PYTHIA tuning for DCA decomposition

2012/06/07 RIKEN VTX software meeting Ryohji Akimoto

DCA decomposition

- Yields of charm and bottom are evaluated from DCA distribution.
 - DCA distribution decrease as DCA become larger, but slop is not simple exponential decrease since what we know is information of daughter particles, not mother particle.
 - evaluate DCA distribution with simulation to extract the yields.
- DCA distribution depends on
 - pT distribution of charm and bottom : put weight w.r.t quark pT
 - particle fraction of mother hadrons
- There are many heavy flavored hadrons which have e[±] as a daughter, but some of the hadrons can be combined if it is assumed that the fragmentation function is not different from that in p+p or e+e- collisions.
 - This assumption will be valid if charms or bottoms are not thermalized well.

e[±] sources (charmed hadrons)

hadron	branching ratio [%] cτ [μm]		fraction to D ⁰
D±	16.07	311.8	0.3998±0.0173
D ⁰	6.47	122.9	1
Ds	6.5	149.9	0.1412±0.0088
Λ_{c}	2.1	59.9	0.1914±0.0169
Ξc [±]	2.3	132	-
Ξc ⁰	seen	33.6	-
Ω_{c}^{\pm}	seen	21	-

- Fractions are from arXiv:1112.3757v1
 - use data measured at HERA (H1 and ZEUS) and at e+estorage rings (LEP, ARGUS, and CLEO)

e[±] sources (bottomed hadrons)

hadron	branching ratio [%]	cτ [µm]	fraction to B ⁰
B±	10.8	491.1	1.054±0.075
B ⁰	10.1	457.2	1
Bs	7.9	441	0.267±0.026
$\Lambda_{ m b}$	10.7	417	0.577±0.290

- f(bbar→B⁺) = 40.99±1.38 % (DELPHI)
- $f(bbar \rightarrow B_s^0) \times B(B_s^0 \rightarrow D_s^-X) \times B(D_s^- \rightarrow \varphi \pi^-) = (5.9 \pm 2.2) \times 10^{-3} \text{ (OPAL)}$
- $f_s/(f_u+f_d) \times B(D_s^+ \rightarrow \phi \pi) = (5.76 \pm 0.48) \times 10^{-3} (CDF)$
- $f_u/f_d = 1.054 \pm 0.075$ (CDF)
 - $B(B_s^0 \rightarrow D_s^-X) = 93\pm25$ % (PDG 2011)
 - $B(D_s \rightarrow \phi \pi) = 4.5 \pm 0.4$ % (PDG 2011)
- $f_s/f_d = 0.267 \pm 0.021$ (LHCb)
- $f_{\Lambda b}/(f_u+f_d) = (0.404\pm0.110) \times [1-(0.031\pm0.005) \times pT(GeV/c)]$ (LHCb)
- $f_{\Lambda b}/(f_u+f_d) = 0.281\pm0.141$ (CDF)
 - Since $f_{\Lambda b}/(f_u+f_d)$ depends on pT, $f_{\Lambda b}/(f_u+f_d)$ is tuned to the result of CDF.

PYTHIA setup

- version : 6.421
- I used some parameters used in PPG094 except for quark masses.
 - They are tuned for CDF.
- Particle decay in PYTHIA
 - only hadrons with $c\tau < 50 \mu m$ decay.

Table 5.15: PYTHIA tuning parameters

parameter name	value
charm mass	1.25 GeV
bottom mass	4.3 GeV
k_{T}	1.5 GeV/c
PDF	CTEQ5L
PARJ(13)	0.55
(charm production)	
PARJ(2)	0.36
(charm production)	
PARJ(2)	0.44
(bottom production)	
MSTP(82)	4
PARP(81)	1.9
PARP(82)	2.0
PARP(83)	0.5
PARP(84)	0.4
PARP(85)	0.9
PARP(86)	0.95
PARP(89)	1800
PARP(90)	0.25
PARP(67)	4.0

Parameter tuning (charm)

- Tuning for charmed hadrons are finished.
- Particle fraction after tuning : fit pT distribution by constant at 1-5 GeV/c
 - Some distributions have pT dependence, but it is ignored.

Hadron	Data	After tuning	tuned value	PYTHIA default
D±/D ⁰	0.3998±0.0173	0.402±0.0030	PARJ(13)=0.63	PARJ(13)=0.75
Ds/D ⁰	0.1412±0.0088	0.139±0.0016	PARJ(2)=0.20	PARJ(2)=0.30
$\Lambda_{\rm c}/{\rm D}^{\rm 0}$	0.1914±0.0169	0.198±0.0019	PARJ(1)=0.15	PARJ(1)=0.10

Parameter tuning (bottom)

- Tuning for charmed hadrons are finished.
- Particle fraction after tuning : fit pT distribution by constant at 1-5 GeV/c

Hadron	Data	After tuning	tuned value	PYTHIA default
B±/B ⁰	1.054±0.075	0.995±0.021	PARJ(13)=0.75	PARJ(13)=0.75
Bs/B ⁰	0.267±0.026	0.261±0.0085	PARJ(2)=0.29	PARJ(2)=0.30
$\Lambda_{\rm b}/{\rm B}^0$	0.577±0.290	0.552±0.015	PARJ(1)=0.34	PARJ(1)=0.10

Backup

pT distributions (charm)

pT distributions (bottom)

