Gamma-ray spectroscopy at RIBF

TAKEUCHI Satoshi RIKEN Nishina Center

- Introduction
- Experimental technique
- Examples
 - ³²Ne
 - Si isotopes
- Summary

Gamma-ray spectroscopy

- stopped/slow beam \rightarrow high spin, isomer, B(E2), ...
 - GRAPE(CNS), EURICA @ RIBF
 - SeGA @ MSU

. . .

- EXOGAM @ GANIL
 - β - γ , deep inelastic, fusion reaction, Coulomb excitation, ...
- **fast beam** (v/c ~ 0.3 to 0.6) $\rightarrow Ex(2^+, 4^+, ...)$, cross sections, B(E2), ...
 - DALI2 @ RIBF
 - CEASER, SeGA @ MSU
 - ...
 - inelastic scattering, removal reaction, Coulomb excitation, ...

"In-beam γ-ray spectroscopy with fast RI beams @RIBF"

In-beam γ-ray spectroscopy @ RIBF

In-beam γ-ray spectroscopy @ RIBF

- Extract physics from observation of γ rays from excited states in unstable nuclei.
 - Collectivity:
 - Shell gap:
 - Shape:
 - Level structure:

B(E2) Ex / B(E2) R(4⁺/2⁺) (energy ratio) Ex / J^π

What we do in experiments:

identifications of beam and scattered particles,

measurements of γ ray energy,

accumulation of γ ray yields,

measurements of angular distributions of γ rays or particles.

γ-ray spectroscopy setup @ BigRIPS/ZDS

direct reaction in inverse kinematics

Example of Doppler shift effect

Milestone of in-beam γ-ray spectroscopy at RIBF

- •2008 DayOne ³²Ne, ^{31,33}Na H. Scheit, P. Doornenbal PRL 103:032501, 2009./PRC 81:041305, 2010. •2009 Test with U (0.3-0.6 pnA) ~¹³²Sn H. Wang, N. Aoi ⁴⁸Ca campaign •2010 38,40,42**Si** S. Takeuchi, M.Matsushita submitted to PRL A>36Mg P. Doornenbal, H. Scheit in preparation in preparation ~Al, P D. Steppenbeck ^{33}Mg D. Bazin ⁴⁰Mg test P. Fallon •2011 U beam campaign
 - ⁷⁸Ni
 K. Yoneda, D. Steppenbeck
 ~¹³²Sn
 H. Wang, N. Aoi
- •2012 ¹²⁴Xe and ⁷⁰Zn beam campaign ^{10x}Sn A. Obertelli, P. Doornenbal ⁵⁴Ca D. Steppenbeck, S. Takeuchi

Examples of in-beam γ-ray spectroscopy at RIBF

•2008 DayOne

³²Ne, ^{31,33}Na H. Scheit, P. Doornenbal

PRL 103:032501, 2009./PRC 81:041305, 2010.

- •2009 Test with U (0.3-0.6 pnA) ~¹³²Sn H. Wang, N. Aoi
- •2010 ⁴⁸Ca campaign

^{38,40,42} Si	S. Takeuchi, M.Matsushi	ta submitted to PRL
A>36Mg	P. Doornenbal, H. Scheit	in preparation
~Al, P	D. Steppenbeck	in preparation
^{33}Mg	D. Bazin	* *
⁴⁰ Mg test	P. Fallon	

- •2011 U beam campaign ⁷⁸Ni K. Yoneda, D. Steppenbeck ~¹³²Sn H. Wang, N. Aoi
- •2012 ¹²⁴Xe and ⁷⁰Zn beam campaign ^{10x}Sn A. Obertelli, P. Doornenbal ⁵⁴Ca D. Steppenbeck, S. Takeuchi

2⁺ state in ³²Ne -DayONE experiment (2008)-

2⁺ state in ³²Ne -DayONE experiment (2008)-

- very good agreement with Utsuno *et al.*, PRC 60, 054315 (1999)
- very good agreement with Intruder calculation of Caurier *et al.*, NPA 693, 374 (2001)
- ³²Ne belongs to the "Island of Inversion"

P. Doornenbal, H. Scheit *et al.* Phys. Rev. Lett. 103, 032501 (2009) arXiv:0906.3775

⁴²Si: N=28 and Z=14 \rightarrow doubly magic?

N = 20										N = 28							
Z = 20	³⁹ Ca	⁴⁰ Ca	⁴¹ Ca	⁴² Ca	⁴³ Ca	⁴⁴ Ca	⁴⁵Ca	⁴⁶ Ca	⁴⁷ Ca	⁴⁸ Ca	⁴⁹ Ca	⁵⁰ Ca	⁵¹ Ca	⁵² Ca	⁵³ Ca		
	³⁸ K	³⁹ K	⁴⁰ K	⁴¹ K	⁴² K	⁴³ K	⁴⁴ K	⁴⁵ K	⁴⁶ K	47 K	⁴⁸ K	⁴⁹ K	⁵⁰ K	⁵¹ K	⁵² K		
	³⁷ Ar	³⁸ Ar	³⁹ Ar	⁴⁰ Ar	⁴¹ Ar	⁴² Ar	⁴³ Ar	⁴⁴ Ar	⁴⁵ Ar	⁴⁶ Ar	N=28 shell closure ^{\r}						
	³⁶ C1	³⁷ Cl	³⁸ Cl	³⁹ Cl	⁴⁰ C1	⁴¹ Cl	⁴² Cl	⁴³ Cl	⁴⁴ Cl	⁴⁵ Cl	⁴⁶ Cl	47Cl	⁴⁸ Cl	⁴⁹ Cl	⁵⁰ C1		
	³⁵ S	³⁶ S	³⁷ S	³⁸ S	³⁹ S	40 S	41 S	42 S	43 S	⁴⁴ S	⁴⁵ S	⁴⁶ S		⁴⁸ S	⁴⁹ S		
Z=14 subshell closure					³⁸ P	³⁹ P	⁴⁰ P	⁴¹ P	⁴² P	⁴³ P	⁴⁴ P	⁴⁵ P	⁴⁶ P				
Z=14	³³ Si	³⁴ Si	³⁵ Si	³⁶ Si	³⁷ Si	³⁸ Si	³⁹ Si	⁴⁰ Si	⁴¹ Si	⁴² Si	⁴³ Si	⁴⁴ Si					
	³² A1	³³ Al	³⁴ Al	³⁵ Al	³⁶ Al	³⁷ Al	³⁸ Al	³⁹ Al	⁴⁰ Al	⁴¹ Al	⁴² Al	⁴³ Al					
	³¹ Mg	³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg	³⁶ Mg	³⁷ Mg	³⁸ Mg	³⁹ Mg	⁴⁰ Mg			-				

Ref.: arXiv:1207.6191

What we know about ⁴²Si.

β-decay experiment Short half-life → Large deformation (possibly oblate), comparing with QRPA calculation.

S.Grevy et al., Phys. Lett. B 594, 252 (2004).

Mass measurement Deformed/Spherical?

B.Jurado et al., Phys. Lett. B 694, 43 (2007).

	°C1	"0	°0	°0	*CI	°0	⁶ Cl	°C1	*0	*O	*0	°0	°C1	°C1	²⁶ C1
	γ	~5	$\gamma_{\rm S}$	γ	γ	γ	\sim	$\gamma_{\rm s}$	°s	7	~5	\sim		~5	γ
	$\overline{\gamma}$	η.	~	γ	~7	γ	~	γ	Ŷ	γ	7	~	۰7		
Z = 14	$\gamma_{\rm H}$	~14	~14	*51	°5i	~	$\gamma_{\rm H}$	~14	*51	~51	~51	~51			
1	"AI	"Al	"Al	"Al	"Al	"Al	"Al	"Al	"Al	"Al	"Al	"Al	-	-	
	"мд	"Mg	"Mg	"Mg	"Mg	"Mg	"Mg	~м ₈	"Ма	"Mg					

What we know about ⁴²Si.

⁴²Si: low $Ex(2^+)$. R(4/2) = ?

→ two proton removal reactions, ${}^{44}S + C \rightarrow {}^{42}Si + \gamma + X$,

with high intensity beams, a thick target, and high efficiency detector array.

NISHIN/

RIBF: BigRIPS + DALI2 + ZeroDegree

-RIBF ULIC-Symposium, Perspective in Isospin Physics- @RIIKEN, JAPAN

2012/8/28

2⁺ peak with high statistics.

Additional peaks.

-RIBF ULIC-Symposium, Perspective in Isospin Physics- @RIIKEN, JAPAN

2012/8/28

Additional peaks.

γ-γ coincidence

-RIBF ULIC-Symposium, Perspective in Isospin Physics- @RIIKEN, JAPAN

2012/8/28

γ-γ coincidence

γ_{1431} : transition to 2⁺ state

4+ at 2173 keV

Excited state at **2173(14) keV** has been tentatively assigned to **the 4**⁺ **state** from present study.

 $E_x(4^+)/E_x(2^+) = 2.93$ → well-deformed shape

4+ at 2173 keV

Excited state at **2173(14) keV** has been tentatively assigned to **the 4**⁺ **state** from present study.

Other isotopes 1: ³⁸Si

By M.Matsushita

-RIBF ULIC-Symposium, Perspective in Isospin Physics- @RIIKEN, JAPAN

2012/8/28

Other isotopes 2: ⁴⁰Si

By M.Matsushita

-RIBF ULIC-Symposium, Perspective in Isospin Physics- @RIIKEN, JAPAN

2012/8/28

2⁺ and 4⁺ states in ³⁸⁻⁴²Si

³⁶Si: ref: X.Liang et al., PRC74,014311(2006)
⁴⁶Ar: ref: Zs.Dombradi *et al.*, NPA 727(2003)195
⁴⁴S: ref: D.Santiago-Gonzalez *et al.*, PRC 83,061305R(2011)

⁴²Si: well deformed

 $R(4/2) = 2.93 \rightarrow$ well deformed like rigid rotor.

Comparison with calculations

-RIBF ULIC-Symposium, Perspective in Isospin Physics- @RIIKEN, JAPAN

2012/8/28

Summary

Summary & questions

RIBF provides various RI beams with high intensity. Detectors will be improved. Experimental technique may be improved.

In-beam γ -ray spectroscopy group continues to perform experiments for more exotic nuclei.

- What observables do we need to measure for understanding 'tensor force effects'?
 - Second 0⁺/2⁺ state?
 - Systematic study of 2⁺ state? (such as Si and Mg isotopes?)
- Which nuclei or region are important for understanding 'tensor force effects'?
 - More exotic?
 - Revisit lighter nuclei?

Members of In-beam γ-ray spectroscopy group

RIKEN: P.DOORNENBAL, H.WANG, J.LEE, T.MOTOBAYASHI, H.SAKURAI, K.YONEDA, S.T

- RCNP: N.AOI, E.IDEGUCHI
- CNS: D.STEPPENBECK, M.MATSUSHITA
- TU Darmstadt: H.SCHEIT
- Peking Univ: L.KUOANG

THANK YOU FOR YOUR ATTENTION \bigcirc

