International Symposium "Perspective in isospin Physics" ~ Role of non-central interactions in structure and dynamics of unstable nuclei ~ August 27,28, RIKEN Nishina Center

Study of spin-dipole excitations via (p,n) reaction with spin observables

Masanori Dozono (RIKEN Nishina Center) Tomotsugu Wakasa (Kyushu University)

Contents

- Motivation
 - SD strengths provides information on tensor correlations
- Methods
 - Separate SD strengths into each J^{π} (0-, 1-, 2-)
- Experiments
 - (p,n) polarization transfer measurements at RCNP
- Results and Discussions
- SD strength distribution in ²⁰⁸Bi
 T. Wakasa, M. Okamoto, M. Dozono et al., PRC 85, 064606 (2012)
- SD strength distribution in ¹²N (Very preliminary results)
- Summary

Tensor correlations in nuclei

- Tensor force (manifestation of meson exchange)
 - NN Interaction is originally due to meson exchange
 ⇒ Plays significant roles in many nuclear properties

Structure of nuclei

Ground state properties

total binding energy, radii, ...

e.g.) Evolution of single-particle energies of exotic nuclei

T.Otsuka et al., PRL 95, 232502(2005).

Dynamics of nuclei

Excited state properties

• excitation energy, strength, ...

Spin-Dipole (SD) mode is a good approach to tensor effects in nuclei

Spin-Dipole (SD) excitations

· (Isovector) SD operator

 $\hat{O}_{\pm}^{\lambda,\mu} = \sum_{i} \tau_{\pm}^{i} r_{i} [Y_{1}(\hat{r}_{i}) \times \sigma_{i}]_{\mu}^{\lambda}$ $\cdot \Delta L=1, \Delta S=1, \Delta T=1$

• $\Delta J^{\pi} = 0^{-}, 1^{-}, 2^{-}$

Tensor effects on SD strengths

C. L. Bai, H. Sagawa et al., PRL 105, 072501 (2010); PRC 83, 054316 (2011)

• Results of self-consistent HF+RPA calc. including skyrme int.

- J^{π} Tensor effects
- 0- Hardening (repulsive)
- 1- Softening (attractive)
- 2- Hardening (repulsive)

 J^{π} identification of SD states are important to pin down tensor force effects

Complete polarization transfer measurements for (p,n) reaction at RCNP

- Purpose
 - Investigate fine structure of SD excitations (J^π =0⁻, 1⁻, 2⁻)
 ⇒ Tensor correlations in nuclei
 However, experimental identification of J^π is very difficult
- Experiment
 - Complete polarization transfer D_{ij} measurements for the (p,n) reaction
 - Polarization transfer observables D_{ij} are sensitive to J^π
 - \Rightarrow Separation/Identification of each SD J^{π} is possible
- Target
 - ²⁰⁸Pb and ¹²C
- Complete polarization transfer measurement is possible by using
 - High intensity polarized protons at RCNP
 - High efficiency neutron polarimeter NPOL3

Polarization transfer observables Dij

in lab. frame \rightarrow c.m. frame

- Separation of SDR into Each J^{π}
- ~ Multipole decomposition using ID; (Dij) ~
- "Normal" MDA : Can't separate into each J^{π} with same L \Rightarrow "Extended" MDA using polarized cross sections ID_i

Multipole decomposition for spin-longitudinal(π) and transverse(ρ) c.s. \Rightarrow Can separate/specify each SD J^{π}

Experiment

Research Center for Nuclear Physics Osaka University

- Control with 2-sets of solenoids
- Measure with 2-sets of BLP by p-p
- neutron polarization with NSR

Complete measurement of

Neutron Detector/Polarimeter NPOL3

T. Wakasa et al., NIM A 547, 569 (2005).

- Setup
 - Analyzer: 20sets of 1-dim. position-sensitive counters (hodoscopes)
 - Cather: 2-dimensional position-sensitive counter
- Neutron detector mode
 - High energy resolution~500 keV

- Neutron polarimeter mode
 - Neutron polarization is determined from asymmetry of n+p events
 - High performance FOM=1.0x10⁻⁴

Accuracy of Polarization Measurement

T. Wakasa et al., PRC 77, 054611 (2008).

- Polarization transfer DLL for ²H(p,n)²He at Odeg
 - Benchmark reaction ⇒ accuracy of polarization data
 - Reliable theoretical calculations
 - Reliable experimental data
 - Theoretical calculations (—)
 - Including deuteron D-state
 - Including p-p FSI (²He)
 - LAMPF data ()
 - Consistent with calculations
 - Calculations are reliable
 - RCNP data (●)
 - Consistent with LAMPF data and calculations

D.V. Bugg and C. Wilkin, NPA 467, 575 (1987). M.W. McNaughton et al., PRC 45, 2564 (1992).

Our polarization data are reliable and accurate with 3%

Summary of Experimental Conditions

- Beam
 - 296MeV polarized proton
 - Spin-isospin excitations are dominant at small-q
 ⇒ GDR etc. is negligibly small
 - Distortion effects are smallest
 - \Rightarrow Analysis based on DWIA is reliable
 - Current : 500nA, Polarization : 0.59-0.70
- Targets
 - ²⁰⁸Pb: Enriched (>>99% ²⁰⁸Pb) 634 mg/cm²
 - ¹²C: natural (98.9% ¹²C) 140 mg/cm²
- Obtained spectra
 - ²⁰⁸Pb(p,n)²⁰⁸Bi
 - Polarized c.s. (ID_i) at θ =0, 2, 4, 5.5, 7.0 deg
 - ¹²C(p,n)¹²N
 - Polarized c.s. (IDi) at $\theta = 0, 2, 4, 6, 9, 12, 15 \text{ deg}$
 - \Rightarrow MDA has been performed to separate SD J^{π}

Results of ²⁰⁸Pb(p,n)²⁰⁸Bi Spin-Dipole Resonances in ²⁰⁸Bi

T. Wakasa, M. Okamoto, M. Dozono et al., PRC 85, 064606 (2012)

Polarized cross sections for ²⁰⁸Pb(p,n)²⁰⁸Bi Comparison with DWIA+RPA

- DWIA+RPA calc. (up to $J^{\pi}=9^+$)
 - Code: crdw by Ichimura group
 - RPA parameters (LM param. g')
 - Determined by GT strength of ⁹⁰Zr
- GT resonance is dominant at 0°
 - Reasonably reproduced by calc.
- SD resonance is dominant at ~4°
 - Also reasonably reproduced by calc.
 - Some discrepancies can be found
 - Predict 0⁻ bump in ID_L at ω ~27MeV \Leftrightarrow Exp. data do not show clear bump
 - ω-dependence is slightly different at 4°

 J^{π} structure of SDR is different from that predicted by the present calc. \Rightarrow Deduce each J^{π} distribution "experimentally" by MDA in ID_L and ID_T

Results of MDA

- MDA in ID_L and ID_T
 - Reasonably reproduce both ID_i data
 - Proper assignment for GTR

• SD 0-

• Significant strength at ω ~32 MeV in IDL

• SD 1-

• Two bumps at ω ~19 and 25 MeV in IDT at 4°

• SD 2-

• Broad bump at ω ~24 MeV in ID_L and ID_T at 4°

SD Strength Distributions

- Deduce B(SD) from $\sigma(4^{\circ})$
 - Proportionality relation
 - $\sigma(4^{\circ}) \simeq \hat{\sigma}_{\mathrm{SD}} B(\mathrm{SD})$
 - $\hat{\sigma}_{
 m SD}$ is evaluated in DWIA
 - Uncertainty ~ 15%
- Experimental B(SD) from MDA
 - Uncertainties
 - ---- : Statistical uncertainty
 - MDA uncertainty
 - ~15% systematic uncertainty from σ_{SD}
- J^{π} dependence is clearly observed
 - Exp. data
- : E_x(2⁻) ~ E_x(1⁻) < E_x(0⁻) ↓ Inconsistent
- Simple prediction : E_x(2⁻) < E_x(1⁻) < E_x(0⁻)
 (Unperturbed 1p-1h excitation energy)

We compare with the self-consistent HF+RPA calculations including tensor

SD Strength Distributions

- C. L. Bai, H. Sagawa et al., PRC 83, 054316 (2011)
 - HF+RPA calc. (w/ and w/o tensor)
 - Skyrme-type tensor int.
 - Triplet-Even T : Constrained by GT and SD 1⁻
 - Triplet-Odd U : Not well constrained

- Sequence of SDR peak
 - w/o tensor : $E_x(2^-) < E_x(1^-) < E_x(0^-)$
 - w/ tensor : $E_x(2^-) \sim E_x(1^-) < E_x(0^-)$
 - ⇒ Reasonably reproduce exp. data

SD 0-

- Sensitive to Triplet-Odd U
- Prefers to SGII+Te3 (U is positive)

Present data provides valuable information to determine tensor

Very Preliminary Results of ¹²C(p,n)¹²N Spin-Dipole Resonances in ¹²N

Results of MDA

- MDA in ID_L and ID_T
 - Reasonably reproduce both ID_i
- SDR at 4 MeV
 - Mainly 2-
 - Consistent with previous charge-exchange studies
- SDR at 7 MeV
 - Lower-energy side : 2-
 - Higher-energy side : 0⁻ and 1⁻
- Continuum beyond 10 MeV
 - O- and 2- are dominant in ID_{L}
 - 1- and 2- are dominant in ID_T

SD Strength Distributions

- Deduce B(SD) from $\sigma(4^{\circ})$
 - Proportionality relation
 - $\sigma(4^\circ) \simeq \hat{\sigma}_{\rm SD} B({
 m SD})$
 - + $\hat{\sigma}_{\mathrm{SD}}$ is evaluated in DWIA
 - Uncertainty ~ 15%
- Shell-model calc. (—)

T. Suzuki et al., PRC 74, 034307 (2006).

- SFO interaction
 - Modified tensor components
- Reasonably reproduce

all J^{π} distributions

For quantitative understanding, more detailed analyses are needed (in progress)

Summary

- Dynamics originating from tensor force in nuclei
 - Spin-Dipole Resonance is a good approach
- The first data for SDR with NPOL3
 - High statistics data for MDA including polarization observables
- SDR have been separated into each J^{π}
 - ²⁰⁸Bi
 - J^{π} -dependence is clearly evident in the SD strength distributions
 - $E_x(2^-) \sim E_x(1^-) < E_x(0^-)$
 - ⇒ Reasonably reproduced by HF+RPA calculations including tensor
 - ¹²N (Preliminary results)
 - SDR at 4 MeV : mainly 2-
 - SDR at 7 MeV
 - Lower-energy side (~6MeV) : 2⁻
 - Higher-energy side (~9MeV): 0- and 1-

Present data and further investigations of SD excitations will provide valuable insight into tensor correlation effects in nuclei

Collaborators

RCNP-E317 and -E351 collaborators

- Kyushu University
 - T. Wakasa, M. Okamoto, T. Noro, K. Sagara, Y. Yamada, S. Kuroita, T. Imamura, H. Shimoda, Y. Sueta, T. Yabe
- RCNP, Osaka University
 - K. Hatanaka, H. Okamura, A. Tamii
- RIKEN Nishina center
 - H. Matsubara
- CNS, University of Tokyo
 - K. Yako
- CYRIC, Tohoku University
 - Y. Sakemi
- Miyazaki University
 - Y. Maeda, T. Saito, H. Miyasako
- Theoretical supports
 - RIKEN Nishina Center
 - M. Ichimura, H. Sagawa