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 Connection 
 to 

 QCD 

 Connection  
to 

 Astrophysics 

Outline 

§  Chiral forces 
§  No-core shell model, NCSM/RGM 

§  Neutron rich He isotopes, N-4He scattering, 12C structure 
§  No-core shell model with continuum (NCSMC):  

§  Unbound 7He  

Ab initio calculations of nuclear structure and reactions 



Chiral Effective Field Theory 
•  First principles for Nuclear Physics: 
      QCD  

–  Non-perturbative at low energies 
–  Lattice QCD in the future 

•  For now a good place to start: 
•  Inter-nucleon forces from chiral 

effective field theory 
–  Based on the symmetries of QCD 

•  Chiral symmetry of QCD (mu≈md≈0), 
spontaneously broken with pion as the 
Goldstone boson 

•  Degrees of freedom: nucleons + pions 
–  Systematic low-momentum expansion to 

a given order (Q/Λχ) 

–  Hierarchy 
–  Consistency 
–  Low energy constants (LEC) 

•  Fitted to data 
•  Can be calculated by lattice QCD 

Λχ~1 GeV :  
Chiral symmetry breaking scale 



Determination of NNN constants cD and cE  
from the triton binding energy and the half life 

•  Chiral EFT: cD also in the two-nucleon 
contact vertex with an external probe 

•  Calculate  
–  Leading order GT 
–  N2LO: one-pion exchange plus contact 

•  A=3 binding energy constraint:  
     cD=-0.2±0.1 cE =-0.205±0.015 

Three-Nucleon Low-Energy Constants from the Consistency of Interactions and Currents
in Chiral Effective Field Theory
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The chiral low-energy constants cD and cE are constrained by means of accurate ab initio calculations

of the A ¼ 3 binding energies and, for the first time, of the triton ! decay. We demonstrate that these low-

energy observables allow a robust determination of the two undetermined constants, a result of the

surprising fact that the determination of cD depends weakly on the short-range correlations in the wave

functions. These two- plus three-nucleon interactions, originating in chiral effective field theory and

constrained by properties of the A ¼ 2 system and the present determination of cD and cE, are successful
in predicting properties of the A ¼ 3 and 4 systems.
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The fundamental connection between nuclear forces and
the underlying theory of quantum chromodynamics (QCD)
remains one of the greatest contemporary theoretical chal-
lenges, due to the nonperturbative character of QCD in the
low-energy regime relevant to nuclear phenomena.
However, the past two decades of theoretical developments
provide us with a bridge to overcome this obstacle, in the
form of chiral perturbation theory ("PT) [1]. The "PT
Lagrangian, constructed by integrating out degrees of free-
dom of the order of!" # 1 GeV and higher (nucleons and

pions are thus the only explicit degrees of freedom), is an
effective Lagrangian of QCD at low energies. As such, it
retains all conjectured symmetry principles, particularly
the approximate chiral symmetry, of the underlying theory.
Furthermore, it can be organized in terms of a perturbative
expansion in positive powers of Q=!" where Q is the

generic momentum in the nuclear process or the pion
mass [1]. Though the subject of an ongoing debate about
its validity [2,3], the naive extension of this expansion to
nonperturbative phenomena provides a practical interface
with existing many-body techniques, and clearly holds a
significant value for the study of the properties of QCD at
low energy and its chiral symmetry.

The chiral symmetry dictates the operator structure of
each term of the effective Lagrangian, whereas the cou-
pling constants (not fixed by the symmetry) carry all the
information on the integrated-out degrees of freedom. A
theoretical evaluation of these coefficients, or low-energy
constants (LECs), is equivalent to solving QCD at low
energy. Recent lattice QCD calculations have allowed a
theoretical estimate of LECs of single- and two-nucleon
diagrams [4], while LECs of diagrams involving more than
two nucleons are out of the reach of current computational
resources. Alternatively, the undetermined constants can
be constrained by low-energy experiments.

The strength of "PT is that the chiral expansion is used
to derive both nuclear potentials and currents from the
same Lagrangian. Therefore, the electroweak currents in
nuclei (which determine reaction rates in processes involv-
ing external probes) and the strong interaction dynamics
(#N scattering, the NN interaction, the NNN interaction,
etc.) are all based on the same theoretical grounds and
rooted in the low-energy limits of QCD. In particular, "PT
predicts, along with theNN interaction at the leading order
(LO), a three-nucleon (NNN) interaction at the next-to-
next-to-leading order or N2LO [5,6], and even a four-
nucleon force at the fourth order (N3LO) [7]. At the
same time, the LO nuclear current consists of (the stan-
dard) single-nucleon terms, while two-body currents, also
known as meson-exchange currents (MEC), make their
first appearance at N2LO [8]. Up to N3LO both the NNN
potential and the current are fully constrained by the
parameters defining the NN interaction, with the exception
of two ‘‘new’’ LECs, cD and cE. The latter, cE, appears
only in the potential as the strength of the NNN contact
term [see Fig. 1(a)]. On the other hand, cD manifests itself
both in the contact term part of the NN-#-N three-nucleon
interaction of Fig. 1(a) and in the two-nucleon contact
vertex with an external probe of the exchange currents
[see Fig. 1(b)].

cD cE cD
(a) (b)

FIG. 1. Contact and one-pion exchange plus contact
interaction (a), and contact MEC (b) terms of "PT.
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1max += NN

§  The RGM: A microscopic approach to the A-nucleon scattering of clusters 
•  Long range correlations, relative motion of clusters 

No-core shell model combined with  
the resonating group method (NCSM/RGM) 

§  The NCSM: An approach to the solution of the A-nucleon bound-state problem  
–  Accurate nuclear Hamiltonian 
–  Finite harmonic oscillator (HO) basis  

•  Complete NmaxhΩ model space 

–  Effective interaction due to the model space truncation 
•  Similarity-Renormalization-Group evolved NN(+NNN) potential 

–  Short & medium range correlations  
–  No continuum 

Ab initio NCSM/RGM: Combines the best of both approaches 
Accurate nuclear Hamiltonian, consistent cluster wave functions 

Correct asymptotic expansion, Pauli principle and translational invariance 5 

A 
ΨA = cNiΦNi
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 4He from chiral EFT interactions:  
g.s. energy convergence 

•  Chiral N3LO NN plus N2LO NNN 
potential 

–  Bare interaction (black line) 
•  Strong short-range 

correlations 
§  Large basis needed 

–  SRG evolved effective 
interaction (red line) 

•  Unitary transformation 

•  Two- plus three-body 
components, four-body 
omitted 

•  Softens the interaction 
§  Smaller basis sufficient 
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A=3 binding energy and half life constraint 
cD=-0.2, cE=-0.205, Λ=500 MeV 



The ab initio NCSM/RGM in a snapshot 

•  Ansatz: 

Hamiltonian kernel Norm kernel 

§  Many-body Schrödinger equation: 

ê 

eigenstates of  
H(A-a) and H(a)  
in the ab initio  
NCSM basis 

realistic nuclear Hamiltonian 

7 



         6He and 8He with SRG-evolved chiral N3LO NN + N2LO NNN  

–  3N matrix elements in coupled-J single-particle basis: 
•  Introduced and implemented by Robert Roth et al.  
•  Now also in  my codes: Jacobi-Slater-Determinant transformation & NCSD code 
•  Example: 6He, 8He NCSM calculations up to Nmax=10 done with moderate resources  
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A=3 binding energy & half life constraint  
cD=-0.2, cE=-0.205, Λ=500 MeV 



•  6He and 8He with SRG-evolved chiral N3LO NN + N2LO 3N  
–  chiral N3LO NN: 4He underbound, 6He and 8He unbound  
–  chiral N3LO NN + N2LO 3N(500): 4He OK, both 6He and 8He bound 
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•  6He and 8He with SRG-evolved chiral N3LO NN + N2LO 3N  
–  chiral N3LO NN: 4He underbound, 6He and 8He unbound  
–  chiral N3LO NN + N2LO 3N(400): 4He fitted, 6He barely unbound, 8He unbound 

•  describes quite well binding energies of 12C, 16O, 40Ca, 48Ca 
–  chiral N3LO NN + N2LO 3N(500): 4He OK, both 6He and 8He bound 

•  does well up to A=10, overbinds 12C, 16O, Ca isotopes  

–  SRG-N3LO NN Λ=2.02 fm-1: 4He OK, both 6He and 8He bound 
•  16O, Ca strongly overbound 
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A=3 binding energy & half life constraint  
cD=-0.2, cE=-0.205, Λ=500 MeV 

4He binding energy & 3H half life constraint  
cD=-0.2, cE=+0.098, Λ=400 MeV 



N-4He scattering with NN+NNN interactions 
G. Hupin, J. Langhammer, S. Quaglioni, P. Navratil, R. Roth, work in progress 
4He(n,n)4He phase shifts !

Here: 
n + 4He(g.s.), SRG-(N3LO NN + N2LO NNN) 
potential with (λ=2 fm-1). Convergence with 
respect to HO basis size (Nmax)  

4He(n,n)4He phase shifts !

Largest splitting between P waves !
obtained with NN+NNN. Need 4He exited !
states and study with respect to SRG λ !



Neutron rich Carbon isotopes from  
chiral NN+NNN interactions (IT-NCSM, R. Roth et al.) 
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Outlook: Carbon Isotopic Chain

Robert Roth – TU Darmstadt – 05/2012
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M1 transitions in 12C sensitive to 3N interaction 
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Figure 21: Experimental and calculated B(M1;0+0 → 1+1) values, in µ2
N, for the 15.11 MeV T=1 1+ state

in 12C. Results obtained in basis spaces up to 6!Ω using OLS three-body effective interactions derived from
the AV8′+TM′(99) and AV8′ (left panel), OLS two-body effective interactions derived from the CD-Bonn NN
potential (left panel), OLS three-body effective interactions derived from the chiral NN and chiral NN +NNN
interactions (right panel) are compared. The HO frequency of !Ω = 15 MeV was used.

underestimated by a factor of 2.6. The inclusion of the NNN shows a significant improvement and, for 4!Ω,
theory is 34% lower than experiment. Again extrapolating using the trends of the inelastic electron-scattering
results suggests that a 6!Ω calculation that included a realistic NNN would come within 20% of experiment.

The (νµ, µ−) neutrino cross section to 12Ng.s. corresponds to the LSND muon neutrinos from decay-in-flight
(DIF) of the pion. This spectrum involves neutrinos up to about 250 MeV, with a average neutrino energy
of about 150 MeV and an average momentum transfer of about 200 MeV/c. In this case the 6!Ω CD-Bonn
calculation is off by a factor of 1.5 compared with experiment. The 4!Ω calculation that includes the 3-body
TM′(99) interaction is, in fact, in agreement with experiment. However, based on the trends established above,
this suggests that a larger model space may over-predict experiment. Examining the elastic-scattering form
factor suggests that the problem lies in the fact that at 200 MeV/c the predicted form factor is too large [171].
Of course, as the model space is increased we expect the form factor to be shifted down in momentum.

4.9 Beta decay of 14C
The measured lifetime of 14C, 5730 ± 30 years, is a valuable chronometer for many practical applications
ranging from archeology [174] to physiology [175]. The 14C lifetime is anomalously long compared to life-
times of other light nuclei undergoing the same decay process, allowed Gamow-Teller (GT) beta-decay. This
lifetime poses a major challenge to theory since traditional realistic NN interactions alone appear insufficient
to produce the effect[176], though it may be fit by a phenomenological NN tensor force [177].

Using Fermi’s Golden rule for the transition rate, the half life T1/2 for 14C is given by

T1/2 =
1

f (Z, E0)
2π3!7ln2
m5
ec4G2

V

1
gA2|MGT|2

, (40)

where MGT is the reduced GT matrix element; f (Z, E0) is the Fermi phase-space integral; E0 = 156 keV is
the β endpoint; GV = 1.136 10−11 MeV−2 is the weak vector coupling constant; gA = 1.27 is the axial vector
coupling constant; and me is the electron mass. MGT for the transition from the initial 14C (Jπ, T ) = (0+, 1)
ground state (Ψi) to the 14N (1+, 0) ground state (Ψ f ) is defined by the spin-isopin operator σ(k)τ+(k) acting on
all nucleons, k:

MGT =
∑

k

〈

Ψ f ||σ(k)τ+(k)||Ψi
〉

. (41)

32

Chiral 3N interaction changes occupations of the p3/2 and p1/2 orbits   
(“increases the gap” between them) 

Enhances the M1 transition from the g.s. to 1+ 1 state 
 

Similar increase of the Gamow-Teller transition between g.s. of 12B(12N) and 12C 



•  Tensor correlations related to           and  
–                                             … spin operators 

•  Experiment: Atsushi Tamii et al. 

•  Ab initio NCSM: 
–  12C Nmax=6 only 

Tensor correlations and 3N effects  
in ground states of 4He and 12C 

14 


Sp ⋅

Sn


Sp ⋅

Sp +

Sn ⋅

Sn


Sp = 1

2 ( 12 + tz,i )

σ i

i=1

A

∑ ,

Sn = 1

2 ( 12 − tz,i )

σ i

i=1

A

∑

Sp ⋅

Sn


Sp ⋅

Sp +

Sn ⋅

Sn4He Minnesota NN 0.04 -0.02 0 

4He chiral NN 0.19 0.04 0.27 
4He chiral NN+3N(500) 0.22 0.05 0.32 
12C chiral NN 0.50 0.065 0.63 
12C chiral NN+3N(400) 0.68 0.061 0.80 
12C chiral NN+3N(500) 1.01 0.065 1.14 


Sp ⋅

Sp +

Sn ⋅

Sn


Sp ⋅

Sn


S 2

12C: chiral NN+3N(400) 
 the best agreement with experiment 



New developments: NCSM with continuum 
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Â�J⇡T (A�a,a)

⇥⌅r

NCSM/RGM r

NCSMC r+

H� = EN�

(N� 1
2HN� 1

2 )�̄ = E�̄

✓
HNCSM h̄

h̄ N� 1
2HN� 1

2

◆✓
c
�̄

◆
= E

✓
1 ḡ
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ḡ 1

◆✓
c
�̄

◆

|⇥J⇡T
A � =

X

�

Z
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is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P
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rr′
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)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as
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1
2 =

=
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1 ḡλν′n′

ḡλ′νn δνν′δnn′
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2
(

1 0
0 R

)

. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets

N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 N+ 1

2

(

c
χ

)

= EN+ 1
2

(

c
χ

)

.

(23)
That is, the eigenproblem

H
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c̄
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= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)
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1 ḡλν′n′
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totic behavior of the NCSMC solutions is described by
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sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)
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is obtained from the Hamiltonian kernel
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ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
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In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as
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2
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Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets
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h̄ H
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That is, the eigenproblem
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(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2
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h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
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c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)

4

is obtained from the Hamiltonian kernel
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2
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P̂iA −
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∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation
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is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
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A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P
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gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
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totic behavior of the NCSMC solutions is described by
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P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
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The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)

Orthogonalization: 

5

and

uJπT
ν (r) =

i

2
v
− 1

2
ν [δνiH

−
l (ην ,κνr)−SJπT

νi H+
l (ην ,κνr)], for larger

(28)
for bound and scattering states, respectively. Wl(ην ,κνr)
are Wittaker functions and H±

l (ην ,κνr) are the incom-
ing and outgoing Coulomb functions. The scattering
states are defined through the scattering matrix SJπT

νi be-
tween the initial state i and the channel ν. The function
uJπT

ν (r) stands for either the non-orthogonalized func-
tion χJπT

ν (r) or for the orthogonalized χ̄JπT
ν (r). (note:

plus some detail and then refering to PRC79 and papers
on the subject)

One of the advantages of the R-matrix method is that
the wave function uJπT

ν (r) in the internal region can be
expanded on a set of square-integrable functions. We
adopted here the set of Lagrange functions fn(r) associ-
ated with the shifted Lagrange polynomials and defined
on the mesh points rn ∈ [0, a]. When the Gauss-Legendre
quadrature approximation is adopted, the Lagrange func-
tions are orthogonal to each other. n indeces the mesh
points, whose number has to be large enough to have a
correct representation of the wave functions.

The match between the internal and the external re-
gions and hence the imposition of the asymptotic be-
havior of Eqs. 27 and 28, is ensured by using the Bloch
surface operator

L̂ν =

(

0 0
0 1

2δ(r − a)( d
dr − Bν

r )

)

(29)

and solving the Bloch-Schrödinger equations

(Ĥ + L̂ − E)

(

c̄
χ̄

)

= L̂

(

c̄
χ̄

)

. (30)

H + L̂ is Hermitian when the boundary parameter Bν

is real. Because of the Bloch operator, the wave func-
tion in the right hand side of Eq. 30 is approximated by
its asymptotic behavior. When searching for the bound
states, Bν is chosen in such a way that the r.h.s. vanishes,
and one is left with the diagonalization problem

(H + L̂)

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

. (31)

For the scattering states, the R matrix and the scattering
matrix S are computed from the NCSMC/RGM sector of
the H +L̂ Hermitian operator, for each impinging kinetic
energy Ekin of the projectile. The phase shifts δ(Ekin)
should then be extracted from an analysis of the scat-
tering matrix in the complex plane [ref.]. In this work,
we approximate the phase shifts by extracting them from
the diagonal elements of the scattering matrix, by writ-
ing them as e2iδ. Open and closed channels are treated
on equal footing when applying the R-matrix method.

E. Cluster and coupling form factors

(We could expand the text to two columns for this
subsection.)

The orthogonalized cluster form factor in r-space rep-
resentation reads

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

=
∑

n∈P

Rnl(r)
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn

≡
∑

n∈P

Rnl(r)
∑

ν′n′∈P

gλν′n′ N− 1
2

ν′n′,νn ≡
∑

n∈P

Rnl(r)ḡλνn

(32)

where

ḡλνn =
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn

≡
∑

ν′n′∈P

gλν′n′ N− 1
2

ν′n′,νn (33)

is the model-space orthogonalized cluster form factor.
The proof of Eq. (32) is in App. A.

The model-space non-orthogonalized cluster form fac-
tor gλνn is given by

gλνn = 〈AλJπT |ÂνΦJπT
νn 〉

=
1

〈nl00, l|00nl, l〉 1
(A−1)

×
∑

j

(−1)I1+J+j ŝĵ

{

I1 1/2 s
l J j

}

1

Ĵ T̂

×〈AλJπT |||a†

nlj 1
2
|||ΦJπT

νn 〉SD

(34)

and it is computed by expanding the channel cluster
states on a Slater determinant (SD) basis and removing
the spurious center-of-mass component. The Moshinky
brakets 〈nl00, l|00nl, l〉 allows us to transform from the
SD to the Jacobi-coordinate states. The proof of Eq. (34)
is also in App. A.

The orthogonalized coupling form factor in r-space rep-
resentation reads

h̄λν(r) =
∑
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∫

dr′r′
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2

ν′ν (r′, r)
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ν′n′ 〉 N− 1

2
ν′n′,νn

+Rnmax+1l(r)〈AλJπT |ΦJπT
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〉〈ΦJπT
νnmax

|T̂rel|ΦJπT
νnmax+1

〉

≡
∑

n∈P

Rnl(r)h̄λνn

+ Rnmax+1l(r) 〈nmaxl|T̂rel|nmax+1l〉 gλνnmax

(35)
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the wave function uJπT
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expanded on a set of square-integrable functions. We
adopted here the set of Lagrange functions fn(r) associ-
ated with the shifted Lagrange polynomials and defined
on the mesh points rn ∈ [0, a]. When the Gauss-Legendre
quadrature approximation is adopted, the Lagrange func-
tions are orthogonal to each other. n indeces the mesh
points, whose number has to be large enough to have a
correct representation of the wave functions.

The match between the internal and the external re-
gions and hence the imposition of the asymptotic be-
havior of Eqs. 27 and 28, is ensured by using the Bloch
surface operator
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For the scattering states, the R matrix and the scattering
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the H +L̂ Hermitian operator, for each impinging kinetic
energy Ekin of the projectile. The phase shifts δ(Ekin)
should then be extracted from an analysis of the scat-
tering matrix in the complex plane [ref.]. In this work,
we approximate the phase shifts by extracting them from
the diagonal elements of the scattering matrix, by writ-
ing them as e2iδ. Open and closed channels are treated
on equal footing when applying the R-matrix method.

E. Cluster and coupling form factors

(We could expand the text to two columns for this
subsection.)
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The proof of Eq. (32) is in App. A.
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SD to the Jacobi-coordinate states. The proof of Eq. (34)
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The cluster states |A − a α1I
π1
1 T1〉, |a α2I

π2
2 T2〉 and

the A-body states |AλJπT 〉 are obtained by NCSM di-
agonalization of the microscopic Hamiltonians Ĥ(A−a),

Ĥ(a) and Ĥ , for A − a, a and A nucleons respectively,
using the same frequency !ω for the harmonic oscillator
(HO) basis. The size of the NCSM model space is de-
fined by the maximum number Nmax of HO excitation
quanta on top of the lowest configuration and it is the
same for all NCSM eigenstates of the same parity, and
differ by one unit for states of opposite parity. The NC-
SMC basis used in Eq. (1) is then an extension of the
NCSM/RGM basis, by inclusion of a NCSM sector. Or,
equivalently, the NCSM is extended by the inclusion of
clusterized states, which makes the theory able to handle
the scattering physics of the system. In other words, the
coupling of the NCSM with the continuum.

The A-nucleon microscopic Hamiltonian can be writ-
ten in the form

Ĥ = T̂rel + V̂rel + V̂C(r) + Ĥ(A−a) + Ĥ(a) (5)

where T̂rel is the relative kinetic energy between tar-
get and projectile and V̂rel includes all the interactions
between nucleons belonging to different clusters after
subtraction of the average Coulomb interaction between
them (see [17] for a detailed discussion on this point).

B. Kernels in the NCSM/RGM sector

We present here some details of the construction of the
norm and Hamiltonian kernels in the NCSM/RGM sec-
tor. This also represents a necessary introduction to un-
derstand the NCSMC equations and how to solve them.

As the channel states |ΦJπT
νr 〉 are not orthonormal to

each other, it is preferable to couple the NCSM states
|AλJπT 〉 with orthonormalized binary-cluster states

∑

ν′

∫

dr′r′
2 N− 1

2
νν′ (r, r′) Âν′ |ΦJπT

ν′r′ 〉, (6)

where use has been made of the inverse square root of
the NCSM/RGM norm kernel

N JπT
νν′ (r, r′) = 〈ΦJπT

νr |ÂνÂν′ |ΦJπT
ν′r′ 〉. (7)

When computing the above kernel, the “exchange” term
arising from the permutations in Âν that differ from the
identity is obtained by expanding the radial dependence
of the basis states of Eq. 2 on HO radial wave functions
Rnl(r). This HO basis has the same frequency used in
the NCSM cluster calculations. The HO model space is
indicated as P and its size is consistent with the model
space used in the cluster diagonalizations. The expansion
of the channel basis states reads

|ΦJπT
νr 〉 =

∑

n∈P

Rnl(r)|ΦJπT
νn 〉

(8)

with

|ΦJπT
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=
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π1
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π2
2 T2〉)(sT ) Y#(r̂A−a,a)

](JπT )

×Rnl(rA−a,a). (9)

Hence, using the expression of Eqs. 3 and 9, the r-space
representation of the NCSM/RGM norm kernel N can be
written as
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The last line of Eq. 10 shows that the r-space represen-
tation of the kernel is given by the convolution of the
model-space kernel plus a correction due to the finite size
of the model space P . One can finally define the square
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where the square root of the model-space Nνnν′n′ is ob-
tained from the spectral theorem.

The NCSM/RGM-sector Hamiltonian H in the orthog-
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where T̂rel is the relative kinetic energy between tar-
get and projectile and V̂rel includes all the interactions
between nucleons belonging to different clusters after
subtraction of the average Coulomb interaction between
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When computing the above kernel, the “exchange” term
arising from the permutations in Âν that differ from the
identity is obtained by expanding the radial dependence
of the basis states of Eq. 2 on HO radial wave functions
Rnl(r). This HO basis has the same frequency used in
the NCSM cluster calculations. The HO model space is
indicated as P and its size is consistent with the model
space used in the cluster diagonalizations. The expansion
of the channel basis states reads

|ΦJπT
νr 〉 =
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n∈P
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(8)

with
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=
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2 T2〉)(sT ) Y#(r̂A−a,a)

](JπT )

×Rnl(rA−a,a). (9)

Hence, using the expression of Eqs. 3 and 9, the r-space
representation of the NCSM/RGM norm kernel N can be
written as
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The last line of Eq. 10 shows that the r-space represen-
tation of the kernel is given by the convolution of the
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ü  Nmax convergence OK 
ü  Extrapolation feasible 

•  6He: Egs=-29.25(15) MeV (Expt. -29.269 MeV)  
•  7He: Egs=-28.27(25) MeV (Expt. -28.82(30) MeV) 

•  7He unbound (+0.44(3) MeV), width 0.16(3) MeV 
•  NCSM: no information about the width 

•  All 6He excited states above 2+
1 broad resonances or 

states in continuum 



NCSM with continuum: 7He       6He+n 
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§  NCSMC and NSCM/RGM energies from phase 
shifts at 90 degrees 

§  NCSMC and NSCM/RGM widths from the 
derivatives of phase shifts (preliminary) 

Experimental controversy:  
Existence of low-lying 1/2- state  
… not seen in these calculations 

7

tion for the 6He + n threshold energy is within ∼ 1 MeV
from the experimental value when a low-momentum res-
olution λ = 2.02 fm−1 is used. This allows us to per-
form qualitatively and quantitatively meaningful calcu-
lations and to discuss the physics involved in the scat-
tering process. All calculations shown in this work are
done with λ = 2.02 fm−1 two-body low-momentum inter-
actions, while the implementation of 3NF is in progress
[Ref.] and its inclusion is left for the future. At variance
with effective interactions that change as a function of
the model-space size (i.e., through the Lee-Suzuki renor-
malization, [Ref.]), the SRG potential enters unaltered
all the calculations. This makes the theories variational.

The NCSM/RGM and the NCSMC phase shifts for
the 7He negative-parity states up to J = 5/2 and for
the Jπ = 1/2+ state are shown in Fig. 2. We adopt
the standard notation 2s+1"Jπ for the channel quantum
numbers, where the total spin s of the two clusters and
the relative orbital angular momentum " add up to give
the total spin of the system #J = #s+#" (cf. Eq. 2). All the
phase shifts in Fig. 2 have been obtained using the lowest
three 6He states (i.e., the 0+ ground state and the two
lowest 2+ excited states). The NCSMC basis includes
also the lowest six (four) 7He negative- (positive-) parity
eigenstates. The neutron kinetic energy corresponding
to a phase shift of π/2 is taken as the resonance centroid
and it is plotted in Fig. 1, while the resonance width is
computed as [Ref.]

Γ =
2

∂δ(Ekin)/∂Ekin

∣

∣

∣

∣

Ekin=ER

(38)

evaluated at the resonance centroid ER and with the
phase shift in radians. Computed centroids and widths
are reported in Tab. I, together with the available ex-
perimental data. While the above procedure to extract
centroid energy and resonance width is safely applicable
to sharp resonances, broad resonances would require an
analysis of the scattering matrix in the complex plane.
As we are more interested in a qualitative discussion of
the results, we extend here the above extraction proce-
dure to broad resonances.

As expected for a variational theory, the introduction
of the additional A-body basis states |AλJπT 〉 and the
coupling to the continuum lead to lower centroid values
for all 7He resonances when going from NCSM/RGM
to NCSMC. In particular, the 7He 3/2− ground state
and 5/2− excited state are sensitevely pushed toward the
6He + n threshold, getting closer to the experiment. The
resonance widths also shrink toward the observed data.

NCSM/RGM and NCSMC theories predict a 1/2− res-
onance above the 5/2− excited state, in contrast with the
NCSM. The latter, though, is not expected to provide a
reliable description for broad resonances, as this requires
a correct description of the coupling to the continuum.

The NCSM and the NCSM/RGM centroid energies for
the 3/2- and 5/2- resonances are just ! 200 keV apart,
while a significant energy shift is brought by the coupling
to the continuum, with a compression of the separation
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FIG. 2: NCSM/RGM (a) and NCSMC (b) 6He + n phase
shifts as a function of the kinetic energy of the impinging
neutron projectile. The phase shifts are taken from the diag-
onal matrix elements of the scattering matrix (see Sect. IID).
The dashed vertical area centered at 0.44 MeV indicates the
experimental centroid and width of the 7He ground state [29].
In all calculations the lowest three 6He states have been in-
cluded in the construcction of the basis states (cf. Eq. 2).

Jπ experiment NCSM NCSM/RGM NCSMC
E Γ Ref. E E Γ E Γ

3/2− 0.44(3) 0.16(3) [29] 1.30 1.42 0.52 0.75 0.31

5/2− 2.9(3) 2.2(3) [30] 4.56 4.58 3.06 3.69 2.57

1/2− 3.54 10 [42] 3.26 4.96 14.95 4.01 15.15

3.04 2 [38]

TABLE I: Experimental and theoretical values for the reso-
nance centroids and widths in MeV for the 3/2− ground state
and the 5/2− and 1/2− excited states of 7He.

energy of about 0.4 MeV, closer to the experimental find-
ings.

All these results show that the coupling to the contin-
uum is strong, which leads to an overcompleteness of the
NCSMC basis. This overcompleteness is at the heart of
the method, which is then able to get converged results
with fewer cluster states than the NCSM/RGM. The lat-
ter often requires many target states |A − a α1I

π1
1 T1〉 to
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tion for the 6He + n threshold energy is within ∼ 1 MeV
from the experimental value when a low-momentum res-
olution λ = 2.02 fm−1 is used. This allows us to per-
form qualitatively and quantitatively meaningful calcu-
lations and to discuss the physics involved in the scat-
tering process. All calculations shown in this work are
done with λ = 2.02 fm−1 two-body low-momentum inter-
actions, while the implementation of 3NF is in progress
[Ref.] and its inclusion is left for the future. At variance
with effective interactions that change as a function of
the model-space size (i.e., through the Lee-Suzuki renor-
malization, [Ref.]), the SRG potential enters unaltered
all the calculations. This makes the theories variational.

The NCSM/RGM and the NCSMC phase shifts for
the 7He negative-parity states up to J = 5/2 and for
the Jπ = 1/2+ state are shown in Fig. 2. We adopt
the standard notation 2s+1"Jπ for the channel quantum
numbers, where the total spin s of the two clusters and
the relative orbital angular momentum " add up to give
the total spin of the system #J = #s+#" (cf. Eq. 2). All the
phase shifts in Fig. 2 have been obtained using the lowest
three 6He states (i.e., the 0+ ground state and the two
lowest 2+ excited states). The NCSMC basis includes
also the lowest six (four) 7He negative- (positive-) parity
eigenstates. The neutron kinetic energy corresponding
to a phase shift of π/2 is taken as the resonance centroid
and it is plotted in Fig. 1, while the resonance width is
computed as [Ref.]
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evaluated at the resonance centroid ER and with the
phase shift in radians. Computed centroids and widths
are reported in Tab. I, together with the available ex-
perimental data. While the above procedure to extract
centroid energy and resonance width is safely applicable
to sharp resonances, broad resonances would require an
analysis of the scattering matrix in the complex plane.
As we are more interested in a qualitative discussion of
the results, we extend here the above extraction proce-
dure to broad resonances.

As expected for a variational theory, the introduction
of the additional A-body basis states |AλJπT 〉 and the
coupling to the continuum lead to lower centroid values
for all 7He resonances when going from NCSM/RGM
to NCSMC. In particular, the 7He 3/2− ground state
and 5/2− excited state are sensitevely pushed toward the
6He + n threshold, getting closer to the experiment. The
resonance widths also shrink toward the observed data.

NCSM/RGM and NCSMC theories predict a 1/2− res-
onance above the 5/2− excited state, in contrast with the
NCSM. The latter, though, is not expected to provide a
reliable description for broad resonances, as this requires
a correct description of the coupling to the continuum.

The NCSM and the NCSM/RGM centroid energies for
the 3/2- and 5/2- resonances are just ! 200 keV apart,
while a significant energy shift is brought by the coupling
to the continuum, with a compression of the separation
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FIG. 2: NCSM/RGM (a) and NCSMC (b) 6He + n phase
shifts as a function of the kinetic energy of the impinging
neutron projectile. The phase shifts are taken from the diag-
onal matrix elements of the scattering matrix (see Sect. IID).
The dashed vertical area centered at 0.44 MeV indicates the
experimental centroid and width of the 7He ground state [29].
In all calculations the lowest three 6He states have been in-
cluded in the construcction of the basis states (cf. Eq. 2).

Jπ experiment NCSMC NCSM/RGM NCSM
E Γ Ref. E Γ E Γ E

3/2− 0.44(3) 0.16(3) [29] 0.75 0.31 1.42 0.52 1.30

5/2− 3.36(10) 2.2(3) [30] 3.69 2.57 4.58 3.06 4.56

1/2− 3.98 10 [42] 4.01 15.15 4.96 14.95 3.26

3.48 2 [38]

TABLE I: Experimental and theoretical values for the reso-
nance centroids and widths in MeV for the 3/2− ground state
and the 5/2− and 1/2− excited states of 7He.

energy of about 0.4 MeV, closer to the experimental find-
ings.

All these results show that the coupling to the contin-
uum is strong, which leads to an overcompleteness of the
NCSMC basis. This overcompleteness is at the heart of
the method, which is then able to get converged results
with fewer cluster states than the NCSM/RGM. The lat-
ter often requires many target states |A − a α1I

π1
1 T1〉 to



Three-cluster NCSM/RGM  

•  The starting point: 

 

 
 

•  Solves: 

–  Where the hyperspherical coordinates are given by: 
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First results for 6He ground state 
S. Quaglioni, C. Romero-Redondo, P. Navratil, work in progress 

§  Preliminary NCSM/RGM results for up 
to Nmax = 8 model space (hΩ=16 MeV) 

–  n+n+4He(g.s.) 

–  SRG-NN chiral with λ=2.02 fm-1 

•  Results compared with NCSM:       
Gain in binding due to the coupling to 
continuum "

–  At Nmax=8 6He unbound within the 
NCSM, bound in the three-cluster 
NCSM/RGM by ~1 MeV"

–  Extrapolated NCSM beyond Nmax=12: 
6He bound by ~ 1MeV"
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Experiment: 
P-wave resonance at  
Expt. ~ 1.27(10) MeV (Bohlen et al.) 
 S-wave attraction 
Expt.  a0~ -10 fm (Chen et al.)   
           a0~ -3 fm (Al Falou, et al.) 
  
 
 
 
 
 

Experiment: 
P-wave resonance at  
Expt. ~ 1.27(10) MeV (Bohlen et al.) 
 S-wave attraction 
Expt.  a0~ -10 fm (Chen et al.)   
           a0~ -3 fm (Al Falou, et al.) 
  
Calculation (preliminary): 
No bound state 
P-wave resonance at ~1.6 MeV 
Attraction in the S-wave, a0 ~ -13 fm  
SRG-N3LO NN too attractive? 3N needed… 
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Structure of the exotic 9He nucleus 

•  NCSM/RGM calculation of n-8He 
–  SRG-N3LO NN potential with Λ = 2.02 fm-1 

–  8He 0+ g.s. and 2+, 1- excited states included 
–  Up to Nmax= 13 

exotic nuclei 

8He 
n 



Conclusions and Outlook 

•  With the NCSM/RGM approach we are extending the ab initio effort to 
describe low-energy reactions and weakly-bound systems 

•  The first 7Be(p,γ)8B ab initio S-factor calculation  

•  Deuteron-projectile results with SRG-N3LO NN potentials:  
–   d-4He scattering 
–  First ab initio study of 3H(d,n)4He & 3He(d,p)4He fusion              

   

•  Under way: 
–  n-8He scattering and 9He structure 
–  3He-4He and 3He-3He scattering calculations  
–  Ab initio NCSM with continuum (NCSMC)  
–  Three-cluster NCSM/RGM and treatment of three-body continuum 

–  Inclusion of NNN force  

•  To do: 
–  Alpha clustering: 4He projectile 
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