	5.21	-3.64, -2.32, -2.47, -0.66, -0.26	-40.1, -16.2, -19.7, -1.3, -0.3
STAR, $ y < 0.5$	200	8	11.7	3.08	-1.89	-22.1

Particle	Fitted mass (MeV)	True mass (MeV)
π^{\pm}	156.9	139.6
K^{\pm}	340.7	493.7
$p/ar{p}$	949.2	938.3
K_S^0	363.2	497.6
$\Lambda/\overline{\Lambda}$	1127.0	1115.7

 π^{\pm} : large excess

 \longrightarrow decays from much heavier ho(770) $\rightarrow \pi^+ + \pi^-$

Ks: large undershoot

 \longrightarrow complicated decay channels, e.g. *K* resonance $\rightarrow \pi + K$

baryons $(p/\overline{p}, \Lambda/\overline{\Lambda})$: \simeq 1% excess

 \rightarrow decays from slightly heavier resonances

good environment to study partonic fragmentation

factorization theorem: x = available c.m. light cone momenta $(p^0 + |\mathbf{p}|)$ fraction

 $p_{h} = \left(+ = \frac{x\sqrt{s}}{\sqrt{2}}, - = \frac{m_{h}^{2}}{\sqrt{2}x\sqrt{s}}, (1,2) = \mathbf{0} \right)$ $\longrightarrow x \text{ from } x_{E}, x_{p}$

 $e^+e^- \rightarrow h(p_h) + X$

e.g.
$$x_p = x \left(1 - \frac{m_h^2}{sx^2}\right)$$

 $\longrightarrow \text{low } x, \sqrt{s} \text{ effect}$

 $pp(\overline{p}) \to h(p) + X$

Partonic c.m. frame: parton 1 || hadron p $\longrightarrow x = \frac{p^+}{l^+} = \frac{\sqrt{|\mathbf{p}|^2 + m_h^2 + |\mathbf{p}|}}{2|\mathbf{l}|}$ $\longrightarrow \frac{d\mathbf{p}^3}{E} = \frac{|\mathbf{p}|^2}{\sqrt{|\mathbf{p}|^2 + m_h^2}} d|\mathbf{p}| d\Omega$ $\longrightarrow \frac{d\mathbf{l}^3}{|\mathbf{l}|} = |\mathbf{l}|d|\mathbf{l}|d\Omega$ mass correction factor $E\frac{d^3}{dr^3}\sigma^{h_1h_2\to h(p)+X}(p,\sqrt{s}) =$ $\sum_{i_1 i_2} \int dx_1 dx_2 f_{i_1}^{h_1}(x_1, M_f^2) f_{i_2}^{h_2}(x_2, M_f^2)$ $\times \sum_{i} \int dx D_{i}^{h}(x, M_{f}^{2})$ $\times \frac{1}{R^2(x_1, x_2, y, m_h^2/p_T^2)} \frac{1}{x^2} |\mathbf{l}| \frac{d^3}{d\mathbf{l}^3} \sigma^{i_1 i_2 \to i(l) + X}(l, x_1 x_2 \sqrt{s})$

π^{\pm} : mass effects negligible

Large x Resummation — e^+e^-

 e^+e^- quark coefficient function C_q

fixed order approach fails at large N: $C_q(a_s, N) \simeq 1 + Aa_s \ln N + Ba_s^2 \ln^2 N + \dots$

general solution: resum $(a_s \ln N)^n$ into single function $f(a_s \ln N)$

(also
$$a_s(a_s \ln N)^n$$
 into $a_s g(a_s \ln N)$ etc.):
 $C_q(a_s, N) = C_q^r(a_s, N) \times \left(\sum_n a_s^n C_q^{FO(n)}(N)\right)$

NLO solution: resum $(a_s \ln N)^n$ (r = 0), $a_s(a_s \ln N)^n$ (r = 1) via Cacciari et al. result $C_q(a_s, N) = C_q^{r=0,1}(a_s, N) \times \left(1 + a_s(C_q^{(1)} - C_q^{r=0,1} {}^{(1)})\right)$

also resum DGLAP evolution in e^+e^- and $pp(\overline{p})$ [AKK PRL100(2008)192002]

 $pp(\overline{p})$, finite δ (rapidity): no resummation (de Florian+Vogelsang,PRD71:114004,2005)

effects:

- I enhances XS at large x (more so at small \sqrt{s})
- reduces theoretical error(?)

Large x **Resummation** — e^+e^-

11	Main fit	Unres. fit	
π^{\pm}	519.7	520.8	
K^{\pm}	417.3	488.2	
$p/ar{p}$	525.1	538.0	
K_S^0	318.6	318.8	
$\Lambda/\overline{\Lambda}$	272.3	326.0	

Partonic contributions — *pp*

$$F^{h}(pp \rightarrow h + X) = \sum_{i} \widehat{F}^{i}(pp \rightarrow i + X) \otimes D^{h}_{i}(i \rightarrow h + X)$$

(\widehat{F} contains PDFs f_{j} , f_{k} , and $jk \rightarrow i + X$ subprocesses)

types" of fragmenting parton $i: u - \bar{u}, d - \bar{d}$ (valence) and sea $(g, 2\bar{u}, 2\bar{d}, 2s = 2\bar{s}, ...)$ \longrightarrow partonic decomposition of $F^h:$ $F^{h^{\pm}} = \underbrace{\widehat{F}^{u_v}}_{\widehat{F}^{u_v} - \widehat{F}^{\bar{u}} > 0} D_u^{h^{\pm}} + \underbrace{\widehat{F}^{d_v}}_{\widehat{F}^{d_v} - \widehat{F}^{\bar{d}} > 0} D_d^{h^{\pm}} + \sum_{i=g,q_{\text{sea}}} \widehat{F}^i D_i^{h^{\pm}}$ $\widehat{F}^{u_v} > \widehat{F}^{d_v}:$ $D_u^{\pi^+} = D_d^{\pi^-} (\gg D_u^{\pi^-} = D_d^{\pi^+}) \rightarrow (pp \rightarrow u_v \rightarrow \pi^{\pm}) > (pp \rightarrow d_v \rightarrow \pi^{\pm}) \rightarrow pp \rightarrow \pi^+ > pp \rightarrow \pi$ $D_u^{p/\overline{p}} > D_d^{p/\overline{p}} \rightarrow (pp \rightarrow u_v \rightarrow p/\overline{p}) >> (pp \rightarrow d_v \rightarrow p/\overline{p}), D_{u,d}^p \gg D_{u,d}^{\overline{p}} \rightarrow pp \rightarrow p \gg pp \rightarrow \overline{p}$ $D_{s,\overline{s}}^{\kappa^{\pm}} > D_u^{K^{\pm}} \gg D_d^{K^{\pm}} \rightarrow (pp \rightarrow \text{sea} \rightarrow K^{\pm}) \gg (pp \rightarrow u_v \rightarrow K^{\pm}) \gg (pp \rightarrow d_v \rightarrow K^{\pm})$ $D_{u,d}^{\pi^{\pm}, p/\overline{p}} \gg D_{\text{sea}}^{\pi^{\pm}, p/\overline{p}}$ but $\widehat{F}^{u_v, d_v} \ll \widehat{F}^{\text{sea}}$ — sea or valence?

more physical, gives same qualitative results, bad for graphics:

$$F_{pp} = \underbrace{\left(F_{p\overline{p}} - F_{\overline{pp}}\right)\Big|_{u_v}}_{\propto f_{u_v}^2} + \underbrace{\left(F_{p\overline{p}} - F_{\overline{pp}}\right)\Big|_{d_v}}_{\propto f_{d_v}^2} + \left(F_{pp} + F_{\overline{pp}} - F_{p\overline{p}}\right)$$

Partonic contributions — *pp*

charge-sign unidentified

less valence at lower rapidity (physically, *pp* sea dominates)

Partonic contributions — *pp*

charge-sign assymetry

negative $d, \bar{d} \rightarrow \Delta_c p / \overline{p}$ unexpected

Partonic contributions — e^+e^-

OPAL tagging probabilities are obvious physical candidates

Partonic contributions — e^+e^-

Gluon FFs

Charge-sign assymetry FFs

$pp \rightarrow baryon issues$

$pp \rightarrow baryon issues$

previous AKK gluon FF: $\Lambda/\overline{\Lambda}$ fixed to 1/3 p/\overline{p} \longrightarrow good agreement with STAR

full error analysis required to determine (in)consistency between e^+e^- and pp

ABKK12 Update [in preparation]

- AKK08 uses CTEQ6.5S0 PDFs w/ $\Lambda_{\overline{MS}}^{(5)} = 226$ MeV for incoming $p/\bar{p} \sim \alpha_s^{(5)}(m_Z)$ not deterined by fit
- Determine $\alpha_s^{(5)}(m_Z)$ from scaling violations in FFs
- Exclude $pp, p\bar{p}$ data from fit, but retain all e^+e^- data
- Include precise Belle data on $\pi^{\pm}, K^{\pm}, p/\bar{p}$ inclusive production from below the $\Upsilon(4S)$ resonance [hep-ex/0406017]
- Adopt theoretical input from AKK08
- Individual fits to $\pi^{\pm}, K^{\pm}, p/\bar{p}, \Lambda/\bar{\Lambda}$ all yield $\alpha_s^{(5)}(m_Z) = 0.118$

ABKK12 Update (cont.)

Summary

- FFs for π^{\pm} , K^{\pm} , p/\overline{p} , K^0_S and $\Lambda/\overline{\Lambda}$,
- FFs for $\Delta_c \pi^{\pm}$, $\Delta_c K^{\pm}$, $\Delta_c p/\overline{p}$, separate fits
- data from e^+e^- , $pp(\overline{p})$
- hadron mass effects, fitted in e^+e^-
- slight overshoot for pions: decays from heavier particles?
- mass deficiency for kaons: complicated decay channels?
- mass good for baryons, better stage for partonic fragmentation?
- investigate baryon problems further
 namely $\Lambda/\overline{\Lambda}$ undershoot, –ve valence $d \to \Delta_c p/\overline{p}$ @ STAR
- e^+e^- large x resummation generally improves fit
- Inorm. error as systematic errors in covariance matrix, λ_K fitted

Ongoing and future work

- α_s determination
- full error analysis for FFs
 - \longrightarrow (in)consistencies with other FFs + data
- additional theory input
- future high $Q^2 ep$ from HERA hadron species and charge identification, measurement of charge-sign asymmetry?