RIBF討論会 (2012, May, 24)

r-process nucleosynthesis (RIBF : Experimental Side)

Shunji Nishimura (RIKEN)

RIBF討論会: 核理論 RIBF実験 協力関係 →成果を最大限産み出す。

Status - 2011)

RIKEN RIBF

Nucleus	Beam Intensity / pnA	
	Achieved	Expected FY $2011/12$
^{48}Ca	230	200
$^{86}\mathrm{Kr}$	30	30
$^{124,136} \mathrm{Xe}$	10	10
$^{238}\mathrm{U}$	-0.8	3-4 5

Beta-Decay Experiments at RIBF

RIBF Experiments (Beam on Target)

These days..

Beam Production

Silicon strip detector

- Charge stripper @ F5
- Degrader @ F11

Experimental Setup

The implantation of an identified RI is associated with the following β-decay events that are detected in the same DSSSD pixel

ΔE-TOF-Bp method using the focal plane detectors in BigRIPS **RI & β-ray detection**

- 9 DSSDs (50 x 50 x 1 mm³)
- 16 x 16 strips
- ~ 2000 pixels in total

R-process Abundance around 2nd peak

$$1/T_{1/2} = \sum_{E_i \ge 0}^{-\infty} S_{\beta}(E_i) \times f(Z, Q_{\beta} - E_i);$$

$$\sim (Q_{\beta} - E_i)^{\beta}$$

Beta-decay Half-life T_{1/2} for Kr-Tc

1992 : J.Aysto ...¹⁰⁵Zr, ¹⁰⁷Nb, ¹⁰⁹Mo, ¹¹³Tc

1996 : M.Mehren ... 103 Y, 109,110 Nb

1999 : J.C.Wang¹⁰⁴Y, ^{112,113,114}Tc

2003 : U.C.Bergmann⁹⁶⁻⁹⁹Kr

2006 : F.Montes ... ¹¹⁵Tc

2009 : J.Pereira ... ¹⁰⁵Y, ^{106,107}Zr, ¹¹¹Mo Part of data set (8 hours) Low rate implantation ~ 8 cps

Y, Zr isotopes : Decay curves

And, more for Kr, Nb, Mo, and Tc isotopes !!

Neutron Number Dependence of T_{1/2}

Significant improvement of $T_{1/2}$ information ! & 18 new half-lives !!

Very Neutron-Rich Zr and Nb

Zr and Nb decay faster than expected by FRDM+QRPA ($T1/2: 1/2 \sim 1/3 \sim$)

$(FRDM \rightarrow KTUY) + GT2$

Better agreement for KTUY ! → WHY ?!

Overestimation of T1/2 by factor of ~ 2

Better prediction with KTUY (H.Koura)?

FRDM may underestimate the Q value : dQ ~ 1 MeV @ A ~ 110.

Mass Formula vs R-Process Path

K-L. Kratz APJ 403 (1993) 216

2nd Phase (2012 -)

Fast Beam Facilities

Approach to Heavier RI : Very important for r-process nucleosynthesis.

EURICA Project for Stopped Beam Experiment

Idea of EURICA Project

- Euroball Cluster detectors
- Support structure
- Readout electronics

RIKEN RIBF (Japan)

Time-line (2011 – 2013.06)

2011 -	 Collaboration work 	Construction work (GSI, RIKEN)
	04 Letter of Intent	04
	05 Workshop @ RIKEN	05
	06 Construction proposal	06
	07 Proposal approval by O.C.	07
	08	08
	09 Workshop @ GSI	09 Shipping (Support frame)
	10 Proposals submitted to RNC	10 Shipping (Cluster detectors, electronics)
	11	11 Construction of Cluster detectors
2012	12 NP-PAC	12 Rail system & Cluster construction
	01	01 Construction & Mounting Cluster detectors
	02	02 Readout electronics
z	03 Commissioning	03 Testing & Liq. N2 pipe line & buff. tank
	04 Commissioning	
	05	
	06 Experiments (Xe-beam)	EURICA Campaign (Xe, U, Kr)
		(40 - 50 % of RIBF beam time)
	~ 2013 June	

Some Photos

Nov.02

Jan.05

Installation : Completed

Jan. 15

RISING @ GSI $\leftarrow \rightarrow$ RIKEN

- In-beam γ-ray spectroscopy at relativistic energies about 100MeV/n
- g-factor measurements of isomeric stopped beams
- Isomer and β-delayed γ-ray spectroscopy of stopped beam

Gamma-detection $1 \sim 2 \% \rightarrow 15\%$

γ–γ : ~ 2 orders higher effi.

RIKEN

Beta Counting System

New version for EURICA

Size : 50x50mm Strip : 16 x 16 strips Thickness : 1mm^t

Size : 40x60mm Strip : 40 x 60 strips Thickness : 1mm^t (supporting board from TUM)

Decay Spectroscopy

Decay campaigns : Scanning most of neutron-rich nuclei below A<170

Decay Spectroscopy : 2nd Phase

x 1000 higher production yield in the world ? (~ 110Zr)

U-beam intensity

 $-0.2 \text{ pnA} \rightarrow 3-5 \text{ pnA} \dots \text{ x } 15-25 \text{ times}$

Beam time ...

- 0.3 - 2.5 days \rightarrow 100 days ... x 40 - 300 times

Beta counting system

- 16 x 16 pixels x 7 layers = 1792 pixels
- \rightarrow 40x60 pixels x 8 layers = 19200 pixels ... x 4-10 times

- Accept relatively higher implantation rate for $T_{1/2}$ measurement

 \rightarrow x 2 – 5 times

Gamma-ray detector

- 4 Clover detectors (Det. Effi. ~1.5% at 1 MeV)

 \rightarrow 12 Cluster detectors (Det. Eff. ~ 15 % at 1MeV) ... x 10 times

 $(\rightarrow \text{gamma-gamma coincidence } \dots \times 100 \text{ times })$

3rd Phase

CAITEN

CAITEN Setup with Clover-type Ge-detectors

Registive-chain readout

CAITEN : Decay Spectroscopy

CAITEN : $T_{1/2}$ measurement

Neutron emission Pn

MSU

HRIBF

Length = 2 nt 61 cm)

- $n + {}^{3}\text{He} \rightarrow p(0.574\text{MeV}) + t (0.191\text{MeV})$ $\sigma = 5333b$
- $n + {}^{10}B \rightarrow \alpha(1.78 \text{MeV}) + 7\text{Li}(1.02 \text{MeV})$ $\sigma = 3837 \text{b}$

- Construction of neutron detectors
- Formation of new collaboration

Neutron Emission

I.N.Borzov Phys. Rev. C71 (2005) 065801

+ P.Hosmer, PRC82 (2010)

Neutron emission prob. (Pn) goes up dramatically ?

3He long counters will be feasible for this kind of measurement.

Evaluation of New RIBF Data → Impact to R-Process

Experiment

Mass Measurements

Hakala, et al., EPJA (2011) 47, 129

0

0

present work JYFLTRAP

AME2003

First systematic check by decay spectroscopy
→ Direct mass measurement by SlowRI / Mass Ring

Mass formula dependence

K.Langanke, Conf. Ser. 230 (2010) 012028

Mass measurement $\leftarrow \rightarrow$ Mass formula Evaluation is very important

Z=28, N=50 : 78Ni region

Magicity at Z=28 and N=50?

28

Atomic Number (Z)

26

If there is isomer in 78Ni, it is very interesting.

32

30

P.Hosmer, PRC82 (2010)

N.Quinn, PRC85 (2012) 035807

Half-lives of isotopes around the 78Ni are important !?

⁷⁴⁻⁷⁵Fe, ⁷⁶⁻⁷⁸Co, ⁷⁸⁻⁸⁰Ni, ⁸⁰⁻⁸¹Cu

⁹⁰Se half-life (Z=34, N=56)

 $N = 50 \sim 82$

RIBF New Data \rightarrow Network r-process calculation

Summary

- Decay Spectroscopy :
 - EURICA Campaign (2012.Mar. 2013.June)
 - Commissioning (2012. Mar. & April.) : Ready !
 - First EURICA Experiment in June (Below 100Sn)
 - U-, Xe, Kr Campaigns in 2012 Fall & 2013 Spring
 - − ²³⁸U beam intensity (x10) from 0.1 ~ 0.3 pnA \rightarrow 3 5 pnA
 - Last decay exp. (2009) $\gamma \gamma$ coincidence : 1 month \rightarrow 40 mins.

RIBF: Stepping into r-process area

• In future :

- Decay spectroscopy in heavy region \rightarrow N=126 region
- Fast timing (CAITEN), Neutron measurement (Pn), ...
- EOS, Low energy nuclear reactions, mass measurement ...
- Theoretical calculation with "New" RIBF Data
 - Opening a door to reveal the mystery of "R-Process" nucleosynthesis

More communications ..

Nuclear StructureNuclear Astrophysics