Calculations with chiral forces in no-core shell model with continuum

RIBF ULIC Symposium on Perspective in Isospin Physics
~ Role of non-central interactions in structure and dynamics of unstable nuclei ~
27-28th August 2012, RIKEN

Petr Navratil | TRIUMF

Collaborators: Sofia Quaglioni (LLNL),
Robert Roth (TU Darmstadt), S. Baroni (ULB),
C. Romero-Redondo (TRIUMF), M. Kruse (UA), J. Langhammer (TU

Darmstadt), G. Hupin (LLNL), W. Horiuchi (Hokkaido)

\&triumf

Outline

Ab initio calculations of nuclear structure and reactions

Connection to
Astrophysics

- Chiral forces
- No-core shell model, NCSM/RGM
- Neutron rich He isotopes, $\mathrm{N}-{ }^{4} \mathrm{He}$ scattering, ${ }^{12} \mathrm{C}$ structure
- No-core shell model with continuum (NCSMC):
- Unbound ${ }^{7} \mathrm{He}$

Chiral Effective Field Theory

- First principles for Nuclear Physics: QCD
- Non-perturbative at low energies
- Lattice QCD in the future
- For now a good place to start:
- Inter-nucleon forces from chiral effective field theory
- Based on the symmetries of QCD
- Chiral symmetry of QCD $\left(m_{\mathrm{u}} \approx m_{\mathrm{d}} \approx 0\right)$, spontaneously broken with pion as the Goldstone boson
- Degrees of freedom: nucleons + pions
- Systematic low-momentum expansion to a given order $\left(\mathrm{Q} / \wedge_{\mathrm{x}}\right)$
- Hierarchy
- Consistency
- Low energy constants (LEC)
- Fitted to data
- Can be calculated by lattice QCD

$\Lambda_{x} \sim 1 \mathrm{GeV}:$
Chiral symmetry breaking scale

Determination of NNN constants c_{D} and C_{E} from the triton and the

- Chiral EFT: c_{D} also in the two-nucleon contact vertex with an external probe
- Calculate $\left\langle E_{1}^{A}\right\rangle=\left|\left\langle{ }^{3} \mathrm{He} \| E_{1}^{A} \mid{ }^{3} \mathrm{H}\right\rangle\right|$
- Leading order GT
- N2LO: one-pion exchange plus contact
- $A=3$ binding energy constraint:

$$
c_{D}=-0.2 \pm 0.1 c_{E}=-0.205 \pm 0.015
$$

Three-Nucleon Low-Energy Constants from the Consistency of Interactions and Currents in Chiral Effective Field Theory

No-core shell model combined with the resonating group method (NCSM/RGM)

- The NCSM: An approach to the solution of the A-nucleon bound-state problem
- Accurate nuclear Hamiltonian
- Finite harmonic oscillator (HO) basis
- Complete $N_{\text {max }} \Pi \Omega$ model space
- Effective interaction due to the model space truncation
- Similarity-Renormalization-Group evolved NN(+NNN) potential
- Short \& medium range correlations
- No continuum

- The RGM: A microscopic approach to the A-nucleon scattering of clusters
- Long range correlations, relative motion of clusters

$$
\Psi^{(A)}=\sum_{v} \int d \vec{r} \varphi_{v}(\vec{r}) \hat{\mathcal{A}} \Phi_{v \vec{r}}^{(A-a, a)}
$$

$$
\psi_{1 v}^{(A-a)} \psi_{2 v}^{(a)} \delta\left(\vec{r}-\vec{r}_{A-a, a}\right)
$$

Ab initio NCSM/RGM: Combines the best of both approaches Accurate nuclear Hamiltonian, consistent cluster wave functions Correct asymptotic expansion, Pauli principle and translational invariance

${ }^{4} \mathrm{He}$ from chiral EFT interactions:

g.s. energy convergence

Evolution of Nuclear Many-Body Forces with the Similarity Renormalization Group
E. D. Jurgenson, ${ }^{1}$ P. Navrátil, ${ }^{2}$ and R. J. Furnstahl ${ }^{1}$

Chiral N³LO NN plus N2LO NNN potential

- Bare interaction (black line)
- Strong short-range correlations
- Large basis needed
- SRG evolved effective interaction (red line)
- Unitary transformation

$$
H_{\alpha}=U_{\alpha} H U_{\alpha}^{+} \Rightarrow \frac{d H_{\alpha}}{d \alpha}=\left[\left[T, H_{\alpha}\right], H_{\alpha}\right]\left(\alpha=1 / \lambda^{4}\right)
$$

- Two- plus three-body components, four-body omitted
- Softens the interaction
- Smaller basis sufficient

BTRIUMF

The ab initio NCSM/RGM in a snapshot

- Ansatz: $\quad \Psi^{(A)}=\sum_{v} \int d \vec{r} \varphi_{v}(\vec{r}) \hat{\mathscr{A}} \Phi_{v \vec{r}}^{(A-a, a)}$

eigenstates of $\boldsymbol{H}_{(A-a)}$ and $\boldsymbol{H}_{(a)}$ in the ab initio NCSM basis
- Many-body Schrödinger equation:

$$
\begin{array}{cc}
{ }^{\wedge} H \Psi^{(A)}=E \Psi^{(A)} & T_{\text {rel }}(r)+\mathcal{V}_{\text {rel }}+\bar{V}_{\text {Coul }}(r)+H_{(A-a)}+H_{(a)} \\
\sum_{v} \int d \vec{r}\left[\mathcal{H}_{\mu \nu}^{(A-a, a)}\left(\vec{r}^{\prime}, \vec{r}\right)-E \mathcal{N}_{\mu \nu}^{(A-a, a)}\left(\vec{r}^{\prime}, \vec{r}\right)\right] \varphi_{v}(\vec{r})=0 & \text { realistic nuclear Hamiltonian } \\
\begin{array}{c}
\left\langle\Phi_{\mu \vec{r}^{\prime}}^{(A-a, a)}\right| \hat{\mathcal{A}} H \hat{\mathcal{A}}\left|\Phi_{v \vec{r}}^{(A-a, a)}\right\rangle \\
\text { Hamiltonian kernel }
\end{array} \frac{\left\langle\Phi_{\mu \vec{r}^{\prime}}^{(A-a, a)}\right| \hat{\mathscr{A}}^{2}\left|\Phi_{v \vec{r}}^{(A-a, a)}\right\rangle}{\text { Norm kernel }}
\end{array}
$$

NNN interaction effects in neutron rich nuclei:

He isotopes

${ }^{4} \mathrm{He}$

${ }^{6} \mathrm{He}$

s

${ }^{8} \mathrm{He}$

${ }^{6} \mathrm{He}$ and ${ }^{8} \mathrm{He}$ with SRG-evolved chiral N^{3} LO NN + N2 2 LO NNN

- 3N matrix elements in coupled-J single-particle basis:
$A=3$ binding energy \& half life constraint $c_{D}=-0.2, c_{E}=-0.205, \Lambda=500 \mathrm{MeV}$
- Introduced and implemented by Robert Roth et al.
- Now also in my codes: Jacobi-Slater-Determinant transformation \& NCSD code
- Example: ${ }^{6} \mathrm{He},{ }^{8} \mathrm{He}$ NCSM calculations up to $N_{\max }=10$ done with moderate resources

3 N interaction effects in neutron rich nuclei: He isotopes

${ }^{4} \mathrm{He}$

${ }^{8} \mathrm{He}$

- ${ }^{6} \mathrm{He}$ and ${ }^{8} \mathrm{He}$ with SRG-evolved chiral $\mathrm{N}^{3} \mathrm{LO}$ NN + N ${ }^{2}$ LO 3N
- chiral N³ LO NN: ${ }^{4} \mathrm{He}$ underbound, ${ }^{6} \mathrm{He}$ and ${ }^{8} \mathrm{He}$ unbound
- chiral N ${ }^{3}$ LO NN + N 2 LO $3 \mathrm{~N}(500)$: ${ }^{4} \mathrm{He} \mathrm{OK}$, both ${ }^{6} \mathrm{He}$ and ${ }^{8} \mathrm{He}$ bound

A=3 binding energy \& half life constraint $c_{D}=-0.2, c_{E}=-0.205, \Lambda=500 \mathrm{MeV}$

NNN interaction important to bind neutron rich nuclei

3 N interaction effects in neutron rich nuclei:
 He isotopes

- ${ }^{6} \mathrm{He}$ and ${ }^{8} \mathrm{He}$ with SRG-evolved chiral N^{3} LO NN + N²LO 3N
- chiral $\mathrm{N}^{3} \mathrm{LO} \mathrm{NN:}{ }^{4} \mathrm{He}$ underbound, ${ }^{6} \mathrm{He}$ and ${ }^{8} \mathrm{He}$ unbound
- chiral $\mathrm{N}^{3} \mathrm{LO} N N+\mathrm{N}^{2} \mathrm{LO} 3 \mathrm{~N}(400)$: ${ }^{4} \mathrm{He}$ fitted, ${ }^{6} \mathrm{He}$ barely unbound, ${ }^{8} \mathrm{He}$ unbound
- describes quite well binding energies of ${ }^{12} \mathrm{C},{ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca},{ }^{48} \mathrm{Ca}$
- chiral N ${ }^{3}$ LO NN + N ${ }^{2}$ LO 3N(500): ${ }^{4} \mathrm{He} \mathrm{OK} ,\mathrm{both}{ }^{6} \mathrm{He}$ and ${ }^{8} \mathrm{He}$ bound
- does well up to $A=10$, overbinds ${ }^{12} \mathrm{C},{ }^{16} \mathrm{O}, \mathrm{Ca}$ isotopes
- SRG-N ${ }^{3}$ LO NN $\wedge=2.02 \mathrm{fm}^{-1}:{ }^{4} \mathrm{He} \mathrm{OK}$, both ${ }^{6} \mathrm{He}$ and ${ }^{8} \mathrm{He}$ bound
- ${ }^{16} \mathrm{O}$, Ca strongly overbound
${ }^{4} \mathrm{He}$ binding energy \& ${ }^{3} \mathrm{H}$ half life constraint
$c_{\mathrm{D}}=-0.2, c_{\mathrm{E}}=+0.098, \Lambda=400 \mathrm{MeV}$
$A=3$ binding energy \& half life constraint $c_{D}=-0.2, c_{E}=-0.205, \Lambda=500 \mathrm{MeV}$

NNN interaction important to bind neutron rich nuclei

Our knowledge of the $\mathbf{3 N}$ interaction is incomplete

TRIUMF

$N-4 \mathrm{He}$ scattering with NN+NNN interactions

G. Hupin, J. Langhammer, S. Quaglioni, P. Navratil, R. Roth, work in progress

Here:

$n+{ }^{4} \mathrm{He}$ (g.s.), SRG-(N3LO NN + N2LO NNN) potential with ($\lambda=2 \mathrm{fm}^{-1}$). Convergence with respect to HO basis size $\left(N_{\max }\right)$
${ }^{4} \mathrm{He}(n, n)^{4} \mathrm{He}$ phase shifts

Largest splitting between P waves obtained with NN+NNN. Need ${ }^{4} \mathrm{He}$ exited states and study with respect to SRG λ

Neutron rich Carbon isotopes from chiral NN+NNN interactions (IT-NCSM, R. Roth et al.)

BTRIUMF

M1 transitions in ${ }^{12} \mathrm{C}$ sensitive to 3 N interaction

Chiral 3 N interaction changes occupations of the $p_{3 / 2}$ and $p_{1 / 2}$ orbits ("increases the gap" between them)
Enhances the M1 transition from the g.s. to $1^{+1} 1$ state
Similar increase of the Gamow-Teller transition between g.s. of ${ }^{12} \mathrm{~B}\left({ }^{12} \mathrm{~N}\right)$ and ${ }^{12} \mathrm{C}$

Tensor correlations and 3 N effects in ground states of ${ }^{4} \mathrm{He}$ and ${ }^{12} \mathrm{C}$

- Tensor correlations related to $\left\langle\vec{S}_{p} \cdot \vec{S}_{n}\right\rangle$ and $\left\langle\vec{S}_{p} \cdot \vec{S}_{p}+\vec{S}_{n} \cdot \vec{S}_{n}\right\rangle$
$-\vec{S}_{p}=\frac{1}{2} \sum_{i=1}^{A}\left(\frac{1}{2}+t_{z i}\right) \vec{\sigma}_{i} \quad, \quad \vec{S}_{n}=\frac{1}{2} \sum_{i=1}^{A}\left(\frac{1}{2}-t_{z, i}\right) \vec{\sigma}_{i} \ldots$ spin operators
- Experiment: Atsushi Tamii et al.
- Ab initio NCSM:
- ${ }^{12} \mathrm{C} N_{\max }=6$ only

	$\left\langle\vec{S}_{p} \cdot \vec{S}_{p}+\vec{S}_{n} \cdot \vec{S}_{n}\right\rangle$	$\left\langle\vec{S}_{p} \cdot \vec{S}_{n}\right\rangle$	$\left\langle\vec{S}^{2}\right\rangle$
${ }^{4} \mathrm{He}$ Minnesota NN	0.04	-0.02	0
${ }^{4} \mathrm{He}$ chiral NN	0.19	0.04	0.27
${ }^{4} \mathrm{He}$ chiral NN+3N(500)	0.22	0.05	0.32
${ }^{12} \mathrm{C}$ chiral NN	0.50	0.065	0.63
${ }^{12} \mathrm{C}$ chiral NN+3N(400)	0.68	0.061	0.80
${ }^{12} \mathrm{C}$ chiral NN+3N(500)	1.01	0.065	1.14

New developments: NCSM with continuum

NCSM

$$
\left|\Psi_{A}^{J^{\pi} T}\right\rangle=\sum_{N i} c_{N i}\left|A N i J^{\pi} T\right\rangle
$$

\&triumf

New developments: NCSM with continuum

NCSM

$$
\left|\Psi_{A}^{J^{\pi} T}\right\rangle=\sum_{N i} c_{N i}\left|A N i J^{\pi} T\right\rangle
$$

NCSM/RGM

$$
\begin{aligned}
& \left|\Psi_{A}^{J^{\pi} T}\right\rangle=\sum_{\nu} \int d \vec{r} \chi_{\nu}(\vec{r}) \hat{A} \Phi_{\nu \vec{r}}^{J^{\pi} T(A-a, a)} \\
& \mathcal{H} \chi=E \mathcal{N} \chi \\
& \bar{\chi}=\mathcal{N}^{+\frac{1}{2}} \chi \quad\left(\mathcal{N}^{-\frac{1}{2}} \mathcal{H} \mathcal{N}^{-\frac{1}{2}}\right) \bar{\chi}=E \bar{\chi}
\end{aligned}
$$

\&triumf

New developments: NCSM with continuum

NCSM

$$
\left|\Psi_{A}^{J^{\pi} T}\right\rangle=\sum_{N i} c_{N i}\left|A N i J^{\pi} T\right\rangle
$$

NCSM/RGM

$$
\begin{aligned}
& \left|\Psi_{A}^{J^{\pi} T}\right\rangle=\sum_{\nu} \int d \vec{r} \chi_{\nu}(\vec{r}) \hat{A} \Phi_{\nu \vec{r}}^{J^{\pi} T(A-a, a)} \\
& \mathcal{H} \chi=E \mathcal{N} \chi \\
& \bar{\chi}=\mathcal{N}^{+\frac{1}{2}} \chi \quad\left(\mathcal{N}^{-\frac{1}{2}} \mathcal{H} \mathcal{N}^{-\frac{1}{2}}\right) \bar{\chi}=E \bar{\chi}
\end{aligned}
$$

NCSMC

$$
\left|\Psi_{A}^{J^{\pi} T}\right\rangle=\sum_{\lambda} c_{\lambda}\left|A \lambda J^{\pi} T\right\rangle+\sum_{\nu} \int d \vec{r}\left(\sum_{\nu^{\prime}} \int d \vec{r}^{\prime} \mathcal{N}_{\nu \nu^{\prime}}^{-\frac{1}{2}}\left(\vec{r}, \vec{r}^{\prime}\right) \bar{\chi}_{\nu^{\prime}}\left(\vec{r}^{\prime}\right)\right) \hat{A} \Phi_{\nu \vec{r}}^{J^{\pi} T(A-a, a)}
$$

$$
\left(\begin{array}{cc}
H_{N C S M} & \bar{h} \\
\bar{h} & \mathcal{N}^{-\frac{1}{2}} \mathcal{H} \mathcal{N}^{-\frac{1}{2}}
\end{array}\right)\binom{c}{\bar{\chi}}=E\left(\begin{array}{ll}
1 & \bar{g} \\
\bar{g} & 1
\end{array}\right)\binom{c}{\bar{\chi}}
$$

Rtriumf

NCSMC formalism

Start from

$$
\left(\begin{array}{cc}
H_{N C S M} & \bar{h} \\
\bar{h} & \overline{\mathcal{H}}
\end{array}\right)\binom{c}{\chi}=E\left(\begin{array}{ll}
1 & \bar{g} \\
\bar{g} & 1
\end{array}\right)\binom{c}{\chi}
$$

NCSM sector:
NCSM/RGM sector:

$$
\begin{aligned}
& \left(H_{N C S M}\right)_{\lambda \lambda^{\prime}}=\left\langle A \lambda J^{\pi} T\right| \hat{H}\left|A \lambda^{\prime} J^{\pi} T\right\rangle=\varepsilon_{\lambda}^{J^{\pi} T} \delta_{\lambda \lambda^{\prime}} \\
& \overline{\mathcal{H}}_{\nu \nu^{\prime}}\left(r, r^{\prime}\right)=\sum_{\mu \mu^{\prime}} \iint d y d d y^{\prime} y^{\prime} y^{\prime 2} \mathcal{N}_{\nu \mu^{2}}^{-\frac{1}{2}}(r, y) \mathcal{H}_{\mu \mu^{\prime}}\left(y, y^{\prime}\right) \mathcal{N}_{\mu^{\prime} \nu^{2}}^{-\frac{1}{2}}\left(y^{\prime}\left(r^{\prime}\right)\right.
\end{aligned}
$$

Coupling:

$$
\begin{aligned}
& \bar{g}_{\lambda \nu}(r)=\sum_{\nu^{\prime}} \int d r^{\prime} r^{\prime 2}\left\langle A \lambda J^{\pi} T \mid \hat{\mathcal{A}}_{\nu^{\prime}} \Phi_{\nu^{\prime} r^{\prime}}^{J^{\pi} T}\right\rangle \mathcal{N}_{\nu^{\prime} \nu}^{-\frac{1}{2}}\left(r^{\prime}, r\right) \\
& \bar{h}_{\lambda \nu}(r)=\sum_{\nu^{\prime}} \int d r^{\prime} r^{\prime 2}\left\langle A \lambda J^{\pi} T\right| \hat{H} \hat{\mathcal{A}}_{\nu^{\prime}}\left|\Phi_{\nu^{\prime} r^{\prime}}^{J^{\pi} T}\right\rangle \mathcal{N}_{\nu^{\prime} \nu}^{-\frac{1}{2}}\left(r^{\prime}, r\right)
\end{aligned}
$$

Orthogonalization: $\quad N_{\nu \nu r^{\prime} \nu^{\prime} r^{\prime}}=\left(\begin{array}{cc}\delta_{\lambda \lambda} & \bar{g}_{\nu \nu^{\prime}}\left(r^{\prime}\right) \\ \bar{g}_{\lambda} \lambda_{\nu}(r) & \delta_{\nu \nu^{\prime}}^{\prime}\left(\frac{r r^{\prime}}{\left(r^{\prime}\right)}\right.\end{array}\right) \quad \bar{H}=N^{-\frac{1}{2}}\left(\begin{array}{c}H_{N C S M} \\ \bar{h} \\ \bar{H}\end{array}\right) N^{-\frac{1}{2}} \quad\binom{\bar{c}}{\bar{\chi}}=N^{+\frac{1}{2}}\binom{c}{\chi}$
Solve with generalized microscopic R-matrix

$$
(\hat{\bar{H}}+\hat{L}-E)\binom{\bar{c}}{\bar{\chi}}=\hat{L}\binom{\bar{c}}{\bar{\chi}}
$$

$$
\text { Bloch operator } \longrightarrow \hat{L}_{\nu}=\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{1}{2} \delta(r-a)\left(\frac{d}{d r}-\frac{B_{\nu}}{r}\right)
\end{array}\right)
$$

©tRIUMF

NCSM calculations of ${ }^{6} \mathrm{He}$ and ${ }^{7} \mathrm{He}$ energies

$\mathrm{N}_{\text {max }}$ convergence OK
Extrapolation feasible

- ${ }^{6} \mathrm{He}: \mathrm{E}_{\mathrm{gs}}=-29.25(15) \mathrm{MeV}$ (Expt. -29.269 MeV)
- ${ }^{7} \mathrm{He}: \mathrm{E}_{\mathrm{gs}}=-28.27(25) \mathrm{MeV}$ (Expt. -28.82(30) MeV)
${ }^{7} \mathrm{He}$ unbound ($+0.44(3) \mathrm{MeV}$), width 0.16 (3) MeV
- NCSM: no information about the width

All ${ }^{6} \mathrm{He}$ excited states above $2^{+}{ }_{1}$ broad resonances or states in continuum

NCSM with continuum: ${ }^{7} \mathrm{He} \leftrightarrow{ }^{6} \mathrm{He}+n$

NCSM with continuum: ${ }^{7} \mathrm{He} \leftrightarrow{ }^{6} \mathrm{He}+n$

TRIUMF

${ }^{7} \mathrm{He}:$ NCSMC vs. NCSM/RGM vs. NCSM

Preliminary

J^{π}	experiment			NCSMC			NCSM/RGM	NCSM
	E	Γ	Ref.	E	Γ	E	Γ	E
$3 / 2^{-}$	$0.44(3)$	$0.16(3)$	$[29]$	0.75	0.31	1.42	0.52	1.30
$5 / 2^{-}$	$3.36(10)$	$2.2(3)$	$[30]$	3.69	2.57	4.58	3.06	4.56
$1 / 2^{-}$	3.98	10	$[42]$	4.01	15.15	4.96	14.95	3.26
	3.48	2	$[38]$					

- NCSMC and NSCM/RGM energies from phase shifts at 90 degrees
- NCSMC and NSCM/RGM widths from the derivatives of phase shifts (preliminary)

$$
\Gamma=\left.\frac{2}{\partial \delta\left(E_{k i n}\right) / \partial E_{k i n}}\right|_{E_{k i n}=E_{R}}
$$

Experimental controversy:
Existence of low-lying 1/2- state
... not seen in these calculations

Three-cluster NCSM/RGM

- The starting point:

$$
\rho^{5 / 2} \sum_{K} \chi_{v K}^{\left(A-a_{23}, a_{2}, a_{3}\right)}(\rho) \phi_{K}^{\ell x x y}(\alpha)
$$

$$
\Psi_{R G M}^{(A)}=\sum_{a_{2} a_{3} v} \int d \vec{x} d \vec{y} G_{v}^{\left(A-a_{23}, a_{2}, a_{3}\right)}(x, y)
$$

$$
\times \hat{A}^{\left(A-a_{23}, a_{2}, a_{3}\right)}\left|\Phi_{v \vec{x} \vec{y}}^{\left(A-a_{23}, a_{2}, a_{3}\right)}\right\rangle
$$

$\vec{r}_{A-a_{23}, a_{23}}{ }_{\left(a_{2}\right)}^{\vec{a}_{2}, a_{3}}$
$\psi_{\alpha_{1}}^{\left(A-a_{23}\right)} \psi_{\alpha_{2}}^{\left(a_{2}\right)} \psi_{\alpha_{3}}^{\left(a_{3}\right)} Y^{\ell x, \ell y}(\hat{x}, \hat{y})$
$\times \delta\left(\vec{x}-\vec{r}_{a_{2}, a_{3}}\right) \delta\left(\vec{y}-\vec{r}_{A-a_{23}, a_{23}}\right)$

- Solves:
$\sum_{a_{2} a_{3} v K} \int d \rho \rho^{5}\left[H_{a^{\prime} v^{\prime}, a v}^{K^{\prime}, K}\left(\rho^{\prime}, \rho\right)-E N_{a^{\prime} v^{\prime}, a v}^{K^{\prime}, K}\left(\rho^{\prime}, \rho\right)\right] \rho^{-5 / 2} \chi_{v K}^{\left(A-a_{23}, a_{2}, a_{3}\right)}(\rho)=0$
- Where the hyperspherical coordinates are given by:

$$
\rho=\sqrt{x^{2}+y^{2}}, \quad \alpha=\arctan \left(\frac{y}{x}\right) \quad(x=\rho \cos \alpha, y=\rho \sin \alpha)
$$

First results for ${ }^{6} \mathrm{He}$ ground state

S. Quaglioni, C. Romero-Redondo, P. Navratil, work in progress

- Preliminary NCSM/RGM results for up to $N_{\max }=8$ model space $(\mathrm{h} \Omega=16 \mathrm{MeV})$
- $n+n+{ }^{4} \mathrm{He}$ (g.s.)
- SRG-NN chiral with $\lambda=2.02 \mathrm{fm}^{-1}$
- Results compared with NCSM:

Gain in binding due to the coupling to continuum

- At $N_{\max }=8^{6} \mathrm{He}$ unbound within the NCSM, bound in the three-cluster NCSM/RGM by $\sim 1 \mathrm{MeV}$

- Extrapolated NCSM beyond $N_{\text {max }}=12$: ${ }^{6} \mathrm{He}$ bound by $\sim 1 \mathrm{MeV}$

HO model space	$E_{\text {g.s.s }}\left({ }^{4} \mathrm{He}\right)$ $[\mathrm{MeV}]$ (NCSM)	$E_{\text {g.s. }}\left({ }^{(} \mathrm{He}\right)$ $[\mathrm{MeV}]$ (NCSM)	$E_{\text {g.s. }}\left({ }^{(6 \mathrm{He})}\right.$ $[\mathrm{MeV}]$ $(\mathrm{NCSM} / \mathrm{RGM})$
$N_{\max }=8$	-27.32	-27.28	-28.38

Structure of the exotic ${ }^{9} \mathrm{He}$ nucleus

- NCSM/RGM calculation of $n-{ }^{8} \mathrm{He}$
- SRG-N³LO $N N$ potential with $\Lambda=2.02 \mathrm{fm}^{-1}$
$-{ }^{8} \mathrm{He} \mathrm{O}^{+}$g.s. and $2^{+}, 1^{-}$excited states included
- Up to $N_{\max }=13$

Experiment:
P-wave resonance at
Expt. $\sim 1.27(10) \mathrm{MeV}$ (Bohlen et al.)
S -wave attraction
Expt. $a_{0} \sim-10 \mathrm{fm}$ (Chen et al.)

$$
a_{0} \sim-3 \mathrm{fm}(\mathrm{Al} \mathrm{Falou}, \text { et al. })
$$

Calculation (preliminary):
No bound state
P-wave resonance at $\sim 1.6 \mathrm{MeV}$
Attraction in the S-wave, $a_{0} \sim-13 \mathrm{fm}$
SRG-N ${ }^{3}$ LO NN too attractive? 3 N needed...

Conclusions and Outlook

- With the NCSM/RGM approach we are extending the ab initio effort to describe low-energy reactions and weakly-bound systems
- The first ${ }^{7} \mathrm{Be}(p, \mathrm{y})^{8} \mathrm{~B}$ ab initio S -factor calculation

$$
\text { PLB } 704 \text { (2011) } 379
$$

- Deuteron-projectile results with SRG-N3LO NN potentials:
- d-4 ${ }^{4} \mathrm{He}$ scattering PRC 83, 044609 (2011)
- First ab initio study of ${ }^{3} \mathrm{H}(d, n)^{4} \mathrm{He} \&{ }^{3} \mathrm{He}(d, p)^{4} \mathrm{He}$ fusion

PRL 108, 042503 (2012)

- Under way:
- $n-{ }^{8} \mathrm{He}$ scattering and ${ }^{9} \mathrm{He}$ structure
- ${ }^{3} \mathrm{He}-{ }^{4} \mathrm{He}$ and ${ }^{3} \mathrm{He}-{ }^{3} \mathrm{He}$ scattering calculations
- Ab initio NCSM with continuum (NCSMC)
- Three-cluster NCSM/RGM and treatment of three-body continuum
- Inclusion of NNN force
- To do:
- Alpha clustering: ${ }^{4} \mathrm{He}$ projectile

