Measurement of Polarized Fragmentation Functions in e⁺e⁻ at

Anselm Vossen

CEEM

Presenting work from Ralf Seidl Francesca Giordano Martin Leitgab Hairong Li AV

Workshop on Fragmentation Functions and QCD 2012 (Fragmentation 2012)

9-11 November 2012

RIKEN Wako, Nishina Hall

Transverse spin dependent FFs needed as quark polarimeters

- Relativistic Leptonic probe is 'too fast' to see transverse spin
- To probe: knock out quark and use effect generated by angular moment conservation

Collins effect in quark fragmentation

J.C. Collins, Nucl. Phys. B396, 161(1993)

Interference FF in Quark Fragmentation

 $\vec{k} : quark momentum$ $\vec{s}_q : quark spin$ $\vec{R} : momentum difference <math>\vec{p}_{h1} - \vec{p}_{h2}$ $\vec{R}_T : momentum difference \vec{p}_{h1} - \vec{p}_{h2}$ $\vec{R}_T : transverse hadron momentum difference = E_{pair}/E_q$ $= 2E_{pair}/\sqrt{s} : relative hadron pair momentum$: hadron pair invariant mass Interference Fragmentation Function: Fragmentation of a transversely polarized quark *q* into two spin-less hadron *h1*, *h*2 carries an azimuthal dependence:

 $\propto \left(\vec{k} \times \vec{R}_T\right) \cdot \vec{s}_q$

 $\propto \sin \phi$

Advantages of IFF over Collins route

- Single Hadron asymmetries vanish integrated over transverse momentum: model dependency in global fit
- Di-hadron effect survives after integration over k_T: collinear factorization can be used
 - No Sudakov suppression
 - Known evolution
- Less background processes to consider (e.g. from gluon radiation, t- $\rightarrow \pi^- \pi^+ \pi^- v_{\tau}$)
- SIDIS experiment show that the effect is large

In p+p: No jet reconstruction necessary, better systematics: "Easier" measurement Collider allows wide kinematic coverage!

Related to g_{1T} , T-odd, not chiral-odd. Effects for sphaleron coupling, or factorized TMD (different) (D. Boer, Pavia DiFF minworkshop 2011)

Measuring spin dependent FFs in e⁺e⁻ Annihilation into Quarks

Here for di-hadron correlations:

$$\mathbf{A} \propto \mathbf{H}_{1}^{2}(\mathbf{z}_{1},\mathbf{m}_{1})\overline{\mathbf{H}}_{1}^{2}(\mathbf{z}_{2},\mathbf{m}_{2})\mathcal{COS}(\varphi_{1}+\varphi_{2})$$

Spin dependence in e⁺e⁻ quark fragmentation will lead to (azimuthal) asymmetries in correlation measurements!

Experimental requirements:

- Small asymmetries → very large data sample!
- Good particle ID to high momenta.
- Hermetic detector

Measurement of Fragmentation Functions

•KEKB: L>2.11 x 10^{34} cm⁻²s⁻¹ •Asymmetric collider: •8GeV e⁻ + 3.5 GeV e⁺ • \sqrt{s} =10.58 GeV (•(4S)) •e⁺e⁻••(4S)•BB •Integrated Luminosity: > 1000 fb⁻¹ •Continuum production: 10.52 GeV •e⁺e⁻•(u, d, s, c) •>70 fb⁻¹ => continuum

Large acceptance, good tracking and particle identification!

Measuring Light Quark Fragmentation Functions on the $\Upsilon(4S)$ Resonance

- small B contribution (<1%) in high thrust sample
- >75% of X-section continuum under
- Υ (4S) resonance
- ~100 fb⁻¹ → ~1000 fb⁻¹

Collins fragmentation in e^+e^- : Angles and Cross section $cos(\phi_1 + \phi_2)$ method

Collins fragmentation in e^+e^- : Angles and Cross section $cos(2\phi_0)$ method

Independent of thrust-axis

•Convolution integral *I* over transverse momenta involved

[Boer,Jakob,Mulders: NPB504(1997)345]

2-hadron inclusive transverse momentum dependent cross section:

$$\frac{d\sigma(e^+e^- \to h_1h_2X)}{d\Omega dz_1 dz_2 d^2 q_T} = \cdots B(\Theta) \cos(2\varphi_0) I \left[\left(2\hat{\mathbf{h}} \cdot \mathbf{k}_T \hat{\mathbf{h}} \cdot \mathbf{p}_T - \mathbf{k}_T \cdot \mathbf{p}_T \right) \frac{H_1^{\perp} \overline{H}_1^{\perp}}{M_1 M_2} \right]$$

$$B(\Theta)^{cm} \frac{1}{4} \sin^2 \Theta$$
Net (anti-)alignment of transverse quark spins

Spin Projection in **Barrel** and **Endcap**

Transverse Spin Dependent FFs: Cuts and Binning

- Full off-resonance and on-resonance data (7-55): ~73 fb⁻¹ + 588 fb⁻¹
- Visible energy >7GeV
- PID: Purities in for pion pairs > 90%
- Opposite hemisphere between pairs pions
- All hadrons in barrel region: $-0.6 < \cos(\theta) < 0.9$
- Thrust axis in central area: cosine of thrust axis around beam < 0.75
- Thrust > 0.8 to remove B-events \rightarrow < 1% B events in sample
- Z_{had1} >0.2

Final Collins results

- First direct measurement of the Collins effect: (PRL96: 232002)
- Nonzero asymmetries
- Consistent with BaBar measurement (see talk by David Muller)
- Belle 547 fb⁻¹ data set (PRD78:032011)

Use of double ratios to cancel gluon radiation effects

First global analysis from Collins Hermes, Compass d and Belle data

δ**u** δ**d**

• First results available, still open 91:98-107,2009 questions from evolution of Collins FF and transverse momentum dependence

Projections for Kaon Collins

- Using same PID matrices as recent K/π yield extraction (see Martin Leitgab's talk)
- Error bars statistical, Charm correction, smearing uncertainties not yet included

Interference Fragmentation – thrust method

- $e^+e^- \rightarrow (\pi^+\pi^-)_{jet1}(\pi^+\pi^-)_{jet2}X$
- Find pion pairs in opposite hemispheres
- Observe angles $\phi_1 + \phi_2$ between the event-plane (beam, jet-axis) and the two two-pion planes.
- Theoretical guidance by papers of Boer, Jakob, Radici [PRD 67, (2003)] and Artru, Collins [ZPhysC69(1996)]
- Early work by Collins, Heppelmann, Ladinsky [NPB420(1994)]

$$\mathbf{A} \propto \mathbf{H}_1^{\angle}(\mathbf{z}_1,\mathbf{m}_1) \overline{\mathbf{H}}_1^{\angle}(\mathbf{z}_2,\mathbf{m}_2) \mathcal{COS}(\varphi_1 + \varphi_2)$$

Model predictions by:

•Jaffe et al. [PRL **80**,(1998)]

•Radici et al. [PR**D 65,**(2002)]

Transverse Spin Dependent FFs: Cuts and Binning

- Full off-resonance and on-resonance data (7-55): ~73 fb⁻¹ + 588 fb⁻¹
- Visible energy >7GeV
- PID: Purities in for di-pion pairs > 90%
- Same Hemisphere cut within pair ($\pi^+\pi^-$), opposite hemisphere between pairs
- All 4 hadrons in barrel region: $-0.6 < \cos(\theta) < 0.9$
- Thrust axis in central area: cosine of thrust axis around beam <0.75
- Thrust > 0.8 to remove B-events \rightarrow < 1% B events in sample
- z_{had1,had2}>0.1
- $z_1 = z_{had1} + z_{had2}$ and z_2 binning
- $m_{\pi\pi1}$ and $m_{\pi\pi2}$ binning
- Here: Mixed binning

Zero tests: MC

Energy flow with opening cut of 0.8

- A small asymmetry seen due to acceptance effect
- Mostly appearing at boundary of acceptance
- Opening cut in CMS of 0.8 (~37 degrees) reduces acceptance effect to the sub-per-mille level $P_h \bullet \hat{n}$

 P_{h}

 $= \cos(P, n)$

Asymmetry extraction

• Build normalized yields:

$$\frac{N(\phi_1+\phi_2)}{\langle N\rangle},$$

$$a_{12}\cos(\phi_1 + \phi_2) + b_{12}$$

or

 $a_{12}\cos(\phi_1 + \phi_2) + b_{12} + c_{12}\cos 2(\phi_1 + \phi_2) + d_{12}\sin(\phi_1 + \phi_2)$

Amplitude a₁₂ directly measures (IFF) x (-IFF) (no double ratios)

 $(z_1 x m_1)$ Binning

Comparison to theory predictions

Red line: theory prediction + uncertainties Blue points: data

- Mass dependence : Magnitude at low masses comparable, high masses significantly larger (some contribution possibly from charm)
- Z dependence : Rising behavior steeper

Subprocess contributions (MC)

tau contribution (only significant at high z)
charged B(<5%, mostly at higher mass)
Neutral B (<2%)
charm(20-60%, mostly at lower z)
uds (main contribution)</pre>

Subprocess contributions (MC)

$9x9 z_1 z_2$ binning

tau contribution (only significant at high z) charged B(<5%, mostly at higher mass) Neutral B (<2%) charm(20-60%, mostly at lower z) uds (main contribution)

Measurement at Belle leads to first point by point extraction of Transversity

Expect negative correlation for local p-odd effect Zero if factorized TMD picture holds

29

First Look at Handedness Correlation

- Test of TMD picture (C=0)
- Sphaleron interaction would lead to C<0

Should be zero. Effect probably due to insufficient separation of hemispheres

Work in Progress....

- Measurements of G_1^{\perp} will test TMD framework
- Together with handedness correlations will give insights into mechanisms behind transverse spin effects

KEKB/Belle \rightarrow SuperKEKB,

- Aim: super-high luminosity ~10³⁶ cm⁻²s⁻¹ (~40x KEK/Belle)
- Upgrades of Accelerator (Microbeams + Higher Currents) and Detector (Vtx,PID, higher rates, modern DAQ)
- Significant US contribution

http://belle2.kek.jp

The Belle II Detector

RPC μ & K₁ counter: 7.4 m CsI(TI) EM calorimeter: scintillator + Si-PM waveform sampling for end-caps 3.3 m electronics, pure Csl for end-caps 5 m 4 layers DSSD \rightarrow 2 layers PXD 7.1 m (DEPFET) + 4 layers DSSD Time-of-Flight, Aerogel Cherenkov Counter → Time-of-Propagation Central Drift Chamber: counter (barrel), smaller cell size, proximity focusing Aerogel long lever arm **RICH** (forward) Belle II Technical Design Report: arXiv:1011.0352

Highlights (for FF measurements) Of Belle II

- Kaon efficiency > 95% over relevant kinematics, fake rate < 5%
- Vertex resolution improved by order of magnitude
- Obviously more statistics

Conclusion and Outlook

- Belle measurements played a crucial role in the first extractions of transversity from single and dihadron asymmetries
- Current plans include
 - Pi0/eta Collins FF
 - VM Collins FF
 - IFF with π^{+-}/π^0 in final state
 - Handedness and G_1^{\perp} correlations
- Belle II will add better vertexing and PID capabilities (and much more statistics)

Backup