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= Summary

Nov 10, 2012 Zhongbo Kang, LANL



* Parton distribution and fragmentation function
I

= One of the major goal of hadron physics is to understand hadron
structure:

= how quarks and gluons distributed inside the hadron
= how quarks and gluons are formed into hadron

= One of the major tool to extract these information is through the high
energy scattering experiments, by relying on QCD factorization

PDF: parton distribution function ) y
| N
FF: fragmentation function Y

@
= PDFs and FFs are closely related to each other
» The better extraction of one could lead to better understanding of the other
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* The status of collinear PDFs and FFs
I

= The collinear PDFs and FFs are widely studied
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pQCD with PDFs and FFs: they generally work very well

: Jet cross section (p+p—jet+X): only PDFs
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* Going beyond the current picture: two ways - |
I

= Beyond the collinear PDFs and FFs >
= probe also parton the transverse momentum

4.

= since parton kt is always much smaller than the longitudinal component in high
energy experiments, one typically need “transverse spin” to correlate with the
parton kt

» kt-dependent PDFs and FFs are usually involving spin vector, either the hadron
spin or the parton spin

parton distribution function
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* Three important TMDs will be addressed
I

= Transversity: survive kt-integration
= a distribution of transversely polarized quark in a transversly polarized hadron

b-

= Sjvers function: change sign from SIDIS to DY
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* Current status for Collins fragmentation function
. Collins effect observed by BELLE Collaboration: cos(®i+®;)
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* Also observed by BarBar
I

= Collins effect from BarBar
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* Extraction of Collins in e+e- could help extract transversity
I

= Collins extraction from e+e-
z AN D(z)=4z H,1("?(z) Q%=2.41 GeV?
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* Going beyond the current picture: two ways -
I

= Dihadron fragmentation function
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* They are better theoretical objects
I

= They follow a simple collinear DGLAP type evolution equation

= D1 (21,22, M7) follow the DGLAP evolution for spin-averaged collinear
fragmentation function

= H (21,22, M7) follow the DGLAP evolution for the quark transversity

Ceccopieri-Radici-Bacchetta, 07

= Usual collinear factorization could be used to describe the
experimental data

= SIDIS: hadron pair, transversity x IFF
" e+e-: two hadron pair, IFF x IFF
" PP-

= hadron pair, transversity x IFF

= two hadron pair, IFF x IFF
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= Belle PRL, arXiv: 1104.2425
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* Extract IFF from these data
I

= Fjrst extraction has been made by Courtoy-Bacchetta-Radici-Bianconi
PRD, arXiv: 1202.0323
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* Extract transversity from dihadron fragmentation function
I

= A first extraction of transversity (a combination) from dihadron
fragmentation function (based on SIDIS data) has been made by
Bacchetta-Courty-Radicci

= Jtis in a reasonable agreement with the transversity extracted from Collins
effect PRL, arXiv: 1104.3855
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* IFF in proton+proton

!
= STAR also has measurements now, it will be good to use these data to
extract transversity Vossen, RHIC/AGS User’s meeting, 2012
g So:iESTAR Run 6 Preliminary\s=200 Gev <= (0 =-0.5 g l5°'°4 _ STAR Run 6 Prellmmary\r§=200 GeV
< 0.1;8 ;PT'+p—>n*n'+x | | -'-('l>" e < [ p +p— ' +X | | ’
- 0.03/- i ! ! i i i ]
0.06':— ' + B
o—1—1 , “—1104.3855 Iy
-0.02}— {; 0 01—_ 4
-0.04'-; _ rel. systematic uncertainty of 4.6% not shown : p | |
50-8;»..‘1v......Jl....l....1.,..1....1,‘... :
3 0.7§ - 0 ' '
:E ::;_ = A & _ . . E rel. systematic uncertainty of 4.6% not shown
] , gy 5 6 7 8 9 10 7 | A e e i sext] - westler selfeasalineafin
P’ [GeVic] 08 -06 04 02 0 0.2 04 06 0.8
nn’n'

Nov 10, 2012 Zhongbo Kang, LANL 16



* Evolution effect
!

= Qur experimental data span very different energies:

= SIDIS is performed at Q?~1-3 GeV?, Belle and BarBar at Q*~100 GeV?
= Future RHIC experiment can also access very high Q?~16-81 GeV? for DY

* Our kt-extended parton model has made great success in recent years
= Jt is the time now to go beyond these parton model result, and understand the

evolution of the re

evant TMDs

= So far we talked about evolution of DFF and IFF, saying that they are

following the usua

DGLAP evolution equation (with splitting kernel

either same as unpolarized PDF or transversity)

= \What does evolution means?
= How they are connected to higher order corrections?

Nov 10, 2012
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* Cross section depends on where you factorize?
I

= Start with collinear factorization, cross section can be written as
follows

o(2,Q) = 6(2,Q°/1) ® duyp(a, 1)

= In the QCD formalism, there is a factorization scale dependence p?,
where does it come from? How does the PDFs change (evolve) with
respect to this scale?

= If in the hard part, one choose u~Q, then we need PDFs at all different scales
as experimental measurements are done at different Qs

Nov 10, 2012 Zhongbo Kang, LANL 18



? Recall: DIS again
I

= Deep Inelastic Scattering (DIS)
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* QCD dynamics beyond leading order
I

m Radiative corrections

k k
JI = o N
P

Collinear divergence!l! (from k2 ~ 0)

) —1
= | d*k = 00
/ 1k%+ie k?—ie
< k% ~ 0 intermediate quark is on-shell
tap — o0

“ gluon radiation takes place long before the photon-quark interaction
— a part of PDF

Partonic diagram has both long- and short-distance physics
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? Factorization: separation of short- from long-distance
!

= Systematically remove all the long-distance physics into PDFs

~Q? Vﬁ}\q pt /@ "‘7}\ qrrJ“ Q V‘j}. 170
k

C(O)®¢(1-) - w.ﬁfl qju@/@{g;&

LO + evolution

Q% v \q q{:’_’M 2
TR~ NN
NLO 0
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? DGLAP evolution = resummation of single logs
I

= Evolution = Resum all the gluon radiation

ki
I AN NI
P P P

k —
o N

P

mmmmdp DGLAP Equation Evolution kernel
splitting function

0 i(z, pu?) = Z%(%)

2
Oln y

& ¢j(x a,UJQ)

= By solving the evolution equation, one resums all the single

logarithms of ( | pﬂ)”
ST A2

= Same idea for DFF and IFF
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* Go from Collinear PDFs to TMDs
I

= Evolution of collinear PDFs follow the usual DGLAP-type evolution
equation, which is equivalent to resum the single-logarithmic
contributions to all order

o

= Evolution of TMDs follow Collins-Soper-type evolution equation, which
IS equivalent to resum the double-logarithmic contributions to all
order, which is usually more difficult

Q*\"
(Oés 1H2 5
dT
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* Evolution of TMDs: basic idea
I

= These double logarithms in the cross section level come from the
double logarithm in the kt-dependent distribution and fragmentation
functions

= A generic idea: parton distribution/fragmentation function ¢(z, k%) is
associated with a hadron which has a large longitudinal component P*, with
these two scales in the TMDs (kt, P*), its perturbative tail will have double

logarithms pt2\ "
(ozs In? —)

2 n
2
= Tt is these logarithms which will translate into the cross section level (048 In —>

2
dT
= In the true calculation, these P* comes in as a Lorentz invariant

¢ =4(P-v)/v*

= Thus one studies the ¢ variable dependence of the TMDs, this is the
evolution of TMDs

= technique part: ¢ is introduced to regularize the rapidity divergence
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* Evolution is simpler in b-space: SIDIS cross section
I

" in momentum space:

F(zg, zp, Pu1,Q%) = Z e / d*k, d*p\ d?0,

g=u,d,s,...
xq (zp, kL, p?,z5¢, p) Gn (zh,m,ﬂz,f/zh,p) S(2., 1% p)
xH (Qz, T P) 52(21;’& =P+ £, — ﬁu) ;

" in b-space:

F(a:Ba Zhy b’ Qz) = Z ng (zB’ zhb1 I-Lz) mBC! p) q (zha b’ ﬂ’2a C/zha p)

g=u,d.s,...

xS(b, u*, p)H (Q*, 1%, p) ,

= b-space the cross section is a simple product of TMDs and hard-coefficient
functions, thus the evolution is simpler in b-space

Nov 10, 2012 Zhongbo Kang, LANL
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* Evolution of TMDs
|

= Since one now needs to resum double logarithms, typically it involves
two steps: Ldilbi-Ji-Ma-Yuan, 2004

= Energy evolution of the unpolarized PDFs

C el bops€) = (K1) + G(1s) gl

= Since it contains double logarithms, the kernel still contains single logarithms

d d
duK(u,b) = —YK = —u@G(u, ()

= Solving these two equations, equivalently one resums the double logs

= First for the evolution equation of K and G
mH d

K (b, ) + G&C, 1) = K (b, ) + G(aC, izr) — / Lk (a(@)

KL

* Then feed the solution back to the energy evolution equation

Cox( dﬂ

q(z,b, p,z¢, p) = exp{—L 7 [ln (C:C) vk (a(p) — K(b, pr) — G(u/Cz,u)]}

XQ(.’L‘, bs My xCO e au'L/CZ: p) )
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* Solve evolution equations
I

= Once all the logs are resummed, the rest of b-dependent PDFs and

FFs can be expanded as collinear PDFs and FFs
do

dCCdethCpPhJ_

= oolyvu

d?b
Fuu :/(2 il bWUU (b,Q, B, zn)

Wuu(b,Q,xp, zp) = 6'2 Cq/i ® fi/A) (B, 1 = g)

X (DB/j ® éj/q) (2, pt = g)
= All the large logarithms are resummed to the Sudakov exponential
term

S(b,Q):/Q d*; Aln(Q?/u*) + B] A=A (0‘_)”

c? /b2 2
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* Evolution of Sivers function

= The Collins-Soper energy evolution is really for the whole correlator

S L. o .
Qukimxg) =5 [T ket P (Pl (651 Ly L OIP),

= So for Sivers function, it really is ¢ i (z, k) that evolves as a whole
" in b-space, it is (also the b-derivative of Sivers function)

b €)= 5 [ e RS f(e k)

= it follows the same energy evolution equation Kang-Xiao-Yuan, PRL, 2011

¢ Cf(m)(w,b,u,é)z[K(u,b)+G(M,C)] P (2, b, 1, )

* Thus one should get a very similar resummation formalism

Nov 10, 2012 Zhongbo Kang, LANL
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* The Sivers effect for SIDIS
I

= The resummation formalism (consistent with experimental
convention)

do B
dZCdethdQPhJ_ N

o0 [Four -+ s |sinén, — 60) Fip@ ")

= spin-dependent structure function

F(S]i:r;(gbh_qSS) = E dbe‘WUT (b,Q,xB, 21)

Qlu Sterman function
C
WUT(b Q,CCB,Zh = G'Z ACT /z (ZCB,,LL — 5)

C

x(Dpj @ Cjq)(2n, 1 = 5)

= only soft-gluonic pole Qiu-Sterman function appears in this part

dx
(Ac(g;i(@Ti,F)(xByﬂ) :/ —Acq/z( 2 )T r(z, @, )

Nov 10, 2012 Zhongbo Kang, LANL
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* The evolution of Collins function
I

= Recall: the evolution equation is really for the correlator, immediately,
you know the evolution for Collins function

= Again it is p$ Hi (z,p3) which should be evolving as a whole
» In the b-space, define

(Lo 1 —ifL b1,
Hf )(Z,b,,U,C) - M/dZP—Le P bJ_pJ_ HlJ_(Z7pJ—7IU’7C)

= Tt follows the same evolution just like unpolarized fragmentation function
= quark transversity follows the same evolution for the unpolarized PDFs f1

= One thus also has the same type of resummation formalism for the
Collins effect
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* Comments on SIDIS and DY
|

= The only difference comes from so-called coefficient function

* |leading order
C

AC@‘T/.(y‘O)(Zv“ =7) =0j0(1 = 2) DY

C

ACH Y (zp =) = =0;8(1—2)  SIDIS

= at next-leading-order: well-known difference due to Q%>0 (<0)

T(l) _E_ L 1 CF ’7T2_ B

AC; (2,1 = b) = 0;; [ IN. + ( 5 4)6(1 z)] DY
),  _C_ s |1 Cr i

AC’Z./]. (z,u = b) = —0;; [ IN. + 5 (—4)d(1 z)] SIDIS

* Thus in the full perturbative QCD region, Sivers between SIDIS and DY is not
just a sign: it is interesting to study the consequence
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* Phenomenological study: what's the difficulty?

[
= For small gt region, we could use the resumed formalism. Don’t need
to worry about the perturbative tail from collinear twist-3 contribution

= Only at small b-region (corresponds to large momentum), one can
calculate the reIevant coefficients perturbatively.

d
a @ T b bJo(qLb)Wuu (b, Q,24,75)

dQ?*dyd?q, 27

C

WUU(b Q ZCAaxB _S(b Q)Z q/z®fz/A (ZCA M= b)
%(Cas3 ® fi/8)(@n = 7)
= However, in order to Fourier transform back to gt-space, we need the
whole b-region. Since large b-region will be non-perturbative, we
need a non-perturbative input. This part should be universal if QCD

factorization holds for the process.
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* The parametrization for the non-perturbative function
I

= Different approaches for the non-perturbative functions in “"DY”

do 00
o dbbJ bYW (b
dQQddeQJ_ I O(QL ) UU( 7Q7xA7:BB)
er — C
W(Z}Ut(b Q :CAaxB 5(6.Q) Z q/z ) fz/A)(CCA M= b)
C
x(Cq/j @ fiyB) (@B, 0= 7)

= Parametrize the full b-space function

WUU(ba Qa LA, xB) — W(Z}Egt(ba Qa LA, xB)FNP(ba Qa LA, xB)
= function form (through extrapolation): Qiu-Zhang, 2001
= fitted form directly from experiments:  Brock-Landry-Nadolsky-Yuan, 2003

er b
Wou(b,Q,xa,xB) = W{}Ut(b*,Q,xA,mB)FNP(b,Q,mA,mB) b, =

V14 (b/bmaz)?

FNP(b,Q,24,28) = exp {— [gl(l + g3 In(100z 22 B)) + g2 In (28())] b2}
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* Works perfectly fine for Tevatron and LHC
I

= 7 boson production at Tevatron and LHC Kang-Qiu, 2012, to appear

* the non-perturbative function is not suitable for low energy (highly biased by
high energy data)

1
[

% - T”‘IO =
S 10 | s | LHC
g | <
R = B
§ 5 EQ 2
2 F g10
o _; Q -
_; _3_
3F - ~
10 ¢
I T T T T N R IR Lo b v b by b v b v g by vy by
O 10 20 30 40 50 60 70 80 90 O 10 20 30 40 50 60 70 80 90
pr (GeV) py (GeV)
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* Works very well for HERA data: SIDIS
I

: : i do(e+A—e+B+X)
m - - d-. Nadolsky, et.al., 1999, 2001

z-flow distribution ddequT > f il -
= U 0.3 i

>

(3]

O

= 0.2 0.2

o

©
K
= 0.1 0.1

3
Q O 1 1 1 1 l | 1 i-_9 O 1 1 1 1 l | | 1 1 O I 1 | 1 l 1 1 1 1

.28 0 S 10 0 5 10 0 = 10

QY' Cev q7v Gev QYn CeV

" The non-perturbative function fitted from HERA only works for small-x
data, and do not apply for large x (Sivers data)

= note this function in SIDIS is different from that in DY, as SIDIS non-
perturbative function comes from PDF and FF, while DY only comes from PDF

= In the current Sivers analysis, this functional form is not adopted. It will be a
very good cross-check to see if the current form can describe HERA data!!!
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* Works directly with TMDs
I

= Seem to work fine

= See also work by Anselmino, et.al.

~, 0.15
<

=
N
.E h

= 5 0.1

<

0.05

Aybat-Prokudin-Rogers, 2011

TMD evolution

HERMES
COMPASS

‘ (Q%) ~ 2.4 GeV
' (Q?) ~ 3.6 GeV

Anselmino-Boglione-Melis, 2012

= With TMD evolution, it seems to describe the data slightly better
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* Naively apply this functional form ...
I

= Tt leads to dramatic effect, which might not be true

002 |
004 |
006 |
008 |

_0.1_|||||||||||||||||||||||||

Vs=200 GeV
0<qp<1 GeV
4<Q<9 GeV

warning: test-only

in(e.-
A?qm( % bg)

= T
PP
T ———
\\.‘~~ ----
DO E 2 rrmaaacaa e
-0.1 F
4<M<9 GeV
0<gy<1 GeV
Piab=190 GeV
-0.15 }
DGLAP - - - - - :
g,=0.20 GeV? b, o, =15GeV ' —===
02 L. 970,68 GeV" bpoc0.5 GeV) —— |
-0.4 0.2 0 0.2 0.4
Ly
S. Melis, 2012

= One needs a refit, which concentrates on the low energy data
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* Summary
I

= There are tremendous progress recently in measuring/extracting spin-
dependent fragmentation function, in turn to better extract other TMD
parton distribution functions, particularly quark transversity

= QCD evolution is very important in the future for better understanding
of the spin asymmetries

= QCD evolution for all TMDs in principle has already become available

= \We just need more time/better data to pin down our theoretical

parameters, in order to apply them more accurately in the
phenomenology
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* Summary
I

= There are tremendous progress recently in measuring/extracting spin-
dependent fragmentation function, in turn to better extract other TMD
parton distribution functions, particularly quark transversity

= QCD evolution is very important in the future for better understanding
of the spin asymmetries

= QCD evolution for all TMDs in principle has already become available

= \We just need more time/better data to pin down our theoretical

parameters, in order to apply them more accurately in the
phenomenology

Thank you
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