1st RIBF Workshop, RIKEN, May 24, 2012

R-Process: Astro. + Theory Side

Nuclear physics helps understand the origin of heavy elements and astrophysics (SNe, GRB ...).

Taka KAJINO

National Astronomical Observatory Department of Astronomy, University of Tokyo

PURPOSE

Eluciate important nuclear properties of the nuclei NOT ONLY between neutron-rich waiting points and the 1st, 2nd, and 3rd abundance peaks BUT ALSO below and beyond the peak nuclei:

Heavy Nuclei (Fe < A)

- Masses $Q_n \sigma(n,\gamma)$: E1-strength
- β -decay half lives: $\tau_{1/2} \propto Q_{\beta}^{5}$
- β-delayed nenuton-emission
- Asym fission, both β-delayed or n-captured

Lighter-to-Intermediate Nuclei (A < Fe)

- p, n, α -induced react., $\sigma(n,\gamma)$ vs. $\sigma(\alpha,n)$
- Roles of v's in SN-nucleosynthesis

Solar System Abundance

Candidate Astrophysical Sites for R-Process

Supernova Candidate	Physical Conditions			Expected	
	S	Ye	$\overset{\bullet}{M}_r/(SN)$	Event Rate	Evaluation
a. v-Driven Wind	~ 100	0.45	10 ⁻⁵ M⊙	10 ⁻² /yr/galaxy*	O Solar∼Metal poor☆ O Universality × No explosion model
b. Binary Neutron Star Merger	~ 1	0.1	10 ⁻² M _⊙	<10 ⁻⁵	× Only recently (solar) but NO metal poor ☆
c. MHD Jet	~ 10	0.1~0.4	10 ⁻³ M⊙	< 10 ⁻⁴	 O Solar ~ Metal poor☆ × Universality △ Explosion model, but special condition
Gamma-ray Burst Candidate	amma-ray Burst Candidate			O Only Metal poor☆ Broken Universality	
d. Hypernova	1-100	0 0.1	10 ⁻¹ M _⊙	< 10 ⁻⁶	△ Explosion model, but special condition

Solar-System r-abundance = $10^3 M_{\odot}$

* consistent with observed SN frequency

 $10^{-5}M_{\odot} \times 10^{-2} \times 10^{10} = 10^{3}M_{\odot}$ Cosmic age

Magic Number and Slow/Rapid Neutron-Capture Processes from Text Book (Kubono & Kajino, 2010)

Supernova **Nucleosynthesis Simulation**

Movie by S. Chiba & T. Kajino

v-Pair Heated Collapsar Model Nakamura, Sato, Harikae, Kajino, & Mathews, ApJ (2012).

100

80

60

40

20

0

0

N

Proton Number

Neutrino-driven Wind Model explains UNIVERSALITY !

Otsuki, Tagoshi, Kajino & Wanajo 2000, ApJ 533, 424 Wanajo, Kajino, Mathews &

t = 0

Neutrino-driven wind forms right after SN core collapse.

 $n + \alpha + p$

Identified Important Reaction Flow Paths

⁷Li(n, γ)⁸Li(α ,n)¹¹B

LaCognata et al., ApJL (2010).

⁸Li(α,n)¹¹B

1.570 1.327

Discrepancy Inclusive Data >> Exclusive Sum

- □ LaCognata et al., Phys. Lett. B664 (2008), 157.
- Boyd et al. Phys. Rev. Lett. 68 (1992), 1283. \bigcirc
- Gu et al., Phys. Lett. B343 (1995), 31.
- Ishiyama et al., Phys. Lett. B640 (2006), 82. Hashimoto et al., Phys. Lett. B674 (2009), 276.

NON-LINEAR Effect of " α **-process**-**r**-**process**"

Nucleosynthesis proceeds: $NSE \rightarrow \alpha$ -process \rightarrow r-process

New Waiting Points in Light-Mass Nuclei

RIKEN-RIBF New Ring Cyclotron (since 2007)

Magic Number and Neutron-Capture Processes From Text Book (Kubono & Kajino)

β -decays are FASTER than FRDM+QRPA theory !

Nishimura et al., PRL 106 (2011) 052502 model FRDM = Finite Range Droplet Mass

DEFICIENCY problem at A = 105-120

Is this caused by "Nuclear Physics" or "Astrophysics"?

MHD-Jet SN Model

Nishimura, Kajino, Mathews, Nishimura & Suzuki (2012), PR C85, 048801 New RIKEN data of β-lives (& Q-values) only slightly improve this deficiency, but not enough !

Nishimura et al. (RIKEN-RIBF), PRL (2011).

Candidate Astrophysical Sites for R-Process

Supernova Candidate	Physical Conditions			Expected	
	S	Ye	$\overset{\bullet}{M}_r/(SN)$	Event Rate	Evaluation
a. v-Driven Wind	~ 100	0.45	10 ⁻⁵ M⊙	10 ⁻² /yr/galaxy*	O Solar∼Metal poor☆ O Universality × No explosion model
b. Binary Neutron Star Merger	~ 1	0.1	10 ⁻² M _⊙	<10 ⁻⁵	× Only recently (solar) but NO metal poor ☆
c. MHD Jet	~ 10	0.1~0.4	10 ⁻³ M⊙	< 10 ⁻⁴	 O Solar ~ Metal poor☆ × Universality △ Explosion model, but special condition
Gamma-ray Burst Candidate	amma-ray Burst Candidate			O Only Metal poor☆ Broken Universality	
d. Hypernova	1-100	0 0.1	10 ⁻¹ M _⊙	< 10 ⁻⁶	△ Explosion model, but special condition

Solar-System r-abundance = $10^3 M_{\odot}$

* consistent with observed SN frequency

 $10^{-5}M_{\odot} \times 10^{-2} \times 10^{10} = 10^{3}M_{\odot}$ Cosmic age

New Insights into the Astrophysical r-Process W. Aoki, R.N. Boyd, M. Famiano, T. Suda, and T. Kajino

Aoki et al., ApJ 639 (2006), 897.

UNIVERSALITYの亜種の発見 (Honda, Aoki, + すばる望遠鏡HDSチーム)

THE ASTROPHYSICAL JOURNAL, 729:46 (18pp), 2011 March 1

UNCERTAINTIES IN THE vp-PROCESS: SUPERNOVA DYNAMICS VERSUS NUCLEAR PHYSICS

SHINYA WANAJO^{1,2}, HANS-THOMAS JANKA², AND SHIGERU KUBONO³

THE ASTROPHYSICAL JOURNAL LETTERS, 744:L14 (4pp), 2012 January 1

THE r-PROCESS IN METAL-POOR STARS AND BLACK HOLE FORMATION

R. N. BOYD¹, M. A. FAMIANO², B. S. MEYER³, Y. MOTIZUKI⁴, T. KAJINO^{5,7}, AND I. U. ROEDERER⁶

The r-PROCESS IN THE NEUTRINO-DRIVEN WIND FROM A BLACK-HOLE TORUS

New Insights into the Astrophysical r-Process W. Aoki, R.N. Boyd, M. Famiano, T. Suda, and T. Kajino

Our SUBARU-HDS group discovered an oldest Pop. II Halo Star in the Milky Way !

[Fe/H] = -5.4 ! 1/250,000 x Solar-Fe

SUBARU Telescope

GRB Nucleosynthesis Model Prediction

Various Neutrino-Sources in Nature

PURPOSE

1. To study supernova nucleosynthesis and v-oscillation.

1st, SN-temperature, 2nd, v-oscillation physics.

2. To constrain the total v-mass from cosmology.

Challenge of the Century

Universal expansion is most likely accelerating and flat ! $\Omega_{\rm B} + \Omega_{\rm CDM} + \Omega_{\Lambda} = 1$

What is the CDM, Ω_{CDM} = 0.23, and Dark Energy, Ω_Λ = 0.73 ?
 CMB including v-mass: Yamazaki, Kajino, Mathews & Ichiki, Phys. Rep. (2012), in press.

• Is BARYON, $\Omega_{\rm B}$ = 0.04, well understood ?

BBN with Axions + **SUSY** to solve **Dark Matter Problem & Li Problem**: Kusakabe, Balantekin, Kajino & Pehlivan, (2012) arXiv:1202.560.

SUSY-DM \Rightarrow "beyond the Standard Model" \Rightarrow m_v \neq 0 is the unique signal !

Total v mass, <u>Hierarchy</u>, details of mixing nature ?

Purpose

"Supernova v-Process Nucleosynthesis" to determine the MASS HIERARCHY of Active Neurinos.

"KNOWN" of Neutrino Oscillations

KAMIOKANDE, SK, KamLand (reactor v), SNO determined Δm_{12}^2 and θ_{12} uniquely, and also SK (atmospheric v) determined Δm_{23}^2 and θ_{23} uniquely.

Tantalum (180,181Ta)

¹⁸¹Ta_g(stable), ¹⁸⁰Ta_g(unstable, $\tau_{1/2} = 8h$), ¹⁸⁰Ta^m(isomer, $\tau_{1/2} > 10^{15}y$)

The rarest isotope in the Universe!

Origin of ¹⁸⁰Ta was unknown. "SN v-process", overproduces ¹⁸⁰Ta !

¹⁸⁰Ta-genesis needs Quantum Phys. + SN Hydro-dyn.

Solar-¹⁸⁰Ta is all "**ISOMER**" with $T_{1/2} > 10^{15}$ y!

- Long lived ¹⁸⁰Ta^m is excited in hot SN-photon bath.
- Intermediate states are depopulated to the ground state, which decays in 8 hours.
- We solved dynamical "explosive SN-nucleosynthesis" coupled with "quantum transitions" simultaneously. (Hayakawa, et al. 2010, PR C81, 052801®; PR C82, 058801)

v-Process and Structure of ¹⁸⁰Ta

Saitoh et al. (NBI group), NPA 1999, + Dracoulis et al. (ANU group), PRC 1998, +

05

15

Excitation Energy [MeV]

25

Result from v-Nucleosynthesis

T. Hayakawa, T. Kajino, S. Chiba, and G.J. Mathews, Phys. Rev. C81 (2010), 052801®

About 40% ¹⁸⁰Ta^m survives in supernova explosion.

Then, both ¹³⁸La and ¹⁸⁰Ta abundances can be consistently reproduced by the CC-int. of v_e and $\overline{v_e}$ of

R-process Nucleosynthesis

K. Nakamura. S. Sato. S. Harikae. T. Kajino and G.J. Mathews (2012), submitted to ApJ.

relative abundance

Various roles of v's in SN-nucleosynthesis

Galactic Chemical Evolution of ⁹Be & ^{10,11}B

Supernova v-Process to estimate Tv_{μ} , and Tv_{τ} R-process, ¹⁸⁰Ta/¹³⁸La $\Rightarrow Tv_e = 3.2$ MeV, $T\overline{v_e} = 4$ MeV Astron. GCE of ¹¹B & ¹¹B/¹⁰B $\Rightarrow Tv_{\mu} = Tv_{\tau} = 6$ MeV

v-A reaction cross sections?

(v.v'n

(v,v'p)

11B

(α,γ)

11**C**

(e-,ve)

(α,γ)

7Li

(α,γ)

Be

⁴He

3H

(α,γ)

(v,v'n)

(v,v'p)

Haxton's SM cal. (Woosley et al. ApJ. 356 (1990), 272)

Suzuki's new SM cal. with NEW Hamiltonian Suzuki, Chiba, Yoshida, Kajino & Otsuka, PR C74 (2006), 034307.

Suzuki, Fujimoto & Otsuka, PR C67, 044302 (2003) → SFO ¹²C: SFO Hamiltonian = Spin-isospin flip int. with tensor

force to explain neutron-rich exotic nuclei.

- μ-moments of p-shell nuclei
- GT strength for ${}^{12}C \rightarrow {}^{12}N$, ${}^{14}C \rightarrow {}^{14}N$, etc. (GT)

v-¹⁸⁰Ta,¹³⁸La,⁹²Nb,⁴²Ca,¹²C,⁴He... cross sections calculated in Quasi-particle Random Phase Approximation

Cheoun, Ha, Hayakawa, Kajino & Chiba, PRC82 (2010), 035504; Cheoun, Ha, Kim, & Kajino, J. Phys. G37 (2010) 055101; Cheoun, Ha & Kajino, PRC 83 (2011), 028801

GT + Spin-Multipole transitions !

v-beam is not yet available for v-A X-section studies!

We can use Electro-Magnetic PROBE !

Similarity between Electro-Magnetic & Weak Interactions

EM-current = \vec{V} , Weak-current = $\vec{V} \cdot \vec{A}$ ⁵⁸Ni(³He, *t*)⁵⁸Cu E = 140 MeV/uY. Fujita et al., EPJ A 13 ('02) 411. Y. Fujita et al., PRC 75 ('07) ${}^{58}\text{Ni}(p, n){}^{58}\text{Cu}$ $E_n = 160 \text{ MeV}$ J. Rapaport et al., NPA ('83) Counts 2 8 10 12 14 0 6 Excitation Energy (MeV)

 $\vec{A} \approx g_A \vec{\sigma}$ Weak operator in non-relativistic limit

 $\vec{V} \approx g_V^{IV} \frac{i}{2m} \vec{\sigma} \times \vec{q} + \frac{g_V}{2m} (\vec{p} + \vec{p}')$

Gamow-Tellar operator = $\vec{\sigma} \tau_+$ Spin-Multipole operator $\vec{F} \vec{\sigma} \times \gamma(L) J^J \tau_{\pm}$

★ Charge-Exchange Reaction ★ Photo-induced Reaction

Astrophysical Applications of Charge-Exchange Reactions at RIKEN

r-pr

oces

Ν

Double β decay – v mass – Astro-Cosmology Connection

K. Yako et al., PRL 103 (2009) 012503.

B(GT^{+/-}) distribution Experiment Shell model (theory) (RCNP, Osaka) Shell model ... з ${}^{48}Ca(p,n){}^{48}Sc$ with quenched operator (MeV^{-1}) MD analysis Spectra agree qualitatively 2 Horoi et al. up to ... full fp, $Q_F = 0.6$ (p,n) : $E_x = 15 \text{ MeV}$ 8 MeV (n,p): dB(GT + IVSM)Strengths beyond 0.4 B+ dE ... underestimated. $^{48}\mathrm{Ti}(n,p)^{48}\mathrm{Sc}$ 0.3 (n,p) channel : 0.2 $\Sigma B(GT^+;exp) = 1.9 \pm 0.3...$ (w subtraction of IVSM) 0.1 0.0 10 30 20 $\Sigma B(GT^+;ShellModel(Q_F=0.6)) = 0.9$ Excitation energy (MeV)

SN-Neutrino Oscillation (MSW) Effect on v-Process

Conversion Probability

Conversion Probabilities Conversion Probabilities 1 ν_{e} v_e 0.9 0.9 $v_{\mu}v_{\tau}$ $v_{\mu}v_{\tau}$ 0.8 0.8 0.7 0.7 Conversion Probability 0.6 0.6 ν_{e} 0.5 0.5 0.4 0.4 0.3 0.3 $v_{\mu}v_{\tau}$ v_e 0.2 $v_{\mu}v_{\tau}$ 0.2 0.1 0.1 0.01 01 0.01 Radius (solar radius) Radius/R_{sun} Radius solar radius]

Adiabatic

Non-Adiabatic

Parameters: 25M_{solar} SN model (Hashimoto & Nomoto 1999)

Center

 $-\sin^2 2\theta_{13} = 0.04$

Conversion Probability

Center

- $-\Delta m_{13}^2 = 2.4 \times 10^{-3} \text{ eV}^2$
- $L_v = 3x10^{53}$ erg, $\tau_v = 3$ sec Fermi-Dirac distr. of v-spectrum, so that the observed ¹¹B abundance - E_{ve} =12MeV, E_{ve} =20MeV, $E_{vu\tau}$ =24MeV in Supernova Nucleosynthesis is reproduc

Oscillation (MSW) Effect on Supernova v-Process

SN II: Yoshida, Kajino & Hartman, Phys. Rev. Lett. 94 (2005), 231101. SNIc + II: Nakamura, Yoshida, Shigeyama, Kajino, ApJL 718 (2010), L137.

Our Theoretical Prediction

T2K & MINOS results (2011)

 $Sin^{2}2\theta_{23}=1$

RENO, Daya Bay and Double Chooz results (2012)

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

Measuring θ_{13} with **Reactor Anti-neutrinos**

$$\sin^2 2\theta_{13} = 0.103 + -0.013 \text{ (st)} + -0.011 \text{ (sys}$$

 $\rightarrow \theta_{13} = 8.88 \text{ deg}$

Reactor neutrino energies are too low to produce muons. Hence this is an antineutrino disappearance experiment (also no matter effects).

Mass Hierarchy, Normal or Inverted ?

Mathews, Kajino, Aoki and Fujiya, Phys. Rev. D85,105023 (2012).

Predicted ⁷Li/¹¹B-Ratio **Normal Mass Hierarchy** 0.9 **Excluded** by SiC X-Grains 8.0 Excluded by T2K, MINOS, RENO, **Daya Bay & Double Chooz Inverted Mass** 0.7 **Hierarchy** 0.6 no mix 1.111 10^{-2}

First Detection of ⁷Li/¹¹B

W. Fujiya, P. Hoppe, and U. Ott, ApJ 730, L7 (2011).

¹¹B and ⁷Li were measured in SiC presolar X-grains which are made of Supernova dusts.

"Inverted Mass Hierarchy" is more preferred !

Neutrino Hamiltonian: $H_{tot} = H_v + H_{vv}$

<u> H_{ν} = Mixing and Interaction with Background Electrons</u>

MSW (Matter) Effect: Mikeheev-Smirnov-Wolfebstein (1978, 1985)

$$H_{\nu} = \frac{1}{2} \int d^3 p \left(\frac{\delta m^2}{2p} \cos 2\theta - \sqrt{2} G_F N_e \right) \left(a_x^{\dagger}(p) a_x(p) - a_e^{\dagger}(p) a_e(p) \right) \qquad \mathsf{P}_1 \quad \mathsf{V}_e \qquad \qquad \mathsf{P}_1 \quad \mathsf{V}_x \\ + \frac{1}{2} \int d^3 p \frac{\delta m^2}{2p} \sin 2\theta \left(a_x^{\dagger}(p) a_e(p) + a_e^{\dagger}(p) a_x(p) \right), \qquad \qquad \mathsf{X}$$

 $\underline{H}_{\nu\nu} = Self-Interaction$ Self-Interaction

 $H_{\nu\nu} = \frac{G_F}{\sqrt{2}V} \int d^3p \, d^3q \, R_{pq} \left[a_e^{\dagger}(p)a_e(p)a_e^{\dagger}(q)a_e(q) + a_x^{\dagger}(p)a_x(p)a_x^{\dagger}(q)a_x(q) + a_x^{\dagger}(p)a_e(p)a_x^{\dagger}(q)a_x(q) + a_x^{\dagger}(p)a_e(p)a_x^{\dagger}(q)a_x(q) + a_x^{\dagger}(p)a_x(p)a_x^{\dagger}(q)a_e(q) \right],$

 N_e = electron density

Quest for EXACT Many-Body SOLUTION !

"Invariants of collective neutrino oscillations" Y. Pehlivan, A.B. Balantekin, T. Kajino & T. Yoshida Phys. Rev. D84, 065008 (2011)

v self-interaction (Quantum Effect)

Neutrino Mass in Physics & Cosmology

• $0\nu\beta\beta$ COUORE, NEMO3, EXO, KamLAND Zen:

 $|\sum U_{e\beta}^2 m_{\beta}| < 0.3 \text{ eV} \implies 0.01 \sim 0.05 \text{ eV} ! (future)$

CMB Anisotropies + LSS

Σm_v< 0.28 eV (95% C.L.): WMAP-7yr +SPT (Benson et al. arXiv:1112.5435)

< 0.36 eV (95%C.L.): WMAP-7yr + HST + CMASS (Putter et al. arXiv:1201.1909)

Recent more complete analysis:

Cosamic Magnetic Field + Neutrino Mass (+ SZ effect + integrated SW effect + Neutrino free streaming)

$\sum m_v < 0.2 \text{ eV}$ (2 σ , B<2nG)

Yamazaki, Kajino, Mathews & Ichiki, Phys. Rep. (2012), in press; PR D81 (2010), 103519; D77, (2009) 043005.

By D.Page ANE Hadronic Structure of compact starsonogeneous

Interactions between Hadrons (p, n, Λ , Σ ...) and Lepton (e,v...) at High- ρ and High-T in QCD and Relativistic Field Theory

Maruyama, Kajino, Yasutake, Cheoun, Ryu, PRD83 (2011), 081303.

RMF theory leads to appearance of Λ in magnetized neutron star.

v-scattering and absorption.

Neutrino scattering and absorption process inside the magnetized neutron star (10¹⁵G) is asymmetric. ⇒ ~ 2 % asymmetric v-emission ! ⇒ Enough Asymmetry for Pulsar-Kick !

Why are all amino acids on the Earth left-handed? Chitrality, earth/solar origin or universal in cosmos?

- Neutrinos are all left-handed!
- ★ Supernovae with strongly magnetized neutron star or BH emit intensive flux of neutrinos over 10¹⁰ yrs!
- ★ SN ejecta including ¹⁴N interact with neutrino under strong magnetic field!
- ★ Neutrino-¹⁴N coupling is asymmetric & chiral selective!

Boyd, Kajino, & Onaka (Astrobiology 10 (2010), 561-568) suggest L-handed chirality of amino acids is UNIVERSAL !

SUMMARY-1

Eluciate important nuclear properties of the nuclei NOT ONLY between neutron-rich waiting points and the 1st, 2nd, and 3rd abundance peaks BUT ALSO below and beyond the peak nuclei:

Heavy Nuclei (Fe < A)

- Masses $Q_n \sigma(n,\gamma)$: E1-strength
- β -decay half lives: $\tau_{1/2} \propto Q_{\beta}^{5}$
- β-delayed nenuton-emission
- Asym fission, both β-delayed or n-captured

Lighter-to-Intermediate Nuclei (A < Fe)

- p, n, α -induced react., $\sigma(n,\gamma)$ vs. $\sigma(\alpha,n)$
- Roles of v's in SN-nucleosynthesis

SUMMARY-2

Unknown v-oscillation parameters, mass hierarchy Δm_{13}^2 (and mixing angle θ_{13}), could be determined simultaneously by supernova v-process for ¹⁸⁰Ta, ¹³⁸La, ⁹²Nb, ⁹⁸Tc, ⁷Li, ¹¹B, etc.

Recent results on θ_{13} (T2K+ 1INOS for long baseline v and RENO + Daya+Bay+Double Chooz for reactor v) and ⁷Li/¹¹B ratio in SN grains \Rightarrow "inverted mass hierarchy" more preferred.

Theoretical and experimental studies of nuclear weak interactions using spin-isospin response and photoninduced reactions should play the critical roles in neutrino astrophysics in the studies of element genesis in the universe.