Spin Dependent Fragmentation at BaBar:

Collins Asymmetries in $e^+e^- \rightarrow u\overline{u}, d\overline{d}, s\overline{s} \rightarrow \pi^{\pm}\pi^{\pm}X$

David Muller, SLAC representing the BaBar collaboration

Workshop on Fragmentation Functions and QCD November 9-11, 2012, RIKEN

<u>Outline</u>

- Introduction
- Data Analysis
 - event and π[±]π[±] pair selection
 - Collins asymmetries A_α
 - backgrounds and dilutions
- Results
 - A_{α} vs. π^{\pm} scaled energies
 - A_{α} vs. $\pi^{\pm} p_t$ wrt the thrust axis/each other
 - A_{α} vs. polar angle
- Summary and outlook

Introduction: recall the general idea

 Given a (hard) parton k=u,d,s,c,b,ū,d,s,c,b,g with energy E_k, momentum p_k2, and polarization jŝ_k

we want the probability density $F_k^h(m_h, f_h, j_h, p_h, \theta_h, \phi_h, \hat{s}_h; E_k, p_k, \hat{s}_k)$ to find a hadron h in its jet with: mass m_h, flavor f_h, spin j_h, polarization \hat{s}_h , momentum (p_hsin θ_h cos ϕ_h , p_hsin θ_h sin ϕ_h , p_hcos θ_h)

- We can integrate out/sum over many of these
- Today, consider: $F_h^q(z_h, \theta_h, \phi_h; p_q, \frac{1}{2}\hat{y})$, $z_h = E_h / E_q$ with pseudoscalar $h = \pi^{\pm}$, K^{\pm} , ... and transversely polarized q=uūddss, $\hat{s}_q = \frac{1}{2}\hat{y}$

the Collins Fragmentation Function

 given a transversely polarized (light) quark q=u,d,s,ū,d,s with energy Eq momentum pq2 polarization sq=1/2ŷ

we can define the polarized FF

 $D_{h}^{q^{\uparrow}}(z_{h}, \vec{p}_{\perp h}; \vec{s}_{k}) = D_{h}^{q}(z_{h}, \vec{p}_{\perp h}) + \frac{p_{\perp h}}{z_{h}m_{h}}H_{h}^{q^{\uparrow}}(z_{h}, \vec{p}_{\perp h})\vec{s}_{q} \cdot (\vec{p}_{q} \times \vec{p}_{\perp h})$

- D^q_h is the "standard" unpolarized FF
- H^q_h is the Collins FF

the Collins Fragmentation Function (cont.)

 $D_{h}^{q^{T}}(z_{h}, \vec{p}_{\perp h}; \vec{s}_{k}) = D_{h}^{q}(z_{h}, \vec{p}_{\perp h}) + \frac{p_{\perp h}}{z_{h}m_{h}}H_{h}^{q^{T}}(z_{h}, \vec{p}_{\perp h})\vec{s}_{q} \cdot (\vec{p}_{q} \times \vec{p}_{\perp h})$

- H^q_h is the Collins FF
 - → could arise from a spin-orbit coupling
 - \rightarrow leads to a cos ϕ_h modulation
 - → expected to be stronger for high-z_h (leading) and high-p_t particles (PRL 94, 012002)
- shown to be nonzero in semi-inclusive DIS (NPB 765, 31)
 → need to measure in e⁺e⁻ out of fundamental interest
 → ...and for the interpretation of SIDIS data
- Belle: published in 2006 (PRL 96, 232002), 2008 (PRD 78, 032011)
- Babar: preliminary results released last year update released this summer, shown today

Quark spin in e⁺e⁻ annihilations

e+

n₂

Φ2

n-

θ

 e^{-}

- spin-1 γ* produces spin-½ q and q
 → in a given event:
 - the individual spin directions are unknown
 - but they must be parallel
 - → they have a polarization component transverse to the q direction, ~sin²θ
- exploit this correlation by using similar hadrons in opposite jets
- if q direction is known, then

 $d\sigma/d\phi_1 d\phi_2 d... \sim (1 + \cos^2\theta) D_{h1}^q \overline{D}_{h2}^q + \sin^2\theta \cos(\phi_1 + \phi_2) H_{h1}^q \overline{H}_{h2}^q$

6

Reference Frames for the Measurement

- **RF12:** use the thrust axis to estimate the qq direction
 - → and the \hat{T} -e[±] plane to define ϕ_1 , ϕ_2
 - → effect diluted by gluon radiation, detector resolution, ...

- \rightarrow so d $\sigma \sim A + Bsin^2\theta cos(\phi_1 + \phi_2)H_{h1}^q H_{h2}^q$
- **RF0:** alternatively, just use one track in a pair
 - → very clean experimentally, insensitive to T
 - → gives quark direction for high z₂
 - \rightarrow now d $\sigma \sim F_1(D_{h1}^q, \overline{D}_{h2}^q, \theta) + \underline{cos(2\phi_0)}F_2(H_{h1}^q, \overline{H}_{h2}^q, \theta)$

Favored and Disfavored Fragmentation Functions

- define a (dis)favored particle as one that could (not) contain the initial q or q
 - \rightarrow u $\rightarrow \pi^+$, d $\rightarrow \pi^-$, $\overline{u} \rightarrow \pi^-$, $\overline{d} \rightarrow \pi^+$ are favored (F)
 - \rightarrow u \rightarrow π^- , d \rightarrow π^+ , $\overline{u} \rightarrow$ π^+ , $\overline{d} \rightarrow$ π^- are disfavored (D)
- now consider Like (L) and Unlike (U) sign pairs
 → U pairs can arise from FF or DD combinations

$$\begin{bmatrix} \mathbf{T}^{+} & \mathbf{u} & \mathbf{e}^{+}, \\ \mathbf{T}^{+} & \mathbf{u} & \mathbf{u} & \mathbf{T}^{+} \\ \mathbf{fav} & \mathbf{fav} & \mathbf{fav} & \mathbf{T}^{+} \end{bmatrix} + \begin{bmatrix} \mathbf{T}^{-} & \mathbf{u} & \mathbf{u} & \mathbf{u} \\ \mathbf{fav} & \mathbf{fav} & \mathbf{fav} & \mathbf{fav} \\ \mathbf{e}^{-} & \mathbf{e}^{-} & \mathbf{e}^{-} \end{bmatrix}$$

→ L must be from FD or DF

$$\begin{bmatrix} \mathbf{T}^{+} & \mathbf{u} & \mathbf{u}^{+} \\ \mathbf{fav} & \mathbf{dis} & \mathbf{T}^{+} \end{bmatrix} + \begin{bmatrix} \mathbf{T} & \mathbf{u} & \mathbf{u}^{+} \\ \mathbf{fav} & \mathbf{fav} & \mathbf{fav} & \mathbf{T}^{+} \\ \mathbf{e}^{-} & \mathbf{e}^{-} & \mathbf{e}^{-} \end{bmatrix}$$

→ also consider all pairs, C=U+L

The BaBar Experiment

- e⁺e⁻ collisions at E_{CM}=10.6 GeV: hadronic final states $u\bar{u}, d\bar{d}, s\bar{s}, c\bar{c}, \Upsilon(4S)$
- Different beam energies $\rightarrow E_{e^-} = 9.0 \text{ GeV}$
 - $\rightarrow E_{e^+} = 3.1 \text{ GeV}$
 - \rightarrow c.m.-lab boost, $\beta\gamma$ =0.55
- Asymmetric detector

 → c.m. frame acceptance
 −0.90 ~ cosθ* ~ 0.85
 wrt e⁻ beam
- with excellent performance
 - → good tracking, mass resolution
 - → good γ, π^0 recon.
 - → full e, μ , π ,K,p ID

- High luminosity
- → ~468 fb⁻¹ used here
 ↔1 billion _
 - e+e-→uū, dd, ss events

Event Selection

• want:

- → unbiased uu,dd,ss sample, especially for high-z π^{\pm}
- → low track pair background
- → a two-jet topology
- require:
 - \rightarrow at least 3 charged tracks $\frac{2}{3}$
 - \rightarrow visible energy E_{vis}>7 GeV Ξ^{12}
 - → thrust value T>0.8
 - → remove τ⁺τ⁻ events in the T-E_{vis} plane
- efficient for:
 - → sufficiently 2-jet-like events to have signal
 - \rightarrow cc, BB, $\tau^+\tau^-$ contributions understood/measured
 - → still some two-prong background...

Track (pair) Selection

- within detector acceptance: $\rightarrow 0.41 < \theta < 254$ rad
- identification as π^{\pm} :
 - \rightarrow tight suppression of K[±], p/p
 - \rightarrow very tight cuts against e[±], μ^{\pm}
- max scaled energy, z<0.9, above which:
 - \rightarrow rate of signal π^{\pm} is small (see yesterday's talk)
 - \rightarrow rate of signal $\pi^{\pm}\pi^{\mp}$ is very small
 - \rightarrow rate of signal $\pi^{\pm}\pi^{\pm}$ is zero
 - → but there is some background
 - →...and our simulation is not reliable...
- tracks must be assigned to the correct jet(!)
 - → challenging at low E_{CM}
 - \rightarrow z>0.15, angle wrt T axis <45°
 - $\rightarrow \gamma^*$ transverse momentum in the $\pi\pi$ cm frame, Qt<0.35

Raw Azimuthal Distributions

- consider all selected U and L $\pi\pi$ pairs
 - \rightarrow make histograms of $\phi_{\alpha} = \phi_1 + \phi_2$ or $2\phi_0$
 - \rightarrow normalize by the average, $R_{\alpha} = N(\phi_{\alpha}) / \langle N \rangle$
- the simulation has no Collins effect, but it shows a strong cosφ-like effect
 - → due to acceptance of the detector
 - \rightarrow depends strongly on θ
- we must understand and correct for this
 - → many studies performed; dep on z, pt, ...
 - → can use only low cosθ at low z ... but need the statistics at high z

- the simulated effect is quite similar for U and L pairs
 → small difference makes sense in terms of different distributions of z, pt
- and has opposite sign in RF12
 → nice consistency check on any signal

 the data show a large difference that can be ascribed to the Collins effect
 → simulation quite similar for L and U sign pairs, so ...

Double Ratios

reduce acceptance effects by taking the double ratios
 → D^{UL} = R^U_α / R^L_α
 → D^{UC} = R^U_α / R^C_α

- Fit to the function $1 + A_{\alpha}^{UL} \cos \phi_{\alpha}$ or $1 + A_{\alpha}^{UC} \cos \phi_{\alpha}$
 - → the Collins asymmetries A^{Ub}_α contain the information on the Collins effect
- subtract the fitted MC value from the data value
 → note dependence on z, pt, ...

Analysis Bins

- Collins effects are expected to depend on z_1 , z_2 , p_{t1} , p_{t2} (or p_{t0}), as well as $cos\theta$
 - → analyze in bins of these quantities

- the simulated A^{Ub}_α also depend on these quantities
 → must correct in each bin independently
- systematic on MC value evaluated by varying track selection/ acceptance
 - → typically ~50% of correction; always << signal

Dilution

- the measured A_{α}^{UC} are different from the true values due to detector acceptance, resolution, ...
- studied using simulation reweighted to several A values
 → dilution A^{meas} / A^{input} depends on z, pt

- small for RF0 since track directions measured well
 → assign no correction or error
- substantial in RF12, due to the use of the T axis
 → correction from MC with its stat. error as a systematic

Backgrounds

- the simulated sample composition includes pairs from:
 - → signal uds events
 - → BB events, small, mostly low z
 - → cc̄ events, important at medium z
 - $\rightarrow \tau^+\tau^-$ events, important at high z

• in each bin, we will measure

 $A^{meas} = F_{uds}A^{uds} + F_cA^c + F_BA^B + F_{\tau}A^{\tau}$

- \rightarrow where F_i are the fractional contributions, $\Sigma_i F_i=1$
- must understand these quantities
 - \rightarrow use MC for F_i with data-MC diff in each bin as a syst
 - \rightarrow A^B must be zero; checked in low-T data; set A^B=0±0
 - $\rightarrow A^{\tau}$ small in sim; checked in data; set $A^{\tau}=0\pm0$

- $c\bar{c}$ events could have nonzero A_{α} due to prod., decay, ...
 - → use control samples of events containing a D* meson
 - → 4 complementary decay modes
 - \rightarrow mostly cc̄ events, some BB̄
- in each bin, solve $A^{meas} = F_{uds}A^{uds} + F_cA^c$ $A^{D^*} = f_{uds}A^{uds} + f_cA^c$
 - → again, f_i from MC; $f_{uds} = 1 f_c f_\tau f_B$; data-MC differences taken as a systematic

the A^c are very small
 → perhaps slightly negative?

Results: RF12 frame, A12 vs. (z1, z2)

- very significant nonzero A^{UL} and A^{UC} in all bins \rightarrow strong dependence on (z₁,z₂), 1-39%
 - $\rightarrow A^{UC} < A^{UL}$ as expected; complementary information
 - \rightarrow consistent with $z_1 \leftrightarrow z_2$ symmetry

 θ_{th}

Results: RF0 frame, A₀ vs. (z₁,z₂)

- very significant nonzero AUL and AUC in all bins
 - \rightarrow strong dependence on (z₁,z₂), 0.5-11%
 - \rightarrow smaller than A₁₂; lower correlation with q direction
 - \rightarrow A^{UC} < A^{UL}, consistent with $z_1 \leftrightarrow z_2$ symmetry

Results: A12 vs. (pt1,pt2); A0 vs. pt0

nonzero A^{UL} and A^{UC} all but the lowest pt bins

 → only modest dependence on (pt1,pt2), 1-2%/2.5-6.5%
 → A^{UC} < A^{UL}, consistent with pt1 ↔ pt2 symmetry
 → A₀ < A₁₂, but interesting structure in pt

Results: A_{12} vs. θ_{thrust} ; A_0 vs. θ_2

- in RF12 frame, vs. θ_{thrust} ; expect linearity in
 - sin²θ / (1+cos²θ)
 → both A^{UC} and A^{UL √}
 consistent with linearity
 - → ...and with zero intercept

• in RF0 frame, vs. θ_2 , unclear what to expect

- \rightarrow linear fits are ok 20.04
- → intercept not consistent with 0
- → probably not surprising; not a good measure of the q direction

<u>Summary</u>

- BaBar has measured Collins asymmetries for charged pion pairs in e⁺e⁻ → uū,dd,ss → π[±]π[±]X
 → in two distinct reference frames
 → vs. π scaled energies
 → vs. π transverse momenta
 → vs. π transverse momenta
 → vs. polar angle
 BaBar has measured Collins asymmetries for charged for charged states and the states of the states of
- A₁₂, A₀ increase with increasing z₁, z₂
 → consistent with expectations
 - → consistent with Belle results
 - → effect is stronger in leading particles
- A₁₂ (A₀) increases with increasing p_{t1}, p_{t2} (p_{t0})
 → first measurement
 → consistent with, useful for refining expectations
- A_{12} (A_0) increases linearly with $sin^2\theta/(1+cos^2\theta)$ \rightarrow as (might be) expected

Backup Slides