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Parton distribution and fragmentation function

n One of the major goal of hadron physics is to understand hadron 
structure:
n how quarks and gluons distributed inside the hadron
n how quarks and gluons are formed into hadron

n One of the major tool to extract these information is through the high 
energy scattering experiments, by relying on QCD factorization 

n PDFs and FFs are closely related to each other
n The better extraction of one could lead to better understanding of the other
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The status of collinear PDFs and FFs

n The collinear PDFs and FFs are widely studied

4
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What Do We Know About Glue in Matter?

• Scaling violation: dF2/dlnQ2 and 
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pQCD with PDFs and FFs: they generally work very well
n Jet cross section (p+p→jet+X): only PDFs

n Involving hadron
n both PDFs and FFs
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Jets (p. 4)

Introduction

Background Knowledge
Jets from scattering of partons

Jets are unavoidable at hadron
colliders, e.g. from parton scat-
tering
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Inclusive jet pT spectrum  

Hard Probes 2010 Hermine K. Wöhri : CMS results in pp collisions 
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!! Extending the high pT limit beyond Tevatron reach 

!! Accessing the low pT part using different 
    jet reconstruction algorithms 

!! Good agreement with NLO predictions 
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Going beyond the current picture: two ways - I

n Beyond the collinear PDFs and FFs
n probe also parton the transverse momentum
n since parton kt is always much smaller than the longitudinal component in high 

energy experiments, one typically need “transverse spin” to correlate with the 
parton kt

n kt-dependent PDFs and FFs are usually involving spin vector, either the hadron 
spin or the parton spin

6

parton distribution function Fragmentation function



Nov 10, 2012 Zhongbo Kang, LANL

Three important TMDs will be addressed

n Transversity: survive kt-integration
n a distribution of transversely polarized quark in a transversly polarized hadron

n Sivers function: change sign from SIDIS to DY

n Collins function: universal function
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n Collins effect observed by BELLE Collaboration: cos(Φ1+Φ2)
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Current status for Collins fragmentation function

8
PRL 96, 232002 (2006)
PRD 78, 032011 (2008)
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Also observed by BarBar

n Collins effect from BarBar

n Compare with Belle: generally consistent 

9

some discrepancy for AUC 

should be now resolved
R. Seidl, PRD86 (2012) 039905

Garzia, talk at QCD-N’12
see more on Muller’s talk
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Extraction of Collins in e+e- could help extract transversity

n Collins extraction from e+e-

n Combine this with SIDIS data

10

S. Melis, 2012



n Dihadron fragmentation function

n DFF

n IFF
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Going beyond the current picture: two ways - II
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They are better theoretical objects

n They follow a simple collinear DGLAP type evolution equation
n                     follow the DGLAP evolution for spin-averaged collinear 

fragmentation function
n                       follow the DGLAP evolution for the quark transversity

n Usual collinear factorization could be used to describe the 
experimental data
n SIDIS: hadron pair, transversity × IFF
n e+e-: two hadron pair, IFF × IFF
n pp:

n hadron pair, transversity × IFF
n two hadron pair, IFF × IFF
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Data on IFF 

n Belle

13

PRL, arXiv: 1104.2425
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Extract IFF from these data
n First extraction has been made by Courtoy-Bacchetta-Radici-Bianconi

n DFF and IFF

14

PRD, arXiv: 1202.0323
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Extract transversity from dihadron fragmentation function

n A first extraction of transversity (a combination) from dihadron 
fragmentation function (based on SIDIS data) has been made by 
Bacchetta-Courty-Radicci
n It is in a reasonable agreement with the transversity extracted from Collins 

effect

15

PRL, arXiv: 1104.3855
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IFF in proton+proton

n STAR also has measurements now, it will be good to use these data to 
extract transversity

16

1104.3855

Vossen, RHIC/AGS User’s meeting, 2012
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Evolution effect

n Our experimental data span very different energies: 
n SIDIS is performed at Q2~1-3 GeV2, Belle and BarBar at Q2~100 GeV2

n Future RHIC experiment can also access very high Q2~16-81 GeV2 for DY
n Our kt-extended parton model has made great success in recent years
n It is the time now to go beyond these parton model result, and understand the 

evolution of the relevant TMDs

n So far we talked about evolution of DFF and IFF, saying that they are 
following the usual DGLAP evolution equation (with splitting kernel 
either same as unpolarized PDF or transversity)

n What does evolution means?
n How they are connected to higher order corrections?

17
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Cross section depends on where you factorize?

n Start with collinear factorization, cross section can be written as 
follows

n In the QCD formalism, there is a factorization scale dependence µ2, 
where does it come from? How does the PDFs change (evolve) with 
respect to this scale?
n If in the hard part, one choose µ~Q, then we need PDFs at all different scales 

as experimental measurements are done at different Qs

18

σ(x,Q2) = σ̂(x,Q2/µ2)⊗ φa/p(x, µ
2)
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Recall: DIS again

n Deep Inelastic Scattering (DIS)

n Hadronic tensor in perturbative expansion

n Leading order factorization: parton model

19

All the interesting physics (QCD dynamics) is contained in 

=
e

e

P

q

X µ

µqq
σ

2

= ×

Lµν Wµν

(leptonic tensor) (hadronic tensor)
Wµν

= + + ...Wµν

q

k
1

µ

P

q
k

P

q q

k

µ

≈
q q

µ

P

k

P

q q

k

µ

xp

+ O

�
k2

T

Q2
,

k2

Q2

�



Nov 10, 2012 Zhongbo Kang, LANL

QCD dynamics beyond leading order

n Radiative corrections
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Factorization: separation of short- from long-distance
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DGLAP evolution = resummation of single logs

n Evolution = Resum all the gluon radiation

n By solving the evolution equation, one resums all the single 
logarithms of 

n Same idea for DFF and IFF
22
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Go from Collinear PDFs to TMDs

n Evolution of collinear PDFs follow the usual DGLAP-type evolution 
equation, which is equivalent to resum the single-logarithmic 
contributions to all order

n Evolution of TMDs follow Collins-Soper-type evolution equation, which 
is equivalent to resum the double-logarithmic contributions to all 
order, which is usually more difficult
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Evolution of TMDs: basic idea

n These double logarithms in the cross section level come from the 
double logarithm in the kt-dependent distribution and fragmentation 
functions
n A generic idea: parton distribution/fragmentation function              is 

associated with a hadron which has a large longitudinal component P+, with 
these two scales in the TMDs (kt, P+), its perturbative tail will have double 
logarithms

n It is these logarithms which will translate into the cross section level 

n In the true calculation, these P+ comes in as a Lorentz invariant 

n Thus one studies the     variable dependence of the TMDs, this is the 
evolution of TMDs
n technique part:    is introduced to regularize the rapidity divergence 
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Evolution is simpler in b-space: SIDIS cross section

n in momentum space:

n in b-space:

n b-space the cross section is a simple product of TMDs and hard-coefficient 
functions, thus the evolution is simpler in b-space

25
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Evolution of TMDs 

n Since one now needs to resum double logarithms, typically it involves 
two steps:
n Energy evolution of the unpolarized PDFs

n Since it contains double logarithms, the kernel still contains single logarithms

n Solving these two equations, equivalently one resums the double logs
n First for the evolution equation of K and G

n Then feed the solution back to the energy evolution equation
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Solve evolution equations

n Once all the logs are resummed, the rest of b-dependent PDFs and 
FFs can be expanded as collinear PDFs and FFs

n All the large logarithms are resummed to the Sudakov exponential 
term
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Evolution of Sivers function
n The Collins-Soper energy evolution is really for the whole correlator

n So for Sivers function, it really is                   that evolves as a whole
n in b-space, it is (also the b-derivative of Sivers function)

n it follows the same energy evolution equation

n Thus one should get a very similar resummation formalism
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The Sivers effect for SIDIS

n The resummation formalism (consistent with experimental 
convention)

n spin-dependent structure function

n only soft-gluonic pole Qiu-Sterman function appears in this part
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The evolution of Collins function

n Recall: the evolution equation is really for the correlator, immediately, 
you know the evolution for Collins function
n Again it is                     which should be evolving as a whole
n In the b-space, define

n It follows the same evolution just like unpolarized fragmentation function
n quark transversity follows the same evolution for the unpolarized PDFs f1

n One thus also has the same type of resummation formalism for the 
Collins effect
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Comments on SIDIS and DY

n The only difference comes from so-called coefficient function
n leading order

n at next-leading-order: well-known difference due to Q2>0 (<0)

n Thus in the full perturbative QCD region, Sivers between SIDIS and DY is not 
just a sign: it is interesting to study the consequence
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Phenomenological study: what’s the difficulty?
n For small qt region, we could use the resumed formalism. Don’t need 

to worry about the perturbative tail from collinear twist-3 contribution

n Only at small b-region (corresponds to large momentum), one can 
calculate the relevant coefficients perturbatively.

n However, in order to Fourier transform back to qt-space, we need the 
whole b-region. Since large b-region will be non-perturbative, we 
need a non-perturbative input. This part should be universal if QCD 
factorization holds for the process.
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The parametrization for the non-perturbative function 

n Different approaches for the non-perturbative functions in “DY”

n Parametrize the full b-space function

n function form (through extrapolation): 
n fitted form directly from experiments: 
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Works perfectly fine for Tevatron and LHC

n Z boson production at Tevatron and LHC
n the non-perturbative function is not suitable for low energy (highly biased by 

high energy data)

34

10
-3

10
-2

10
-1

0 10 20 30 40 50 60 70 80 90
pT  (GeV)

1/
 d

/d
p T 

(G
eV

-1
)

10
-3

10
-2

10
-1

1

10

0 10 20 30 40 50 60 70 80 90
pT  (GeV)

d
/d

p T 
(p

b/
G

eV
)

CDF LHC

Kang-Qiu, 2012, to appear



Nov 10, 2012 Zhongbo Kang, LANL

Works very well for HERA data: SIDIS

n z-flow distribution

n The non-perturbative function fitted from HERA only works for small-x 
data, and do not apply for large x (Sivers data)
n note this function in SIDIS is different from that in DY, as SIDIS non-

perturbative function comes from PDF and FF, while DY only comes from PDF
n In the current Sivers analysis, this functional form is not adopted. It will be a 

very good cross-check to see if the current form can describe HERA data!!!
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Works directly with TMDs

n Seem to work fine

n See also work by Anselmino, et.al.
n With TMD evolution, it seems to describe the data slightly better

36

Aybat-Prokudin-Rogers, 2011

�Q2� � 3.6 GeV

�Q2� � 2.4 GeV

Anselmino-Boglione-Melis, 2012
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Naively apply this functional form ...

n It leads to dramatic effect, which might not be true

n One needs a refit, which concentrates on the low energy data
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Summary

n There are tremendous progress recently in measuring/extracting spin-
dependent fragmentation function, in turn to better extract other TMD 
parton distribution functions, particularly quark transversity

n QCD evolution is very important in the future for better understanding 
of the spin asymmetries

n QCD evolution for all TMDs in principle has already become available

n We just need more time/better data to pin down our theoretical 
parameters, in order to apply them more accurately in the 
phenomenology
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Thank you


