Spin Dependent Fragmentation at BaBar:

Collins Asymmetries in $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{u} \bar{u}, d \bar{d}, \mathbf{s} \bar{s} \rightarrow \pi^{ \pm} \pi^{ \pm} \mathbf{X}$

David Muller, SLAC representing the BaBar collaboration

Workshop on Fragmentation Functions and QCD
November 9-11, 2012, RIKEN

Outline

- Introduction
- Data Analysis
- event and $\pi^{ \pm} \pi^{ \pm}$pair selection
- Collins asymmetries A_{α}
- backgrounds and dilutions
- Results
- A_{α} vs. $\pi^{ \pm}$scaled energies
- A_{α} vs. $\pi^{ \pm} \mathrm{p}_{\mathrm{t}}$ wrt the thrust axis/each other
- A_{α} vs. polar angle
- Summary and outlook

Introduction: recall the general idea

- Given a (hard) parton $\mathrm{k}=\mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{c}, \mathrm{b}, \overline{\mathrm{u}}, \overline{\mathrm{a}}, \overline{\mathrm{s}}, \overline{\mathrm{c}}, \overline{\mathrm{b}}, \mathrm{g}$ with energy E_{k}, momentum $p_{k} \hat{Z}$, and polarization ${ }^{j} \hat{S}_{k}$
we want the probability density

$$
F_{k}^{h}\left(m_{h}, f_{h}, j_{h}, p_{h}, \theta_{h}, \phi h, \hat{S}_{h} ; E_{k}, \rho_{k}, \hat{s}_{k}\right)
$$

to find a hadron h in its jet with: mass m_{h}, flavor f_{h}, spin j_{h}, polarization s_{h}, momentum ($\left.\mathrm{p}_{\mathrm{h}} \sin \theta_{\mathrm{h}} \cos \phi_{\mathrm{h}}, \mathrm{p}_{\mathrm{h}} \sin \theta_{\mathrm{h}} \sin \phi_{\mathrm{h}}, \mathrm{p}_{\mathrm{h}} \cos \theta_{\mathrm{h}}\right)$

- We can integrate out/sum over many of these
- Today, consider: $F_{h}^{q}\left(z_{h}, \theta_{h}, \phi_{h} ; p_{q}, 1 / 2 \hat{y}\right), z_{h}=E_{h} / E_{q}$ with pseudoscalar $\mathrm{h}=\pi^{ \pm}, \mathrm{K}^{ \pm}, \ldots$ and transversely polarized $q=u \bar{u} d \bar{d} s s \bar{s}$, $\hat{S}_{\mathrm{q}}=1 / 2 \hat{y}$

the Collins Fragmentation Function

- given a transversely polarized (light) quark $q=u, d, s, \bar{u}, \bar{d}, \bar{s}$ with energy E_{q}
momentum $\mathrm{p}_{\mathrm{q}} \hat{Z}$ polarization $\mathrm{s}_{\mathrm{q}}=1 / 2 \hat{y}$
we can define the polarized FF
$D_{h}^{q}\left(Z_{h}, \vec{p}_{\perp h} ; \vec{S}_{k}\right)=$
$D_{h}^{q}\left(Z_{h}, \vec{p}_{\perp h}\right)+\frac{p_{\perp h}}{Z_{h} m_{h}} H_{h}^{q^{\uparrow}}\left(Z_{h}, \vec{p}_{\perp h}\right) \vec{S}_{q} \cdot\left(\vec{p}_{q} \times \vec{p}_{\perp h}\right)$
for any spinless $h \quad$ (or unpolarized h) where $z_{h}=E_{h} / E_{q} \quad$ (approx.)

$$
p_{\perp h}=\left(p_{h} \sin \theta_{h} \cos \phi_{h}, p_{h} \sin \theta_{h} \sin \phi_{h}, 0\right)
$$

- D_{h}^{q} is the "standard" unpolarized FF
- H_{h}^{q} is the Collins FF

the Collins Fragmentation Function (cont.)

$D_{h}^{q}\left(z_{h}, \vec{p}_{\perp h} ; \vec{s}_{k}\right)=$
$D_{h}^{q}\left(z_{h}, \vec{p}_{\perp h}\right) \quad+\frac{p_{\perp h}}{z_{h} m_{h}} H_{h}^{q}\left(z_{h}, \vec{p}_{\perp h}\right) \overrightarrow{\mathrm{S}}_{q} \cdot\left(\overrightarrow{\mathrm{p}}_{q} \times \vec{p}_{\perp h}\right)$

- $\mathrm{H}_{n}^{\mathrm{g}}$ is the Collins FF
\rightarrow could arise from a spin-orbit coupling
\rightarrow leads to a $\cos \phi$ ¢ modulation
\rightarrow expected to be stronger for high- $\mathbf{z h}_{\mathrm{h}}$ (leading) and high- p_{t} particles
- shown to be nonzero in semi-inclusive DIS (NPB 765, 31)
\rightarrow need to measure in $\mathrm{e}^{+} \mathrm{e}^{-}$out of fundamental interest
\rightarrow...and for the interpretation of SIDIS data
- Belle: published in 2006 (PRL 96, 232002), 2008 (PRD 78, 032011)
- Babar: preliminary results released last year update released this summer, shown today

Quark spin in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilations

- spin-1 γ^{*} produces spin- $1 / 2 \mathrm{q}$ and $\overline{\mathrm{q}}$ \rightarrow in a given event:
the individual spin directions are unknown but they must be parallel
\rightarrow they have a polarization component transverse to the q direction, $\sim \sin ^{2} \theta$
- exploit this correlation by using similar hadrons in opposite jets
- if q direction is known, then
 $\mathrm{d} \sigma / \mathrm{d} \phi_{1} \mathrm{~d} \phi_{2} \mathrm{~d} \ldots \sim\left(1+\cos ^{2} \theta\right) \mathrm{D}_{\mathrm{h}}{ }^{9} \bar{D}_{h 2}^{q}+\sin ^{2} \theta \cos \left(\phi_{1}+\phi_{2}\right) H_{h 1}{ }^{q} \bar{H}_{h 2}^{q}$

Reference Frames for the Measurement

- RF12: use the thrust axis to estimate the q \bar{q} direction
\rightarrow and the $\hat{\mathrm{T}}-\mathrm{e}^{ \pm}$plane to define ϕ_{1}, ϕ_{2}
\rightarrow effect diluted by gluon radiation, detector resolution, ...
\rightarrow so do $\sim A+B \sin ^{2} \theta \underline{\cos \left(\phi_{1}+\phi_{2}\right)} \mathrm{H}_{n 1}^{q} \bar{H}_{h 2}^{q}$
- RFO: alternatively, just use one track in a pair
\rightarrow very clean experimentally, insensitive to T
\rightarrow gives quark direction for high z_{2}
\rightarrow now d $\sigma \sim F_{1}\left(D_{h 1}^{q}, \bar{D}_{n 2}^{q}, \theta\right)+\underline{\cos \left(2 \phi_{0}\right)} F_{2}\left(H_{h 1}^{q}, \bar{H}_{h 2}^{q}, \theta\right)$

Favored and Disfavored Fragmentation Functions

- define a (dis)favored particle as one that could (not) contain the initial q or \bar{q}
$\rightarrow \mathrm{u} \rightarrow \pi^{+}, \mathrm{d} \rightarrow \pi^{-}, \overline{\mathrm{u}} \rightarrow \pi^{-}, \overline{\mathrm{d}} \rightarrow \pi^{+}$are favored (F)
$\rightarrow \mathrm{u} \rightarrow \pi^{-}, \mathrm{d} \rightarrow \pi^{+}, \overline{\mathrm{u}} \rightarrow \pi^{+}, \overline{\mathrm{d}} \rightarrow \pi^{-}$are disfavored (D)
- now consider Like (L) and Unlike (U) sign pairs \rightarrow U pairs can arise from FF or DD combinations

\rightarrow L must be from FD or DF

\rightarrow also consider all pairs, $\mathrm{C}=\mathrm{U}+\mathrm{L}$

The BaBar Experiment

- $\mathrm{e}^{+} \mathrm{e}^{-}$collisions at $\mathrm{E}_{\text {см }}=10.6 \mathrm{GeV}$: hadronic final states $u \bar{u}, d \bar{d}, s \bar{s}, c \bar{c}, \curlyvee(4 S)$
- Different beam energies
$\rightarrow \mathrm{E}_{\mathrm{e}^{-}}=9.0 \mathrm{GeV}$
$\rightarrow \mathrm{E}_{\mathrm{e}+}=3.1 \mathrm{GeV}$
\rightarrow c.m.-lab boost, $\beta \gamma=0.55$
- Asymmetric detector
\rightarrow c.m. frame acceptance

$$
-0.90 \sim \cos \theta^{*} \sim 0.85
$$

wrt e- beam

- with excellent performance \rightarrow good tracking, mass resolution
\rightarrow good γ, π^{0} recon.
\rightarrow full e, $\mu, \pi, \mathrm{K}, \mathrm{p}$ ID
- High luminosity
$\rightarrow \sim 468 \mathrm{fb}^{-1}$ used here $\leftrightarrow 1$ billion
$e^{+} e^{-} \rightarrow u \bar{u}, d \bar{d}, ~ s s \overline{~ e v e n t s ~}$

Event Selection

- want:
\rightarrow unbiased uū,d $\bar{d}, s \bar{s}$ sample, especially for high-z $\pi^{ \pm}$
\rightarrow low track pair background
\rightarrow a two-jet topology

- require:
\rightarrow at least 3 charged tracks
\rightarrow visible energy $\mathrm{E}_{\mathrm{vis}}>7 \mathrm{GeV}$
\rightarrow thrust value $\mathrm{T}>0.8$
\rightarrow remove $\tau^{+} \tau^{-}$events in the T-Evis plane
- efficient for:

\rightarrow sufficiently 2 -jet-like events to have signal
$\rightarrow \mathrm{c} \overline{\mathrm{c}}, \mathrm{B} \overline{\mathrm{B}}, \tau^{+} \tau^{-}$contributions understood/measured
\rightarrow still some two-prong background...

Track (pair) Selection

- within detector acceptance: $\rightarrow 0.41<\theta<254 \mathrm{rad}$
- identification as $\pi^{ \pm}$:
\rightarrow tight suppression of $\mathrm{K}^{ \pm}, \mathrm{p} / \overline{\mathrm{p}}$
\rightarrow very tight cuts against $e^{ \pm}, \mu^{ \pm}$
- max scaled energy, $\mathbf{z}<0.9$, above which:
\rightarrow rate of signal $\pi^{ \pm}$is small (see yesterday's talk)
\rightarrow rate of signal $\pi^{ \pm} \pi^{\mp}$ is very small
\rightarrow rate of signal $\pi^{ \pm} \pi^{ \pm}$is zero
\rightarrow but there is some background
\rightarrow...and our simulation is not reliable...
- tracks must be assigned to the correct jet(!)
\rightarrow challenging at low Eсм
$\rightarrow z>0.15$, angle wrt T axis $<45^{\circ}$
$\rightarrow \gamma^{*}$ transverse momentum in the $\pi \pi \mathrm{cm}$ frame, $\mathrm{Q}_{\mathrm{t}}<0.35$

Raw Azimuthal Distributions

- consider all selected U and $L \pi \pi$ pairs
\rightarrow make histograms of $\phi_{\alpha}=\phi_{1}+\phi_{2}$ or $2 \phi_{0}$
\rightarrow normalize by the average, $\mathrm{R}_{\alpha}=\mathrm{N}\left(\phi_{\alpha}\right) /<\mathrm{N}>$
- the simulation has no Collins effect, but it shows a strong cos ϕ-like effect
\rightarrow due to acceptance of the detector
\rightarrow depends strongly on θ
- we must understand and correct for this
\rightarrow many studies performed; dep on z, p_{t}, \ldots
\rightarrow can use only low $\cos \theta$ at low z ... but need the statistics at high z

- the simulated effect is quite similar for U and L pairs
\rightarrow small difference makes sense in terms of different distributions of $\mathrm{z}, \mathrm{p}_{\mathrm{t}}$
- and has opposite sign in RF12
\rightarrow nice consistency check on any signal

- the data show a large difference that can be ascribed to the Collins effect
\rightarrow simulation quite similar for L and U sign pairs, so ...

Double Ratios

- reduce acceptance effects by taking the double ratios $\rightarrow D^{U L}=R_{\alpha}^{U} / R_{\alpha}^{L}$
$\rightarrow D^{U C}=R_{\alpha}^{U} / R_{\alpha}^{C}$

- Fit to the function $1+\mathrm{A}_{\alpha}^{\mathrm{UL}} \cos \phi_{\alpha}$ or $1+\mathrm{A}_{\alpha}^{\mathrm{UC}} \cos \phi_{\alpha}$
\rightarrow the Collins asymmetries A_{α}^{Ub} contain the information on the Collins effect
- subtract the fitted MC value from the data value \rightarrow note dependence on $\mathrm{z}, \mathrm{p}_{\mathrm{t}}, \ldots$

Analysis Bins

- Collins effects are expected to depend on $z_{1}, z_{2}, p_{\mathrm{t} 1}, p_{\mathrm{t} 2}$ (or $p_{\text {to }}$), as well as $\cos \theta$
\rightarrow analyze in bins of these quantities
\rightarrow use $6 x 6$ bins in $\left(z_{1}, z_{2}\right)$;

4×4 bins in ($p_{t 1}, p_{t 2}$) (9 in $p_{t 0}$)

- the simulated A_{α}^{Ub} also depend on these quantities \rightarrow must correct in each bin independently
- systematic on MC value evaluated by varying track selection/ acceptance
\rightarrow typically $\sim 50 \%$ of correction; always \ll signal

Dilution

- the measured $\mathrm{A}_{\alpha}^{\mathrm{UC}}$ are different from the true values due to detector acceptance, resolution, ...
- studied using simulation reweighted to several A values \rightarrow dilution A ${ }^{\text {meas }}$ / A input depends on $\mathrm{z}, \mathrm{p}_{\mathrm{t}}$

- small for RFO ${ }^{Z_{2}}$ since track directions measure ${ }^{p_{0} \text { or } p_{0}}$.
\rightarrow assign no correction or error
- substantial in RF12, due to the use of the T axis \rightarrow correction from MC with its stat. error as a systematic

Backgrounds

- the simulated sample composition includes pairs from:
\rightarrow signal uds events
$\rightarrow B \bar{B}$ events, small, mostly low z
$\rightarrow \mathrm{c} \overline{\mathrm{c}}$ events, important at medium z
$\rightarrow \tau^{+} \tau^{-}$events, important at high z

- in each bin, we will measure

$$
A^{\text {meas }}=F_{u d s} A^{u d s}+F_{c} A^{c}+F_{B} A^{B}+F_{\tau} A^{\tau}
$$

\rightarrow where F_{i} are the fractional contributions, $\Sigma_{i} F_{i}=1$

- must understand these quantities
\rightarrow use MC for F_{i} with data-MC diff in each bin as a syst
$\rightarrow A^{B}$ must be zero; checked in low-T data; set $A^{B}=0 \pm 0$
$\rightarrow A^{\tau}$ small in sim; checked in data; set $A^{\tau}=0 \pm 0$
- cc̄ events could have nonzero A_{α} due to prod., decay, ... \rightarrow use control samples of events containing a D* meson
$\rightarrow 4$ complementary decay modes
\rightarrow mostly $c \bar{c}$ events, some $B \bar{B}$
- in each bin, solve $\quad A^{\text {meas }}=F_{\text {uds }} A^{u d s}+F_{c} A^{c}$

$$
A^{D^{*}}=f_{u d s} A^{u d s}+f_{c} A^{c}
$$

\rightarrow again, f_{i} from MC; fuds $=1-\mathrm{f}_{\mathrm{C}}-\mathrm{f}_{\tau}-\mathrm{f}_{\mathrm{B}} ;$ data-MC differences taken as a systematic

- the A^{c} are very small
\rightarrow perhaps slightly negative?

Results: RF12 frame, A12 vs. ($\mathrm{z}_{1}, \mathrm{z}_{2}$)

- very significant nonzero $A \cup L$ and $A U C$ in all bins \rightarrow strong dependence on (z_{1}, z_{2}), 1-39\%
$\rightarrow A^{\cup C}<A^{U L}$ as expected; complementary information
\rightarrow consistent with $z_{1} \leftrightarrow z_{2}$ symmetry

Results: RFo frame, A_{0} vs. $\left(z_{1}, z_{2}\right)$

- very signiticant nonzero $A \cup L$ and $A \cup C$ in all bins
\rightarrow strong dependence on $\left(z_{1}, z_{2}\right), 0.5-11 \%$
\rightarrow smaller than A_{12}; lower correlation with q direction
$\rightarrow A^{U C}<A^{U L}$, consistent with $Z_{1} \leftrightarrow Z_{2}$ symmetry

Results: A_{12} vs. $\left(p_{t 11}, p_{t 2}\right) ; A_{0}$ vs. p_{10}

- nonzero $A^{U L}$ and $A^{U C}$ all but the lowest p_{t} bins \rightarrow only modest dependence on ($\mathrm{p}_{\mathrm{t} 1}, \mathrm{p}_{\mathrm{t} 2}$), 1-2\%/2.5-6.5\%
$\rightarrow \mathrm{A}^{\mathrm{UC}}<\mathrm{A}^{\mathrm{UL}}$, consistent with $\mathrm{p}_{\mathrm{tl}} \leftrightarrow \mathrm{p}_{\mathrm{t}_{2}}$ symmetry
$\rightarrow A_{0}<A_{12}$, but interesting structure in p_{t}

Results: A_{12} vs. $\theta_{t \text { trrust; }} A_{0}$ vs. θ_{2}

- in RF12 frame, vs. $\theta_{\text {thrust; }}$ expect linearity in $\sin ^{2} \theta /\left(1+\cos ^{2} \theta\right)$
\rightarrow both AUC and AUL ${ }_{0.04}^{\text {n }} 0$ consistent with linearity
\rightarrow...and with zero intercept

BaBar preliminary

- in RFO frame, vs. θ_{2}, unclear what to expect
\rightarrow linear fits are ok
\rightarrow intercept not consistent with 0
\rightarrow probably not surprising; not a good measure of the q direction

Summary

- BaBar has measured Collins asymmetries for charged pion pairs in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{u} \bar{u}, \mathrm{~d} \overline{\mathrm{~d}}, \mathrm{~s} \bar{s} \rightarrow \pi^{ \pm} \pi^{ \pm} X$
\rightarrow in two distinct reference frames
\rightarrow vs. π scaled energies
$\mathrm{RF}_{12} \quad \mathrm{RF}_{0}$
\rightarrow vs. π transverse momenta
\rightarrow vs. polar angle

$$
\mathrm{z}_{1}, \mathrm{z}_{2} \quad \mathrm{z}_{1}, \mathrm{z}_{2}
$$

$\mathrm{p}_{\mathrm{t} 1}, \mathrm{p}_{\mathrm{t} 2} \quad \mathrm{p}_{\mathrm{t} 0}$
$\theta_{\text {thrust }} \quad \theta_{2}$

- A_{12}, A_{0} increase with increasing z_{1}, z_{2}
\rightarrow consistent with expectations
\rightarrow consistent with Belle results
\rightarrow effect is stronger in leading particles
- $\mathrm{A}_{12}\left(\mathrm{~A}_{0}\right)$ increases with increasing $\mathrm{p}_{\mathrm{t} 1}, \mathrm{p}_{\mathrm{t} 2}\left(\mathrm{p}_{\mathrm{t} 0}\right)$ \rightarrow first measurement
\rightarrow consistent with, useful for refining expectations
- $A_{12}\left(A_{0}\right)$ increases linearly with $\sin ^{2} \theta /\left(1+\cos ^{2} \theta\right)$ \rightarrow as (might be) expected

Backup Slides

