

Measuring Transversity at COMPASS and RHIC with Spin Dependent Fragmentation Functions Anselm Vossen CEEM

W INDIANA UNIVERSITY

Workshop on Fragmentation Functions and QCD 2012 (Fragmentation 2012)

9-11 November 2012

RIKEN Wako, Nishina Hall

Parton Distribution Functions

The three leading order, collinear PDFs

unpolarized PDF

quark with momentum $x=p_{quark}/p_{proton}$ in a nucleon

well known – unpolarized DIS

helicity PDF quark with spin parallel to the nucleon spin in a longitudinally polarized nucleon *known – polarized DIS*

transversity PDF quark with spin parallel to the nucleon spin in a transversely polarized nucleon

> chiral odd, poorly known Cannot be measured inclusively

Transversity is Chiral Odd

• Transversity base:

Difference in densities for \uparrow , \downarrow quarks in \uparrow nucleon

- Helicity base: chiral odd
- Needs chiral odd partner → Fragmentation Function
- Does not couple to gluons \Rightarrow different QCD evolution than $g_1(x)$
- Valence dominated > Tensor charge comparable to Lattice calculations
- We want to extract tensor charge $g_T = \int_{-1}^{1} h_1(x) dx$

Chiral odd FFs

Collins effect

H

Chiral odd FFs

Interference Fragmentation Function

Azimuthal Asymmetries for single Hadrons with transversal polarized target in SIDIS

$$\frac{d\sigma}{lx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} = \dots \qquad \begin{array}{c} \text{Collins}\\ \text{asymmetry} \\ + \left(\boldsymbol{S}_{\perp} \right) \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \\ + \varepsilon \sin(\phi_h + \phi_S) \left(F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \right) \\ + \sqrt{2\,\varepsilon(1 + \varepsilon)} \sin\phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\,\varepsilon(1 + \varepsilon)} \sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \right] \\ + \left(\left| \boldsymbol{S}_{\perp} \right| \lambda_{\theta} \left[\sqrt{1 - \varepsilon^2} \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\,\varepsilon(1 - \varepsilon)} \cos\phi_S F_{LT}^{\cos\phi_S} \right. \\ \left. + \sqrt{2\,\varepsilon(1 - \varepsilon)} \cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\}$$

Di-hadron FF measurements

- Polarized di-hadron xsection ~ sin(θ)h₁(x)H₁(z,M)sin(φ_R+φ_s-π)
- Compass does not fit sin(θ) separately

COMPASS Setup

COMPASS Kinematic Reach vs. Hermes and Jlab @ 12GeV

IWHSS'11

Compass Data taking

- Deuteron: 2002-2004
- Proton 2007 and 2010
- Publications:
 - Unidentified Dihadrons: Phys.Lett. B713 (2012) 10-16, 2002-2004 (deuteron), 2007 proton
 - Unidentifed Hadrons Collins:
 - Deuteron:NP B765 (2007) 31–70 (uident) PLB 673 (2009) 127–135,
 - Proton: PLB 692 (2010) 240–246
- Identified proton 2010 preliminary:

Results Collins

Pions Asymmetries similar to Kaons

Compass is consistent with Hermes

COMPASS 2010 proton data

Compass/Hermes Kaons

COMPASS 2010 proton data

Comparison with Theory Predictions

See talk by Elena Boglione

Very weak W dependence

y "binning": Some effect from Q² evolution?

z "binning"

Compass IFF

Di-hadron Asymmetries

Di-hadron Asymmetries

See Marco's talk

Comparison with Hermes

Single Hadron Multiplicities

See Marco's talk

Single Hadron Multiplicities

See Marco's talk

Pion Charge Ratios

Di-Hadron Multiplicities

The RHIC Polarized Collider

Versatility:

- Polarized p+p Sqrt(s) collisions at 62.4 GeV, 200 GeV and 500 GeV Recent Spin Runs:
- 2011 500 GeV, longitudinal at Phenix, transverse at STAR ~30 pb^-1 sampled
- 2012 200 GeV, Phenix and STAR, transverse ~20 pb^-1 sampled (at STAR: ~x10 statistics)

At p+p collider: increased kinematic reach in x_{Bi},z

• Kinematic reach of SIDIS data

[1-7] models, [8] Anselmino et al., arXiv:0807.0173

 Kinematic reach in p+p for single pions at 3<eta<4 (RHIC@200GeV)

Pic by A. Bacchetta,

PHENIX Detector at RHIC

Central Arms $|\eta| < 0.35$

- Identified charged hadrons
- π⁰, η
- Direct Photon
- J/Ψ
- Heavy Flavor

- Central Region (-1<eta<1)
 - Identified Pions, eta
 - Jets
- Endcap (1<eta<2)
 - PiO, eta, (some) jets
- FMS (2<eta<4)
 - PiO, eta

PID (Barrel) with dE/dx, in the future: ToF pi/K separation up to 1.9 GeV

Jets: Proven Capabilities in p+p

Jets well understood in STAR, experimentally and theoretically

Mid-Rapidity Collins Asymmetry Analysis at STAR

 STAR provides the full mid-rapidity jet reconstruction and charged pion identification

 Look for spin dependent azimuthal distributions of charged pions inside the jets! First proposed by F. Yuan in
Phys.Rev.Lett.100:032003.

Measure average weighted yield:

 $d\sigma \approx d\sigma^{UU} \left[1 + A_N \sin(\phi_h - \phi_s)\right]$

Moving on to Correlation Measurements: Pions in Jets

Terms in Numerator of TMD SSA for qq scattering	English Names	Modulate
$\Delta^{\!N} f_{a/A\uparrow} \bullet f_{b/B} \bullet D_{\pi/q}$	Sivers • PDF • FF	$\sin(arphi_{S_A})$
$h_1^a \bullet \Delta^N f_{b \uparrow / B} \bullet D_{\pi / q}$	Transversity•Boer-Mulder•FF	$\sin(arphi_{S_A})$
$h_{1T}^{\perp a} \bullet \Delta^{\!N} f_{b \uparrow / B} \bullet D_{\pi / q}$	Pretzelocity•Boer-Mulder•FF	$\sin(\varphi_{S_A})$
$h_1^a \bullet f_{b/B} \bullet \Delta D_{\pi/q\uparrow}$	Transversity•PDF •Collins	$\sin(\varphi_{S_A}-\varphi_{\pi})$
$\Delta f_{a/A\uparrow}^{N} \bullet \Delta^{N} f_{b\uparrow/B} \bullet \Delta D_{\pi/q\uparrow}$	Sivers•Boer-Mulder•Collins	$\sin\!\!\left(\varphi_{S_A}-\varphi_{\pi}\right)$
$h_{1T}^{\perp a} \bullet f_{b/B} \bullet \Delta D_{\pi/q\uparrow}$	Pretzelocity•PDF•Collins	$\sin\!\!\left(\varphi_{S_A}+\varphi_{\pi}\right)$
$\Delta f^N_{a/A\uparrow} \bullet \Delta^N f_{b\uparrow/B} \bullet \Delta D_{\pi/q\uparrow}$	Sivers•Boer-Mulders•Collins	$\sin(\varphi_{S_A} + \varphi_{\pi})$

Based on work by F.Yuan (Phys.Rev.Lett. 100:032003) and D'Alesio et al. (Phys.Rev. D83, 034021)

First Step: Mid-rapidity Collins analysis

Interference Fragmentation Function in p-p

$$\frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} (\phi_{S} - \phi_{R}) = A_{UT} \sin(\phi_{S} - \phi_{R}) \qquad A_{UT} \propto h_{1} \otimes H_{1}^{\Box}$$

$$\phi_{S}: \text{ Angle between polarisation vector and event plane}$$

Di-Hadron Correlations

p+p c.m.s. = lab frame \vec{P}_A, \vec{P}_B : momenta of protons $\vec{P}_{h1}, \vec{P}_{h2}$: momenta of hadrons $\vec{P}_C = \vec{P}_{h1} + \vec{P}_{h2}$ $\vec{R}_C = (\vec{P}_{h1} - \vec{P}_{h2})/2$ \vec{S}_B : proton spin orientation

hadron plane: $\vec{P}_{h1}, \vec{P}_{h2}$ scattering plane: \vec{P}_C, \vec{P}_B ϕ_R : from scattering plane to hadron plane ϕ_S : from polarization vector to scattering plane ϕ_S : from polarization vector ϕ_S is $h_1 \otimes H_1^{\Box}$ is from polarization vector ϕ_S is from polarization vector ϕ_S is from polarization vector ϕ_S is $h_1 \otimes H_1^{\Box}$ is from polarization vector ϕ_S is $h_1 \otimes H_1^{\Box}$ is from polarization vector ϕ_S is $h_1 \otimes H_1^{\Box}$ is from polarization vector ϕ_S is $h_1 \otimes H_1^{\Box}$ is from polarization vector ϕ_S is $h_1 \otimes H_1^{\Box}$ is from polarization vector ϕ_S is $h_1 \otimes H_1^{\Box}$ is from polarization vector ϕ_S is $h_1 \otimes H_1^{\Box}$ is from polarization vector ϕ_S is $h_1 \otimes H_1^{\Box}$ ϕ_S is $h_1 \otimes H_1^{\Box}$ ϕ

Transversity from di-Hadron SSA

Physics asymmetry
$$A_{UT} = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} = \frac{\sigma_{UT}}{\sigma_{UU}}$$

PHENIX IFF results shows small asymmetries.

Phenix Sign convention opposite to STAR

NEW: STAR shows significant Signal!

Enhanced Kinematic reach with TPC inner sector Upgrade to enable tracking up to η =2

Summary

- Compass collected large set up data with transversely polarized proton and deuteron data
- STAR showed first significant transversity signals in p+p
- Jet capabilities make more correlation measurements possible
- 10x more data taken in 2012
- Explore channels including neutral pions
- Future upgrades to PHENIX and STAR aim to extend program to 2<η<4

Backup