Mead-field calculation including proton-neutron mixing —toward proton-neutron pairing—

Koichi Sato (RIKEN) 佐藤 弘一 (理研)

Collaborators:

Takashi Nakatsukasa (RIKEN)

Wojciech Satuła (Univ. of Warsaw)

Jacek Dobaczewski (Univ. of Warsaw /Univ. of Jyvaskyla)

Nuclear DFT for proton-neutron pairing and its application

(e.g. GT transition strength)

• Proton-neutron pairing: Goodman, Adv. Nucl. Phys.11, (1979) 293.

Pairing between protons and neutrons (isoscalar T=0 and isovector T=1)

• Proton-neutron mixing:

Quasiparticles are mixtures of protons and neutrons

EDF with an arbitrary mixing between protons and neutrons

$$\rho_{\tau}(\alpha,\beta) = \left\langle \Psi \left| c_{\alpha,\tau}^{+} c_{\beta,\tau} \right| \Psi \right\rangle \longrightarrow \qquad \rho_{\tau\tau'}(\alpha,\beta) = \left\langle \Psi \left| c_{\alpha,\tau}^{+} c_{\beta,\tau'} \right| \Psi \right\rangle$$
$$\tau = p, n$$

Related (?) physics:

Wigner energy, β decays and, in particular, superallowed β decays, interplay between T = 0 and T = 1 states in N = Z nuclei, isospin mixing and mirror symmetry breaking, α decay and α clustering, moments of inertia, deformation properties, etc.

Perlinska et al, PRC 69 , 014316(2004)

For a review on *p-n* pairing, see A. Afanasjev, arXiv:1205.2134

As a first step, we consider p-n mixing on the Hartree-Fock level without pairing.

• Extension of the single particle states

$$\begin{split} \left| \psi_{i,n} \right\rangle &= \sum_{\alpha} a_{i,\alpha}^{(n)} \left| \alpha, n \right\rangle \\ \left| \psi_{j,p} \right\rangle &= \sum_{\alpha} a_{j,\alpha}^{(p)} \left| \alpha, p \right\rangle \end{split} \longrightarrow \begin{split} \left| \psi_{i} \right\rangle &= \sum_{\alpha} a_{i,\alpha}^{(n)} \left| \alpha, n \right\rangle + \sum_{\beta} a_{i,\beta}^{(p)} \left| \beta, p \right\rangle \\ &= 1, \dots, A \end{split}$$

• Extension of the Skyrme density functional

$$E^{Skyrme}[\rho_n, \rho_p] \longrightarrow E^{Skyrme'}[\rho_0, \vec{\rho}] \qquad \begin{array}{c} \text{Invariant under rotation in} \\ \text{isospace} \\ \text{isoscalor} \\ \text{isovector} \end{array}$$

Perlinska et al, PRC 69 , 014316(2004)

$$\rho_{0} = \rho_{n} + \rho_{p} \qquad \rho_{1} = \rho_{np} + \rho_{pn}$$

$$\rho_{2} = -i\rho_{np} + i\rho_{pn}$$

$$\rho_{3} = \rho_{n} - \rho_{p}$$

• Extension of the single particle states

$$|\psi_{i,n}\rangle = \sum_{\alpha} a_{i,\alpha}^{(n)} |\alpha, n\rangle$$

$$|\psi_{i,p}\rangle = \sum_{\alpha} a_{j,\alpha}^{(p)} |\alpha, p\rangle \qquad \longrightarrow \qquad |\psi_{i}\rangle = \sum_{\alpha} a_{i,\alpha}^{(n)} |\alpha, n\rangle + \sum_{\beta} a_{i,\beta}^{(p)} |\beta, p\rangle$$

$$i=1,...,A$$

Extension of the Skyrme density functional 0

$$E^{Skyrme}[\rho_n, \rho_p] \longrightarrow E^{Skyrme'}[\rho_0, \vec{\rho}]$$
 Invariant under rotation isospace

isoscalar isovector

in

Perlinska et al, PRC 69, 014316(2004)

It is a hard task to develop a code from scratch ...

Use of a existing HFB code

HFODD(1997-)

http://www.fuw.edu.pl/~dobaczew/hfodd/hfodd.html

J. Dobaczewski, J. Dudek, Comp. Phys. Comm 102 (1997) 166.

- J. Dobaczewski, J. Dudek, Comp. Phys. Comm. 102 (1997) 183.
- J. Dobaczewski, J. Dudek, Comp. Phys. Comm. 131 (2000) 164.
- J. Dobaczewski, P. Olbratowski, Comp. Phys. Comm. 158 (2004) 158.
- J. Dobaczewski, P. Olbratowski, Comp. Phys. Comm. 167 (2005) 214.
- J. Dobaczewski, et al., Comp. Phys. Comm. 180 (2009) 2391.
- J. Dobaczewski, et al., Comp. Phys. Comm. 183 (2012) 166.
- Skyrme energy density functional
- Hartree-Fock or Hartree-Fock-Bogoliubov
- No spatial & time-reversal symmetry restricted
- Harmonic-oscillator basis
- Multi-function (CHFB, Cranking, angular mom. projection, isospin projection, finite temperature,....)

Road map

We have developed a code for Hartree-Fock calculation with proton-neutron mixing and performed some test calculations.

Test calculation

p-n mixing for EDF is correctly implemented?

w/o Coulomb force (and w/ equal proton and neutron masses)

 $\mathcal{H} = \mathcal{H}_{kin} + \mathcal{H}_{Skyrme}$:invariant under rotation in isospin space

How to control the isospin direction ?

Isocranking calculation $\hat{H}' = \hat{H} - \vec{\lambda} \cdot \vec{T}$

With Coulomb interaction

Calculation for A=14 isobars

- w/ p-n mixing and no Coulomb
- w/ p-n mixing and Coulomb

Figure 1-7 The level schemes for the nuclei with A = 14 are based on the compilation by F. Ajzenberg-Selove and T. Lauritsen, *Nuclear Phys.* 11, 1 (1959), on the results given by D. E. Alburger, A. Gallmann, J. B. Nelson, J. T. Sample, and E. K. Warburton, *Phys. Rev.* 148, 1050 (1966), and on a private communication by G. Ball and J. Cerny (August, 1966). The relative energies represent atomic masses.

Bohr & Mottelson, "Nuclear Structure" vol.1

A=14 without Coulomb

<u>Calc. w/o Coulomb force and p-n mixing</u> (Normal HF w/o Coulomb)

¹⁴ C Z=6, N=8		¹⁴ O Z=8, N=6						
$T_z =$	= 1			$T_{z} = -1$	°Г		14C	
Neutron single-particle energy:			Neutron single-particle energy		-5		· · · · ·	
NO)	ENERGY		NO)	ENERGY	-10 Bies -15		·	
1) 2)	-32.919 -32 919		1) 2)	-38.207 -38.207	-20 - el		-	
3)	-16.520 -16 520		2) 3) 4)	-21.447	-25 - bartio -30 -		-	
5)	-16.446 -16.446		5)	-21.402	bu _{is -35} -			
7) 8)	-9.6810 -9.6810		7) 8)	-14.541 -14.541	₋₄₀ L	π	ν	
			0) 14.041			140		
Proton single-particle energy			Proton	single-particle energy:	-5		- -	
NO)	ENERGY		NO)	ENERGY	₩ ⁻¹⁰		· · · ·	
1)	-38.207		1)	-32.919	-15 -			
2)	-38.207		2)	-32.919	ы -20 -			
3)	-21.447		3)	-16.520	<u>e</u> -25 -			
4)	-21.447		4)	-16.520	part			
5)	-21.402		5)	-16.446	<u>-30</u>		-	
0) 7)	-21.4UZ -14.541		0) 7)	-10.440 -0.6810	.us -35 -		-	
8)	-14.541		8)	-9.6810	-40	π	$\overline{\nu}$	

Total energy: -114.611699

Total energy: -114.611699

in MeV

Result of the calculation with $|\vec{\lambda}| = 5.5$ $\theta = 0$

w/ p-n mixing and no Coulomb

A=14 with Coulomb

With Coulomb

 $U^{\it Coulomb}(au_z)$:violates isospin symmetry

The total energy is now dependent on Tz

but independent on Tx and Ty

w/ p-n mixing and Coulomb

The degree of p-n mixing depends of s.p. states

14O

- Total and s. p. energies depend on Tz
- Total isospin and lambda are not parallel
- Protons and neutrons are not mixed for $\theta = 0^{\circ}$ and $\theta = 180^{\circ}$

(Neither Coulomb nor isocranking term contains Tx and Ty.)

Tz dep. of the total energy and comparison with data

exp.: binding energy (+excitation energy for 14N) calc.: calculated for every 15 deg. of θ bet. (0,180)

Results for A=48

Can we make odd isospin states (T=1, 3, ...) by isocranking ?

Yes, but we need a 1p1h configuration.

$$\hat{H}^{\omega} = \hat{H}_{sp} - \bar{h}\omega\hat{t}_{x}$$
equidistant $[e_{i} = i\delta e]$

Four-fold degeneracy at ω =0

At each crossing freq., $\Delta T_x = 2$

$$T_z = T_y \equiv 0$$
, i.e., $\Delta T_x \equiv \Delta T$

To get T=1,3, •• states, we make a 1p1h excitation Calculation for A=48 nuclei w/o Coulomb

Calculation for A=48 nuclei with Coulomb

Isocranking for 48Cr(Tz=0)

With Coulomb, we have to adjust the isocranking frequency depending on the tilting angle. Otherwise, the calculation often diverges.

Near the crossing frequency, the "ping-pong" divergence often occurs.

The HF iteration procedure gives oscillating results in every second iteration.

The level ordering changes alternately.

A more efficient way

 (\checkmark) Diabatic blocking using isospin

Specify which player should take the ping-pong ball at each iteration.

 (\checkmark) Constraint on isospin with the augmented Lagrangian method.

Linear and quadrutic constraint terms

A. Staszczak, Eur. Phys. J. A 46, 85–90 (2010)

Road map

Isospin projection with p-n mixing

Why isospin projection needed?

> There is unphysical isospin mixing inherent to MF approaches

For usual HF, the isospin projection has been implemented.

PHYSICAL REVIEW C 81, 054310 (2010)

Isospin-symmetry restoration within the nuclear density functional theory: Formalism and applications

W. Satuła,¹ J. Dobaczewski,^{1,2} W. Nazarewicz,^{1,3,4} and M. Rafalski¹

Isospin symmetry of atomic nuclei is explicitly broken by the charge-dependent interactions, primarily the Coulomb force. Within the nuclear density functional theory, isospin is also broken spontaneously. We propose a projection scheme rooted in a Hartree-Fock theory that allows the consistent treatment of isospin breaking

One typical example : g. s. of odd-odd N=Z nuclei

(Coulomb force & time-odd polarization neglected for simplicity)

(isospin & time-reversal symmetries)

spatial w.f. : sym. spin w.f. : sym. (S=1) isospin w.f. : antisym. (T=0) spatial w.f. : sym. spin w.f. : $|\uparrow\rangle|\downarrow\rangle$ S=0 &S=1 mixed isospin w.f. : T=0 &T=1 mixed

Proton-neutron pairing

- ♦ Both T=0 and T=1 p-n pairings
- Formalism of DFT with p-n pairing correlations

Perlinska et al, PRC 69 , 014316(2004)

- Isospin restoration for HFB states
- Non-rotating and rotating nuclei (MoI, deformation properties, etc. ..)

QRPA calculation with Finite amplitude method (FAM)

An efficient method for QRPA calculations

Nakatsukasa, PRC **76**, 024318 (2007) Avogadro & Nakatsukasa, PRC **84**, 014314 (2011) Stoitsov et al., PRC **84**, 041305(R) (2011)

No need to evaluate A and B matrices

Hot spot in conventional QRPA codes

- Simple modification to transform a HFB code to a QRPA code
- Successful applications (3D RPA, spherical QRPA, axial QRPA)

Summary

We have extended the Skyrme-Hatree-Fock code including the p-n mixing and performed test calculations for A=14 & A=48 isobars.

Ongoing

A=48 system (T=0 even-even nucleus and its isobars)

Tests for constrained HF on isospin and diabatic blocking

Future

Isospin projection

Proton-neutron pairing (T=0 & T=1)

Charge exchange reaction (QRPA calculation with FAM)

A very wide applicability expected