

RIBFでの核破砕データ測定:生成断面積

福田直樹 理研仁科センター

◆ BigRIPSでのRIビーム生成
 ◆ RIビーム生成率・生成断面積(²³⁸U, ¹²⁴Xe, ⁴⁸Ca ビーム)

BigRIPS における RI ビーム生成

■ 2007年のコミッショニング以降、多種のRIビームを生成・供給
 ■ RIビーム生成に用いる反応:

- 入射核破砕反応
- ²³⁸U の飛行核分裂

<u>BigRIPS の主な特徴</u>

▶ 超電導磁石

14台の超電導三連四重極磁石 大口径: φ240 mm, ポール端磁場: 2.4-2.5 T

▶ 大アクセプタンス

RIBFエネルギー領域での飛行核分裂片の運動学的広がりに匹敵

Two-stage separation scheme

1st stage: 生成と分離 2nd stage: 粒子識別 2段階分離

Unstable nuclei and nuclear data 03 August 2012 Parameters: $\Delta \theta = \pm 40 \text{ mr}$ $\Delta \phi = \pm 50 \text{ mr}$ $\Delta p/p = \pm 3 \%$ $B\rho = 9 \text{ Tm}$ L = 78.2 m

BigRIPS の粒子識別性能

High enough to well identify charge states thanks to the track reconstruction!

BigRIPS での生成断面積測定

新同位元素探索・生成断面積測定 (²³⁸U, ¹²⁴Xe)
 ユーザーへのビーム供給前に生成断面積測定を実施

⇒ 生成断面積データを蓄積

- ➢ ²³⁸U 345 MeV/u
- ➢ ¹²⁴Xe 345 MeV/u
- ➢ ⁴⁸Ca 345 MeV/u

Unstable nuclei and nuclear data 03 August 2012

50

N

Mn'Cr

20 -----C

Ti

New isotopes

Stable Known Unknown(KTUY)

RIKEN(2007)

r-process path

²³⁸Uビーム飛行核分裂片の生成断面積測定

Target		Be 7		mm F		Pb	9 1.5 mm	Be 5.1 mm		Be 2.9 mm	Pb 0.9 + Al 0.3	Pb 0.95 mm + Al 0.3 mm	
${m B} ho$ (Tm)		7.2	7.4	4	7.6		7.0	7.	.902	7.990	7.70	06	
∆p/p		±1%	±19	%	±2%	:	±0.1%	±	:3%	±3%	±30	%	
Degrader		None	Nor	ne	None		None	F1: r	: 1.29 mm	F1: 2.18 mm	F1: 2.5 F5: 1.8	6 mm 8 mm	
F2 slit (mm)	±30	±3	0	±30		±50	±	13.5	±15.5	±1	5	
Target	E	Be 4.00 mm		Be	Be 4.93 mm* W 0.7 n		Im* Be 4.93 mm		W 0.7 mm				
${m B} ho$ (Tm)		7.306			6.950		6.950)	6.950	7.300	6.950	7.300	2
∆p/p		-2%/+3%		-2%/+3%		-2%/+	3%	±0.1%	±0.1%	±0.1%	±0.1%	6	
Degrader	F	F1: 1.27 mm F5: 1.40 mm		F1: 1.27 mm F5: 1.40 mm		F1: 1.27 F5: 1.40	mm mm	None	None	None	None	5	
F2 slit (mm)		-3/+15		-4/+15		-4/+	15	±120	±120	±120	±120)	
F7 slit (mm)	-5/+25		±15		±15		±120	±120	±120	±120)		

生成断面積: ²³⁸U + Be

Transmission は LISE++ を用いて見積もった。 2007A(Be 7 mm, 7.2 Tm) 2008A(Be 5.1 mm, 7.902 Tm) 238 U 345 MeV/u + Be 2008B(Be 2.9 mm, 7.990 Tm) 2007B(Be 7 mm, 7.4 Tm) -2007C(Be 7 mm, 7.6 Tm) LISE++ simulation Even-Z 10^{2} 50 81 10-2 10^{-4} Production cross section (mb) 10-6 10-8 10-10 10^{2} Odd-Z 10-2 n An An 10^{-4} ċ 10-6 10-8 140 10-10 100 60 80 120 20 40 Mass number

生成断面積: ²³⁸U + Pb

Transmission は LISE++ を用いて見積もった。

Production of higher-Z neutron-rich isotopes using in-flight fission of ²³⁸U at 345 MeV/u

Oct. 2011

Z ~ 60 - 65

BigRIPS setting : Tuned for ¹⁶⁸Gd (63+, 64+, 64+, 64+) at (D1, D2, D3-D4, D5-D6)

- Target: Be 4.926 mm
- Βρ01: 6.950 Tm, Βρ12: 6.496 Tm
- F1 deg.: Al 1.27 mm, F5 deg.: Al 1.40 mm
- F1 slit: -64.2/+42.8 mm, F2 slit: -4/+15 mm
- F7 slit: -15/+15 mm

Comparison of production rates

Isotope	Exp rate (pps/pnA)	LISE++ rate (pps/pnA)
Tb-167	3.1.E+00	2.6.E-01
Tb-168	1. <u>4.</u> F +00	1.1.E-01
Tb-169	4.H -01	2.5.E-02
Gd-166	2.1.E+00	2.5.E-01
Gd-167	5.3.E-01	4.2.E-02
Gd-168	1.3.E-01	6.5.E-03
Eu-165	7.6.E–01	7.4.E-02
Eu-166	1.3.E-01	6.2.E-03
Sm-164	1.4.E-01	9.9.E-03

Exp./LISE++ ~10 !

Abrasion fission model

Experimetal data:

• Particle identification is made with Z vs A/Q plot.

LISE++ simulation:

- Version 9.2.126
- Abrasion-Fission model is used.
- Contribution from the projectile fragmentation is not included.
- · Transmission is obtained with "distribution-mode".

¹⁰⁰Sn 生成 ¹²⁴Xe 345 MeV/u ビーム 入射核破砕反応

Dec. 2011

limi	inary		
100Sn Pro-	Exp.	LISE++ (EPAX2.15)	Exp./
Yield (pps/pnA)	(1.1 +/-0.2)E-4	9.4E-4	Ca):1
Purity	(3.9 +/-0.8)E-6	3.1E-6	~1

The purity can be improved by a factor of ~4 by adjustment of slit settings or charge state separation.

Production rates (pps/pnA) of other Sn isotopes

100Sn の生成率

	Nuclei	Experiment	LISE++	Exp./Cal.(EPAX2.15)
	100 Sn	$(1.1 \pm 0.2) \times 10^{-4}$	9.4×10^{-4}	~0.12
nin	$0^{101}\mathrm{Sn}$	$(7.0\pm0.8)\times10^{-3}$	5.0×10^{-2}	~0.14
prelim	102 Sn	$(4.6 \pm 1.2) \times 10^{-1}$	2.2×10^0	~0.21
r				

Production of neutron-rich RI beams using a ⁴⁸Ca beam at 345 MeV/u

Mass number

Measured production cross sections and comparison with EPAX 2.15 (⁴⁸Ca 345 MeV/u + Be)

Be target thickness

¹⁹ C	20 mm, 30 mm
²⁹ Ne	10 mm, 15 mm
³² Mg	10 mm, 20 mm
⁴⁰ Si	5 mm, 15 mm
⁴² Si	15 mm, 20 mm

Fairly good agreement has been obtained.

まとめ

生成断面積データ: RIBF Users' Information <u>http://www.nishina.riken.jp/RIBF/BigRIPS/intensity.html</u> * 現時点では 2010年までに実施した 48Ca, 238U ビームのデータを掲載

共同研究者:

吉田光一, 日下健祐, 竹田浩之, 亀田大輔, 鈴木宏, 佐藤広海, 清水陽平, 大竹政雄, 柳澤善行, 田中鐘信, 稲辺尚人, 久保敏幸 *理研仁科センター*

✓ BigRIPS で実施したRIビーム生成・生成断面積測定

- 2007.03 BigRIPS コミッショニング (⁸⁶Kr, ²³⁸U)
 - 2007.05 新同位元素探索 (²³⁸U) ^{125,126}Pd
- 2008.11 ZeroDegree コミッショニング (²³⁸U)
 新同位元素探索 (²³⁸U) 45 new isotopes
- 2008.12 DayOne 実験 (⁴⁸Ca)
- 2009.03 SHARAQ コミッショニング (¹⁴N)
- 2009.12 DayTwo 実験 (²³⁸U, ⁴⁸Ca)
- 2010.05 MUST2 実験 (⁴⁸Ca)
- 2010.11-12 ⁴⁸Ca campaign実験
- 2011.10 新同位元素探索 (²³⁸U)
- 2011.12 ¹⁰⁰Sn生成•新同位元素探索(¹²⁴Xe)
- 2012.03 SAMURAI コミッショニング
- 2012.04 EURICA コミッショニング
- 2012.05-06 ⁴⁸Ca campaign実験
- 2012.06 ¹²⁴Xe campaign実験
- 2012.07 ⁷⁰Zn ビーム実験