PH棌ENIX

Measuring Transversity at COMPASS

 and RHIC with Spin Dependent Fragmentation Functions Anselm Vossen CEEM ΨINDIANA UNIVERSITY

Parton Distribution Functions

The three leading order, collinear PDFs

```
q(x)
f
```


$\Delta q(x)$
$g_{1}{ }^{q}(x)$

> unpolarized PDF quark with momentum $x=p_{\text {quark }} / p_{\text {proton }}$ in a nucleon
> well known - unpolarized DIS

helicity PDF
quark with spin parallel to the nucleon spin in a longitudinally polarized nucleon known - polarized DIS

transversity PDF

quark with spin parallel to the nucleon spin in a transversely polarized nucleon
chiral odd, poorly known Cannot be measured inclusively

Transversity is Chiral Odd

- Transversity base:

Difference in densities for \uparrow, \downarrow quarks in \uparrow nucleon

- Helicity base: chiral odd
- Needs chiral odd partner \rightarrow Fragmentation Function
- Does not couple to gluons \Rightarrow different QCD evolution than $g_{1}(x)$
- Valence dominated \Rightarrow Tensor charge comparable to Lattice calculations
- We want to extract tensor charge $\mathrm{g}_{\mathrm{T}}=\int_{-1}^{1} h_{1}(x) d x$

Chiral odd FFs

Collins effect

Chiral odd FFs

Interference Fragmentation Function

Azimuthal Asymmetries for single Hadrons with transversal polarized target in SIDIS

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}=\ldots \quad \begin{array}{l}
\text { Collins } \\
\text { asymmetry }
\end{array} \\
& +\left.\right|_{\boldsymbol{S}_{\perp} \mid}\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)\right. \\
& +\varepsilon \sin (\phi_{h}+\phi_{S} \underbrace{}_{F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}} \\
& \left.+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right] \\
& +{\left|\boldsymbol{S}_{\perp}\right| \lambda_{e}}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}\right.
\end{aligned}
$$

Di-hadron FF measurements

- Polarized di-hadron xsection ~ $\sin (\theta) h_{1}(x) H_{1}(z, M) \sin \left(\phi_{R}+\phi_{S}-\pi\right)$
- Compass does not fit $\sin (\theta)$ separately

COMPASS Setup

two stages spectrometer
Large Angle Spectrometer (SM1),
Small Angle Spectrometer (SM2)
tracking, calorimetry, PID NEW TECHNOLOGIES

- high energy beam
- Large angular acceptance
- Broad kinematical range

160 GeV

COMPASS Kinematic Reach vs. Hermes and Jlab @ 12GeV

Compass Data taking

- Deuteron: 2002-2004
- Proton 2007 and 2010
- Publications:
- Unidentified Dihadrons: Phys.Lett. B713 (2012) 1016, 2002-2004 (deuteron), 2007 proton
- Unidentifed Hadrons Collins:
- Deuteron:NP B765 (2007) 31-70 (uident) PLB 673 (2009) 127-135,
- Proton: PLB 692 (2010) 240-246
- Identified proton 2010 preliminary:

Results Collins

COMPASS 2010 proton data

Pions Asymmetries similar to Kaons

Compass is consistent with Hermes

Compass/Hermes Kaons

Comparison with Theory Predictions

See talk by Elena Boglione

Very weak W dependence

COMPASS 2010 proton data

y "binning": Some effect from Q^{2} evolution?

z "binning"

Compass IFF

COMPASS 2010 proton data

Di-hadron Asymmetries

Di-hadron Asymmetries

See Marco's talk

Comparison with Hermes

Single Hadron Multiplicities

See Marco's talk

Single Hadron Multiplicities

See Marco's talk

Pion Charge Ratios

Di-Hadron Multiplicities

The RHIC Polarized Collider

Strong AGS Snake

Versatility:

- Polarized p+p Sqrt(s) collisions at $62.4 \mathrm{GeV}, 200 \mathrm{GeV}$ and 500 GeV

Recent Spin Runs:

- 2011500 GeV , longitudinal at Phenix, transverse at STAR ~30 pb^-1 sampled
- 2012200 GeV , Phenix and STAR, transverse $\sim 20 \mathrm{pb}^{\wedge-1}$ sampled (at STAR: ${ }^{\sim x}$ 10 statistics)

Compare Collins and IFF at different energies: Test evolution, Sudakov suppression effects
SIDIS (2.5 GeV²)

BELLE ($100 \mathrm{GeV}^{2}$)

D. Boer, NPB 806 (09)

Pic by A. Bacchetta,

PHENIX Detector at RHIC

Central Arms $\quad|\eta|<0.35$

- Identified charged hadrons
- π^{0}, η
- Direct Photon
- J/ Ψ
- Heavy Flavor

$$
\begin{array}{ll}
\text { MPC } & 3.1<|\eta|<3.9
\end{array}
$$

Full azimuth spanned with nearly contiguous electromagnetic calorimetry from $-1<\eta<4$
\Rightarrow approaching full acceptance detector

Jets: Proven Capabilities in $p+p$

B.I. Abelev et al. (STAR Coll.), Phys.Rev.Lett. 97, 252001, 2006

SPIN-2010: Matt Walker/Tai Sakuma, for the collaboration

Jets well understood in STAR, experimentally and theoretically

Mid-Rapidity Collins Asymmetry Analysis at STAR

- STAR provides the full mid-rapidity jet reconstruction and charged pion identification
- Look for spin dependent azimuthal distributions of charged pions inside the jets! First proposed by F. Yuan in Phys.Rev.Lett.100:032003.
- Measure average weighted yield:

$$
d \sigma \approx d \sigma^{U U}\left[1+A_{N} \sin \left(\phi_{h}-\phi_{s}\right)\right]
$$

Moving on to Correlation Measurements: Pions in Jets

Terms in Numerator of TMD SSA for qq scattering	English Names	Modulate
$\Delta^{N} f_{a / A \uparrow} \bullet f_{b / B} \bullet D_{\pi / q}$	Sivers \bullet PDF $\bullet \mathrm{FF}$	$\sin \left(\varphi_{S_{A}}\right)$
$h_{1}^{a} \bullet \Delta^{N} f_{b \uparrow / B} \bullet D_{\pi / q}$	Transversity \bullet Boer-Mulder $\bullet \mathrm{FF}$	$\sin \left(\varphi_{S_{A}}\right)$
$h_{1 T}^{\perp a} \bullet \Delta^{N} f_{b \uparrow / B} \bullet D_{\pi / q}$	Pretzelocity \bullet Boer-Mulder $\bullet \mathrm{FF}$	$\sin \left(\varphi_{S_{A}}\right)$
$h_{1}^{a} \bullet f_{b / B} \bullet \Delta D_{\pi / q \uparrow}$	Transversity \bullet PDF \bullet Collins	$\sin \left(\varphi_{S_{A}}-\varphi_{\pi}\right)$
$\Delta f_{a / A \uparrow}^{N} \bullet \Delta^{N} f_{b \uparrow / B} \bullet \Delta D_{\pi / q \uparrow}$	Sivers \bullet Boer-Mulder \bullet Collins	$\sin \left(\varphi_{S_{A}}-\varphi_{\pi}\right)$
$h_{1 T}^{\perp a} \bullet f_{b / B} \bullet \Delta D_{\pi / q \uparrow}$	Pretzelocity \bullet PDF \bullet Collins	$\sin \left(\varphi_{S_{A}}+\varphi_{\pi}\right)$
$\Delta f_{a / A \uparrow}^{N} \bullet \Delta^{N} f_{b \uparrow / B} \bullet \Delta D_{\pi / q \uparrow}$	Sivers \bullet Boer-Mulders \bullet Collins	$\sin \left(\varphi_{S_{A}}+\varphi_{\pi}\right)$

Based on work by F.Yuan (Phys.Rev.Lett.100:032003) and D'Alesio et al. (Phys.Rev. D83, 034021)

First Step: Mid-rapidity Collins analysis

Collins Asymmetry A $\equiv \mathbf{2}<\sin \left(\phi_{h}-\phi_{S}\right)>$ vs. z Collins Asymmetry $A \equiv 2<\sin \left(\phi_{h}-\phi_{S}\right)>$ vs. j_{T}

Run 12 Projections

Interference Fragmentation Function in p-p

$$
\frac{\sigma^{\uparrow}-\sigma^{\downarrow}}{\sigma^{\uparrow}+\sigma^{\downarrow}}\left(\phi_{S}-\phi_{R}\right)=A_{U T} \sin \left(\phi_{S}-\phi_{R}\right) \quad A_{U T} \propto h_{1} \otimes H_{1}^{\square}
$$

ϕ_{S} : Angle between polarisation vector and event plane

Di-Hadron Correlations

$\mathrm{p}+\mathrm{p}$ c.m.s. $=$ lab frame \vec{P}_{A}, \vec{P}_{B} : momenta of protons $\vec{P}_{h 1}, \vec{P}_{h 2}$: momenta of hadrons $\vec{P}_{C}=\vec{P}_{h 1}+\vec{P}_{h 2}$ $\vec{R}_{C}=\left(\vec{P}_{h 1}-\vec{P}_{h 2}\right) / 2$ \vec{S}_{B} : proton spin orientation
hadron plane: $\vec{P}_{h 1}, \vec{P}_{h 2}$ scattering plane: \vec{P}_{C}, \vec{P}_{B}
ϕ_{R} : from scattering plane to hadron plane
ϕ_{S} : from polarization vector to scattering plane

$$
\frac{\sigma^{\uparrow}-\sigma^{\downarrow}}{\sigma^{\uparrow}+\sigma^{\downarrow}}\left(\phi_{S}-\phi_{R}\right)=A_{U T} \sin \left(\phi_{S}-\phi_{R}\right) \quad A_{U T} \propto h_{1} \otimes H_{1}^{\square}
$$

: Angle between polarisation vector and event plane

Transversity from di-Hadron SSA

Physics asymmetry $\quad A_{U T}=\frac{\sigma^{\uparrow}-\sigma^{\downarrow}}{\sigma^{\uparrow}+\sigma^{\downarrow}}=\frac{\sigma_{U T}}{\sigma_{U U}}$

PHENIX IFF results shows small asymmetries.

Phenix Sign convention opposite to STAR

NEW: STAR shows significant Signal!

Additional precision data from last years run + increased kinematic reach Explore π^{0} / π^{+-}channels

Enhanced Kinematic reach with TPC inner sector Upgrade to enable tracking up to $\eta=2$

Summary

- Compass collected large set up data with transversely polarized proton and deuteron data
- STAR showed first significant transversity signals in $p+p$
- Jet capabilities make more correlation measurements possible
- 10x more data taken in 2012
- Explore channels including neutral pions
- Future upgrades to PHENIX and STAR aim to extend program to $2<\eta<4$

Backup

