

Recent results from single-particle spectroscopy using the (d,p) transfer reaction

D. Beaumel, IPN Orsay / RIKEN Nishina center

- Shell evolution at N ~ 40 through ⁶⁸Ni(d,p)
- Properties of the Spin-orbit interaction from ³⁴Si(d,p) study

From M. Moukaddam

Evolution of Harmonic Oscillator Shell Closures

 reduction of the gap when Z decreases
 quasi-degeneracy of a j,j-2 sequence above the fermi surface

Similar situation for N=40

(and also at N=8)

The Nickel isotopes

For ⁶⁸Ni :

Doubly magic character of E(2+)/B(E2)

> No sign of shell closure in neutron separation energy

Southwest of Nickel's

Large valence space SM calculations

S.M. Lenzi, F.Nowacki, A. Poves, and K. Sieja, PRC 82 (2010) LPNS interaction

fp shell + $1g_{9/2}$ + $2d_{5/2}$

Nucleus	$vg_{9/2}$	vd _{5/2}	0p0h	2p2h	4p4h	6p6h	E _{corr}
⁶⁸ Ni	0.98	0.10	55.5	35.5	8.5	0.5	-9.03
⁶⁶ Fe	3.17	0.46	1	19	72	8	-23.96
⁶⁴ Cr	3.41	0.76	0	9	73	18	-24.83
⁶² Ti	3.17	1.09	1	14	63	22	-19.62
⁶⁰ Ca	2.55	1.52	1	18	59	22	-12.09

Drastic change with only 2 protons removed
 Strong gain in correlation energy

similar to ³⁴Si / ³²Mg New island of inversion

2d_{5/2} plays a major role in the deformation mechanism at N = 40 *Caurier et al. EPJ, A, 15, 2002, 145*

Our approach : the ⁶⁸Ni(d,p) reaction

- Previous experiments:
- Isomer-state decay (Grzywacz et al., PRL 81 (1998))
- β-decay
 (Mueller et al., PRL83 (1999))
 2d_{5/2} (5/2+) was not observed

Collaboration

<u>M. Moukaddam, G. Duchêne</u>, D. Curien, F. Didierjean, Ch. Finck, A. Goasduff, F. Haas, F. Nowacki, J. Piot, K. Sieja IPHC - Strasbourg, France

<u>D. Beaumel</u>, N. de Séréville, S. Franchoo, S. Giron, J. Guillot, F. Hammache, Y. Matea, A. Matta, L. Perrot, E. Pllumbi, J. A. Scarpaci, I. Stefan IPN - Orsay, France

J. Burgunder, L. Caceres, E. Clement, B. Fernandez, S. Grevy, J. Pancin, R. Raabe, O. Sorlin, C. Stoedel, J.C. Thomas GANIL - Caen, France

F. Flavigny, A. Gillibert, V. Lapoux, L. Nalpas, A. Obertelli SPhN - Saclay, France

M. N. Harakeh GSI - Darmstadt, Germany

J. Gibelin LPC - Caen, France

K. Kemper Florida State University, USA

Experimental setup

Kinematical plots and E* spectrum

Excitation energy spectrum

2 hound states	
• 5 Douriu States	
• 2 resonances above S	
 Background reactions 	
(2 different ways)	

Pic #	Energy [MeV]	FWHM [MeV]
G.S	0.00	1.04
1	2.47	<u>1.43</u>
2	4.19	1.27
3	5.88	1.39
4	6.89	1.39

Evidence for a doublet state at E*~2.5MeV

Differential cross-sections

ZR code DWUCK L = 0,1,2,4

- Weak dependence on the exit channel pot.
- Significant dependence on the entrance pot.

Adiabatic channel (ADWA) provides better agreement

Differential cross-sections: 1st excited peak

Comparison with Shell model calculations

Comparison with Shell model calculations

Conclusions

- > $^{68}Ni(d,p)$ @ 25 MeV suitable for study of (L \geq 2) shell structure of ^{69}Ni
- Spin and parity assignement for the G.S. (9/2+) and for the doublet at 2.47 MeV with sizeable spectroscopic factors

Energy [MeV]	L	Jπ	SF
0.00	4	9/2+	0.61±0.15
2.05	2	5/2+	0.32±0.10
2.74	2	5/2+	0.44±0.13

- Good agreement with Shell Model calculations Validation of the hypothesis postulated by the Strasbourg group on the small energy gap between 1g_{9/2} and 2d_{5/2} (Caurier et al., EPJA 15, 145 (2002))
- identification of a neutron state at 4.2 MeV and two resonances at ~5.9 and ~6.9 MeV
- <u>Outlook</u>: Data analysis of γ -rays (EXOGAM) for more accurate determination of excitation energies

How to probe the properties of the spin-orbit interaction

Density and Isospin dependence of

SO interaction not firmly established

ρ(r) V_{ℓs}(r) normal mean field

..... central depletion

Probe of the SO density dependence

Optimum experimental candidate : ³⁴Si

From G.Burgunder

How to probe the properties of the spin-orbit interaction

Error From

From G.Burgunder

Collaboration

<u>G. Burgunder, O. Sorlin</u>, L. Caceres, E. Clement, G. De France, B. Fernandez, S. Grevy, R. Raabe, C. Stoedel, J.C. Thomas (GANIL-Caen)

S. Giron, F. Hammache, N. de Séréville, D. Beaumel, S. Franchoo, J. Guillot, F. Maréchal, A. Matta, Y. Matea, L. Perrot, J. A. Scarpaci, I. Stefan (IPN-Orsay)

> F. Flavigny, A. Gillibert, V. Lapoux, L. Nalpas, A. Obertelli (SPhN Saclay)

G. Duchene, M. Moukaddam (IRES-Strasbourg)

J. Gibelin (LPC-Caen)

Experimental setup

From G.Burgunder

Results for ³⁴Si(d,p)³⁵Si

Comparison ³⁵Si vs ³⁷S

Experimental single-particle strength distribution (preliminary)

> Need include contribution of all fragments

➤ Use all available data for ³⁶S and SM for ³⁴Si

A change by 25% in the SO splitting is derived between ³⁷S and ³⁵Si

- ➢ Not observed between ⁴¹Ca and ³⁷S
- Being compared with model predictions
 RMF models seem predict bigger change (~70%)