### The SCRIT Electron Scattering Project at RIKEN RIBF

若杉 昌徳

### RIBFなら短寿命不安定核の電子散乱ができる

#### p波動関数の直接測定



00

**Robert Hofstadter** 

#### 計画肥大化の時代



### 計画縮小の時代











#### 加速器学会誌連載中

加速器学2(3), 337 (2005)

#### 不安定核電子散乱実験のための自己閉じ込め型 不安定核標的(SCRIT)

若杉 昌徳\*1・伊藤 祥子\*2・江本 隆\*2・大西 哲哉\*2・栗田 和好\*3・小関 忠\*2 白井 敏之\*5・須田 利美\*2・竹田 浩之\*2・玉江 忠明\*6・頓宮 拓\*5・中村 仁音\*2 野田 章\*5・古川 幸弘\*6・増田 鉄也\*3・森川 斉\*4・矢野 安重\*2・王 頌\*2

加速器学4(4), 288 (2007)

#### 京大化研 KSR における自己閉じ込め型 不安定核標的(SCRIT)の開発

若杉 昌徳\*1・石井 健一3・伊藤 祥子2・江本 隆2・栗田 和好3 桑島 淳宏4・小関 忠5・白井 敏之6・須田 利美2・玉江 忠明4

頓宮 拓6・野田 章6・王 頌2・矢野安重2

加速器学7(4), 271 (2010)

#### SCRIT: RI・電子散乱実験装置の建設

若杉 昌徳\*1・宮下 裕次\*2・戸ケ崎 衛\*3・竹原 広樹\*4・堀 利匡\*2・原 雅弘\*2 市川 進一\*2・高橋 弘範\*3・玉木 聖一\*3・小泉 浩二\*3・森屋 誠\*3・浦野 恭輔\*3 北沢 僚也\*5・栗田 和好\*3・玉江 忠明\*5・須田 利美\*5



# SCRIT system installed in SR2



## SCRIT (Self-Confining RI Ion Target)

good use of ion trapping phenomenon in electron storage rings



# Achievable Luminosity



# Properties of the SCRIT as a target



- support-free and floated thin-target
- automatic collision
- all trapped ions participate collision
- $\cdot$  expected luminosity ~10^{28} /cm^2s with 10^7~10^8 nuclei
- target ions are fully controllable (efficient use of rear nuclei)
- recoiled ions are detectable
- compact experimental system

## SCRIT の理解

### Trap内で起きている物理的現象はEBISに近い

しかし、EBISとは決定的な違いがある。それは

## 収束力が周期関数である

その意味は

## イオン蓄積特性はRFQに近い

しかも

Multi-Frequency RFQである

## SCRITの理解(高周波蓄積装置として)



電子ビームの理解(イメージ) (これまでの測定などから)



Growth rate はキャビティー条件(インピーダンス構造)に依存

理解した道理、熟れた技術はすでに易しい 易しくなければ動かない





あと何歩ですか

**2011** あと**5**歩(弘前での答)

**2012** あと**4**歩(今現在)

<mark>2013</mark> あと3歩(RI生成試験)

あと2歩(バンチャーと 2014 RTM upgrade) あと1歩(Full Power RI生成)