Neutron removal reactions of Ne, Mg, and Si isotopes near/inside the island of inversion

Takashi Nakamura Nobuyuki Kobayashi Tokyo Institute of Technology

RIBF Discussion Meeting on Deformed Halo

Evolution Towards the Stability Limit A 30~40 (20<N<28)

Inclusive Coulomb Breakup

³¹Ne (N=21) $S_n=0.29(1.64)$ MeV

Probe-2: Nuclear Breakup

\rightarrow e.g. 1n knockout reaction of ³¹Ne

• γ ray in coincidence → ³⁰Ne(2⁺) / ³⁰Ne(0⁺) Contribution
• σ_{-1n} and P_{//} distribution → ℓ of valence n, configuration
Theory: Eikonal Approximation

Experiment at BigRIPS & ZDS at RIBF

RESULTS: 1n (or 2n) removal cross section →Coulomb breakup cross section

c.f. ²²C: Reaction cross section, K.Tanaka et al.PRL104,062701 (2010). ³¹Ne: Reaction cross section, M. Takechi et al.PLB707, 357 (2012).

 $2p_{3/2} \text{ or } 2s_{1/2} \xrightarrow{\text{Low-L orbits}}$ → Large E1→<u>1n-halo structure of ³¹Ne</u> ³⁰Ne(0⁺)X1f_{7/2} Excluded →Shell gaps(20,28) vanish at ³¹Ne →Island of inversion

Still Unknown: Sn/Configuration Mixing C²S<1

How the 31 Ne g.s. is made of ? γ and Nuclear Breakup dataMonte Carlo Shell Model 30 Ne(0+) $\otimes 2p_{3/2}$ $C^2S = 0.12$ \flat 3/2- g.s. 30 Ne(2+) $\otimes 2p_{3/2}$ $C^2S = 0.27$ 30 Ne(2+) $\otimes 1f_{7/2}$ $C^2S = 0.25$

Possible Large Proportion for the ³⁰Ne(2+)x(nlj) Configuration

³¹Ne+Pb→³⁰Ne(0⁺) : 0.515(103) barn ³¹Ne+Pb→³⁰Ne(2⁺) : 0.197(79) barn → σ (E1;0⁺) = 0.45(11) barn (~90% of Total σ (E1)=0.54(7)barn)

 $^{31}Ne+C \rightarrow ^{30}Ne(0^{+}) : 0.028(13) \text{ barn } \sim 35\%$ $^{31}Ne+C \rightarrow ^{30}Ne(2^{+}) : 0.051(12) \text{ barn } \sim 65\%$

<u>Momentum distribution of ³⁰Ne fragment</u> ³¹Ne+C→³⁰Ne+X

"p-wave neutron halo composed of two components"

Results of ²⁹Ne,^{33,35,37}Mg,^{39,41}Si

Momentum Distribution ${}^{37,35,33}Mg+C \rightarrow {}^{36,34,32}Mg$

Curves: Fitted with Eikonal Calculation assuming gs(Odd Mg 7/2- or 3/2-) to gs (Even Mg 0+) transition

N.B. In reality these two components should not be directly added, but the p and f ratio could be estimated. Mixture of $p_{3/2}$ and $f_{7/2}$ $\sigma_{-1n} (f_{7/2}) \sim \sigma_{-1n} (p_{3/2})$

Momentum Distribution preliminary $^{29}Ne+C \rightarrow ^{28}Ne$ $^{39,41}Si+C \rightarrow ^{38,40}Si$

Mixture of $s_{1/2}$ and $d_{3/2}$ $\sigma_{-1n} (d_{3/2}) > \sigma_{-1n} (s_{1/2})$ Mixture of $p_{3/2}$ and $f_{7/2}$ $\sigma_{-1n} (f_{7/2}) > \sigma_{-1n} (p_{3/2})$

Preliminary Interpretation by Nilsson Model

³⁷Mg(N=25) most probably $3/2 \rightarrow \beta > 0.25$

^{33,35,37}Mg seems to have similar behavior except that ³⁷Mg is like halo. 2+ energy of the core is similar, too.

Summary

Combinatorial Analysis \rightarrow Sn~0.12MeV, C²S(p_{3/2} x ³⁰Ne(0⁺))~0.27

Mixed with p_{3/2} x ³⁰Ne(2⁺) f_{7/2} x ³⁰Ne(2⁺)

Coulomb/Nuclear Breakup of ²⁹Ne, ^{33,35,37}Mg, ^{39,41}Si (inclusive)

³⁷Mg ---- Large E1 Cross Section 0.49(5) barn → Halo Like Structure Momentum Distribution of fragment with C target → $^{33,35,37}Mg$ Mixture of p_{3/2} and f_{7/2} configuration $\sigma(f_{7/2}) \sim \sigma(p_{3/2})$ $^{39,41}Si \sigma(f_{7/2}) > \sigma(p_{3/2})$ $^{29}Ne \sigma(d_{3/2}) > \sigma(s_{1/2})$

---"Island of inversion"→Halo with Deformed Core (How do we call this? Deformed Halo ? Deformed-core coupled halo?)

Collaborators

Inclusive Coulomb Breakup of ³¹Ne and ²²C (³¹Ne Coulomb BU: PRL103,262501(2009))

T.Nakamura, N.Kobayashi, Y.Kondo, Y.Satou, N.Aoi, H.Baba, S.Deguchi, N.Fukuda, J.Gibelin, N.Inabe, M.Ishihara, D.Kameda, Y.Kawada, T.Kubo, K.Kusaka, A.Mengoni, T.Motobayashi, T.Ohnishi, M.Ohtake, N.A.Orr, H.Otsu, T.Otsuka, A.Saito, H.Sakurai, E. Simpson, S.Shimoura, T.Sumikama, H.Takeda, E.Takeshita, M.Takechi, S.Takeuchi, K.Tanaka, K.N.Tanaka, N.Tanaka, Y.Togano, J.A. Tostevin, Y.Utsuno, K. Yoneda, A.Yoshida, K.Yoshida,

Inclusive Coulomb/Nuclear Breakup of ²⁹Ne, ^{33,35,37}Mg, ^{39,41}Si

N.Kobayashi, T.Nakamura, Y.Kondo, Y.Satou, N.Aoi, H.Baba, R. Barthelemy, S.Deguchi, M. Famiano, N.Fukuda, J.Gibelin, Lee Giseung, N.Inabe, M.Ishihara, D.Kameda, R.Kanungo, Y.Kawada, T.Kubo, M. Matsushita, T. Motobayashi, T.Ohnishi, K. Nikolski, N.A.Orr, H.Otsu, T. Otsuka, T. Sako, H.Sakurai, Lee H. Sang, T.Sumikama, K. Sunji, H.Takeda, K. Takahashi, S.Takeuchi, N.Tanaka, R. Tanaka, Y.Togano, Y. Utsuno, K. Yoneda

Tokyo Tech, RIKEN, U. of Tokyo, Seoul U., Tokyo U. of Science, LPC Caen, Rikkyo U., West MI U, St.Mary's U, JAEA, U. of Surrey