Study of neutron-rich nuclei via heavy-ion double-charge exchange reactions

Motonobu Takaki (CNS, University of Tokyo)

Neutron-rich nuclei

🟺 Exotic phenomena

- disappearance of conventional magic numbers
- neutron skin and halo structures
- intruder states

experimental approach for neutron-rich nuclei

Double-Charge eXchange (DCX) reactions

Heavy-Ion DCX (HIDCX)

HIDCX reactions can transfer spin and isospin by two units.

- Missing mass measurement
 ground state
 bound and/or unbound states
 - → one shot measurement
- HIDCX at an intermediate energy
 - simple reaction process
 - angular distributions
 - sensitive to multipolarities
- 🗳 As a First step

¹²C,⁹Be(¹⁸O,¹⁸Ne)¹²Be,⁹He

¹²Be and ⁹He

The nucleus ¹²Be
 disappearance of the N=8 magicity
 intruder 1⁻ state
 low-energy isomer state
 extensively studied

- ✓ The nucleus ⁹He
 - large A/Z ratio (= 4.5)
 - unbound nucleus
 - spin-parities are not fixed

(¹⁸O,¹⁸Ne) reaction

- Ground states of ¹⁸O and ¹⁸Ne are among the same super-multiplet.
 - simple transition process
 - large transition probability
- ¹⁸O is a stable isotope.
 - high intensity

¹²C,⁹Be(¹⁸O,¹⁸Ne) experiment @ RCNP

Particle Identification

Excitation energy spectrum of ¹²Be

Ground and some excited states were clearly observed.
The first observation of the states via the HIDCX at an intermediate energy.

Capability of spin-parities assignment

Sensitive to multipolarities

If the projectile transition is restricted between initial 0⁺ state and final 0⁺ state ($\Delta L=0$, $\Delta S=0$), only natural parity states are excited in the residual nuclei.

\rightarrow spin-parity assignment

Reaction calculation of the HIDCX

Dominance of double Gamow-Teller transition

Probing configuration mixing

Mixing degree between p- and sd-shell configurations in 0⁺ states of ¹²Be

The larger cross section for the second 0^+ state is qualitatively consistent with earlier studies.

Future, MD analysis enables us the more quantitative discussion. $\rightarrow p$ -shell contribution to the 0⁺ states in ¹²Be can be deduced.

Result of ⁹He

Small $B(GT) \times B(GT)$ value

Overview of our HIDCX studies

Summary

- We have developed β^+ -type HIDCX reaction as another probe for light neutron-rich nuclei.
- ➡ First experiment, ¹²C(¹⁸O,¹⁸Ne)¹²Be reaction measurement, was succeeded.
 - **–** Ground and some excited states of ¹²Be were observed.
 - The angular distributions have the sensitivity to multipolarities.
- Final The development of the reaction calculation method for the HIDCX reaction is in progress.
- Any states in ⁹He were not observed due to the small B(GT) value.
- Final The HIDCX reaction can be a powerful spectroscopic tool for unstable nuclei. The present study is the first step.

Collaborators

CNS, University of Tokyo

S. Shimoura, K. Yako, S. Ota, S. Michimasa, S. Noji, H. Tokieda, H. Miya, S. Kawase T.T. Leung, K. Kisamori, C.S. Lee, R. Yokoyama, T. Fujii, Y. Kubota, M. Kobayashi

RIKEN Nishina Center

H. Matsubara, T. Uesaka, M. Sasano, J. Zenihiro, M. Dozono

RCNP, Osaka University

N. Aoi, A. Tamii, K. Takahisa, T. Suzuki, T. Hashimoto, K. Miki

Kyoto University

T. Kawabata

Kyushu University

S. Sakaguchi

🏺 Miyazaki University

Y. Maeda

Thank you for your attention.