Some introduction to giant resonances and related physics Experiment and Theory

Muhsin N. Harakeh

KVI, Groningen & GANIL, Caen

Lectures at 4th international conference on "Collective Motion in Nuclei under Extreme Conditions" (COMEX4) 22-26 October 2012

Lecture 1: Compression Modes

□ Introduction

Giant resonances: Fundamental modes of nuclear excitation

- Importance of studying compression modes in nuclei
 ISGMR and ISGDR excitation
- Experimental studies
 Incompressibility of nuclear matter
 Asymmetry term
- □ Conclusions and outlook

Shonan, Japan; 22-26 October 2012

2

In the following: **IS** = **Iso-Scalar IV** = **Iso-Vector** S = SpinG = GiantM = Monopole $\mathbf{D} = \mathbf{Dipole}$ Q = Quadrupole **O** = **Octupole**

E.g. ISGMR = Isoscalar giant monopole resonance ISGDR = Isoscalar giant dipole resonance IVGDR = Isovector giant dipole resonance IVSGMR= Isovector spin giant monopole resonance IVSGDR = Isovector spin giant dipole resonance

Shonan , Japan ; 22-26 October 2012

3

 university of groningen

Shonan, Japan; 22-26 October 2012

university of groningen

Microscopic picture: GRs are coherent (1p-1h) excitations induced by single-particle operators.

- Excitation energy depends on

 multipole L (Lħω, since radial operator ∝ r^L; except for ISGMR and ISGDR, 2ħω & 3ħω, respectively),
 strength of effective interaction and
 collectivity.
- Exhaust appreciable % of EWSR
- Acquire a width due to coupling to continuum and to underlying 2p-2h configurations.

Microscopic structure of ISGMR & ISGDR

Transition operators:

3ħω excitation (overtone of c.o.m. motion)

Shonan , Japan ; 22-26 October 2012

6

university of groningen

Nucleus		Many-body system with a finite size			
Vibrations		Multipole expansion with <i>r</i> , Y_{lm} , τ , σ			
Z	ΔS=0, ΔT=0	ΔS=0, ΔT=1	$\Delta S=0, \Delta T=1$	$\Delta S=1, \Delta T=1$	$\Delta S=1, \Delta T=1$
L=0: Monopole	ISGMR r^2Y_0	IAS $ au Y_0$	IVGMR $ au r^2 Y_0$	$\frac{\text{GTR}}{\tau \sigma Y_0}$	IVSGMR $\tau \sigma r^2 Y_0$
L=1: Dipole	ISGDR r ³ Y ₁		IVGDR $ au rY_1$		IVSGDR $\tau \sigma r Y_1$
L=2: Quadrupole	ISGQR $r^2 Y_2$		$\frac{IVGQR}{\tau r^2 Y_2}$		IVSGQR $\tau \sigma r^2 Y_2$
L=3: Octupole L	EOR, HEC r ³ Y ₃)R			

Shonan , Japan ; 22-26 October 2012

/ university of groningen

7

Decay of giant resonances

- Width of resonance $\Gamma, \Gamma^{\uparrow}, \Gamma^{\downarrow} (\Gamma^{\downarrow\uparrow}, \Gamma^{\downarrow\downarrow})$
 - Γ[↑]: direct or escape width
 - Γ[↓]: spreading width
 - $\Gamma^{\downarrow\uparrow}$: pre-equilibrium, $\Gamma^{\downarrow\downarrow}$: compound
- Decay measurements
 - \Rightarrow Direct reflection of damping processes

Allows detailed comparison with theoretical calculations

9

The collective response of the nucleus Giant Resonances

Measurement of the giant dipole resonance with mono-energetic photons B.L. Berman and S.C. Fultz Rev. Mod. Phys. 47 (1975) 713

Nucleus	Centroid	Width	
	(MeV)	(MeV)	
¹¹⁶ Sn	15.68	4.19	
¹¹⁷ Sn	15.66	5.02	
¹¹⁸ Sn	15.59	4.77	
¹¹⁹ Sn	15.53	4.81	
¹²⁰ Sn	15.40	4.89	
¹²⁴ Sn	15.19	4.81	

 university of groningen

R

Quadrupole deformation: $\beta_2 = 0.275$

Excitation energies: $E_2/E_1 = 0.911\eta + 0.089$

Where $\eta = b/a$

 $s_1/s_2 = 1/2$

Shonan, Japan; 22-26 October 2012 12

300

M. Itoh

Shonan , Japan ; 22-26 October 2012

13 **ES ES 1** 🦉 /

university of groningen In fluid mechanics, **compressibility** is a measure of the relative volume change of a fluid as a response to a pressure change.

 $\beta = -\frac{1}{V} \frac{\partial V}{\partial P}$

where *P* is pressure, *V* is volume.

Incompressibility or **bulk modulus** (*K*) is a measure of a substance's resistance to uniform compression and can be formally defined:

$$K = -V \frac{\partial P}{\partial V}$$

For the equation of state of symmetric nuclear matter at saturation nuclear density:

$$\left[\frac{d(E/A)}{d\rho}\right]_{\rho=\rho_0} = 0$$

and one can derive the incompressibility⁰ of nuclear matter: -20

$$K_{nm} = \left[9\rho^2 \frac{d^2(E/A)}{d\rho^2}\right]_{\rho = \rho_0}$$

E/A: binding energy per nucleon

ρ : nuclear density

J.P. Blaizot, Phys. Rep. 64 (1980) 171

university of

groningen

 ρ_0 : nuclear density at saturation

Equation of state (EOS) of nuclear matter:

More complex than for infinite neutral liquids: Neutrons and protons with different interactions Coulomb interaction of protons

- 1. Governs the collapse and explosion of giant stars (supernovae)
- 2. Governs formation of neutron stars (mass, radius, crust)
- **3.** Governs collisions of heavy ions.
- 4. Important ingredient in the study of nuclear properties.

Isoscalar Excitation Modes of Nuclei

Hydrodynamic models/Giant Resonances Coherent vibrations of nucleonic fluids in a nucleus.

Compression modes : ISGMR, ISGDR

In Constrained and Scaling Models:

$$E_{ISGMR} = \hbar \sqrt{\frac{K_A}{m \langle r^2 \rangle}}$$

$$E_{ISGDR} = \hbar \sqrt{\frac{7}{3} \frac{K_A + \frac{27}{25} \varepsilon_F}{m \langle r^2 \rangle}}$$

 ε_F is the Fermi energy and the nucleus incompressibility:

$$\longrightarrow K_A = \left[r^2 (d^2 (E/A)/dr^2) \right]_{r=R_0}$$

J.P. Blaizot, Phys. Rep. 64 (1980) 171

university of

groningen

Giant resonances

- Macroscopic properties: E_x, Γ, %EWSR
- Isoscalar giant resonances; compression modes
 - ISGMR, ISGDR ⇒ Incompressibility, symmetry energy

$$K_{A} = K_{vol} + K_{surf}A^{-1/3} + K_{sym}((N-Z)/A)^{2} + K_{Coul}Z^{2}A^{-4/3}$$

Shonan , Japan ; 22-26 October 2012

university of groningen

Nucleus, e.g. ²⁰⁸Pb

Inelastic *α* **scattering**

Shonan , Japan ; 22-26 October 2012 20

university of groningen

ISGQR, ISGMR

Large instrumental background!

 \Leftarrow ²⁰⁸Pb(α,α') at E_α=120 MeV

M. N. Harakeh et al., Phys. Rev. Lett. 38, 676 (1977)

university of

groningen

ISGQR at 10.9 MeV

ISGMR at 13.9 MeV

BBS@KVI

(α , α') at E_{α} ~ 400 & 200 MeV at RCNP & KVI, respectively

Shonan , Japan ; 22-26 October 2012 27

university of

groningen

Multipole decomposition analysis (MDA)

$$\left(\frac{d^{2}\sigma}{d\Omega dE}(\vartheta_{c.m.}, E)\right)^{\exp} = \sum_{L} a_{L}(E) \left(\frac{d^{2}\sigma}{d\Omega dE}(\vartheta_{c.m.}, E)\right)_{L}^{calc.}$$

$$\left(\frac{d^{2}\sigma}{d\Omega dE}(\vartheta_{c.m.}, E)\right)^{\exp} : \text{Experiment al cross section}$$

$$\left(\frac{d^{2}\sigma}{d\Omega dE}(\vartheta_{c.m.}, E)\right)_{L}^{calc.} : \text{DWBA cross section (unit cross section)}$$

$$a_{L}(E): \text{EWSR fraction}$$

a. ISGR (L<15)+ IVGDR (through Coulomb excitation)
b. DWBA formalism; single folding ⇒ transition potential

$$\delta U(r,E) = \int \vec{dr'} \, \delta \rho_L(\vec{r'},E) [V(|\vec{r}-\vec{r'}|,\rho_0(r')) + \rho_0(r') \frac{\partial V(|\vec{r}-\vec{r'}|,\rho(r'))}{\partial \rho_0(r')}]$$

$$U(r) = \int \vec{dr'} V(|\vec{r} - \vec{r'}|, \rho_0(r'))\rho_0(r')$$

$$P^{(\lambda)} = \frac{1}{2} \sum_{i} r_{i}^{\lambda + 2} Y_{\lambda}^{0}(\hat{r}_{i})$$

$$\sum_{n} (E_{n} - E_{0}) \widetilde{P}_{0n}^{(1)} = -\frac{\hbar^{2} A}{32m\pi} [11 < r^{4} > -\frac{25}{3} < r^{2} >^{2} -10\varepsilon < r^{2} >]$$

$$\varepsilon = \left(\frac{4}{E_2} + \frac{5}{E_0}\right) \frac{\hbar^2}{3mA}$$
$$Q^{(\lambda)} = \sum_i r_i^{\lambda} Y_{\lambda}^0(\hat{r}_i)$$
$$S_{\lambda} = \lambda (2\lambda + 1) \frac{\hbar^2 A}{8m\pi} < r^{2\lambda - 2} >$$

Shonan , Japan ; 22-26 October 2012 30

191

university of groningen

Transition density

ISGMR Satchler, Nucl. Phys. A472 (1987) 215

$$\delta \rho_0(r, E) = -\alpha_0 [3 + r\frac{d}{dr}]\rho_0(r)$$
$$\alpha_0^2 = \frac{2\pi\hbar^2}{mA < r^2 > E}$$

ISGDR Harakeh & Dieperink, Phys. Rev. C23 (1981) 2329

$$\begin{split} &\delta\!\rho_1(r,E) = -\frac{\beta_1}{R\sqrt{3}} [3r^2 \frac{d}{dr} + 10r - \frac{5}{3} < r^2 > \frac{d}{dr} + \varepsilon(r\frac{d^2}{dr^2} + 4\frac{d}{dr})]\rho_0(r) \\ &\beta_1^2 = \frac{6\pi\hbar^2}{mAE} \frac{R^2}{(11 < r^4 > -(25/3) < r^2 >^2 - 10\varepsilon < r^2 >)} \end{split}$$

-

groningen

Other modes Bohr-Mottelson (BM) model

$$\delta \rho_L(r, E) = -\delta_L \frac{d}{dr} \rho_0(r)$$

$$\delta_L^2 = (\beta_L c)^2 = \frac{L(2L+1)^2}{(L+2)^2} \frac{2\pi\hbar^2}{mAE} \frac{\langle r^{2L-2} \rangle}{\langle r^{L-1} \rangle^2}$$

Uchida et al., Phys. Lett. B557 (2003) 12 Phys. Rev. C69 (2004) 051301

(α, α') spectra at 386 MeV

¹¹⁶Sn

(b)

(d)

(f)

32

university of

groningen

20

E_= 14.5 MeV

10

 $E_{\rm v} = 24.5 \, {\rm MeV}$

⁹⁰Zr, L=1

 $\theta_{c.m.}$ (deg.)

Shonan, Japan; 22-26 October 2012 32

10³ (a)

10

10

10

10 (b)

d²न/dΩdE (mb/sr MeV)

S KVI

In HF+RPA calculations,

$$K_{nm} = \left[9\rho^2 \frac{d^2(E/A)}{d\rho^2}\right]_{\rho = \rho_0}$$

Nuclear matter

E/A: binding energy per nucleon

- **ρ** : nuclear density
- ρ_0 : nuclear density at saturation

university of

groningen

From GMR data on ²⁰⁸Pb and ⁹⁰Zr,

$K_{\infty} = 240 \pm 10 \text{ MeV}$

[See, e.g., G. Colò et al., Phys. Rev. C 70 (2004) 024307]

This number is consistent with both ISGMR and ISGDR Data and with non-relativistic and relativistic calculations

Isoscalar GMR strength distribution in Sn-isotopes obtained by Multipole Decomposition Analysis of singles spectra obtained in ^ASn(α,α') measurements at incident energy 400 MeV and angles from 0° to 9°

$$K_A \sim K_{vol} (1 + cA^{-1/3}) + K_{\tau} ((N - Z)/A)^2 + K_{Coul} Z^2 A^{-4/3}$$
$$K_A - K_{Coul} Z^2 A^{-4/3} \sim K_{vol} (1 + cA^{-1/3}) + K_{\tau} ((N - Z)/A)^2$$

~ Constant + $K_{\tau}((N - Z)/A)^2$

university of

We use $K_{Coul} = -5.2$ MeV (from Sagawa) (N - Z)/A $^{112}Sn - ^{124}Sn: 0.107 - 0.194$

Shonan , Japan ; 22-26 October 2012 38

V.Qu

university of groningen

Monopole strength Distribution

Data from H. Sagawa et al., Phys. Rev. C 76, 034327 (2007)

Shonan, Japan ; 22-26 October 2012

VI

Colò *et al.*: Non-relativistic RPA (without pairing) reproduces ISGMR in ²⁰⁸Pb and ⁹⁰Zr.

Piekarewicz: Relativistic RPA (FSUGold model) reproduces g.s. observables and ISGMR in ²⁰⁸Pb, ¹⁴⁴Sm and ⁹⁰Zr [$K_{\infty} = 230$ MeV]

Vretenar: Relativistic mean field (DD-ME2: densitydependent mean-field effective interaction).

[$K_{\infty} = 240$ MeV]. Possibly agreement is fortuitous since strength distributions are not much different from those by Colò *et al.* and Piekarewicz.

Tselyaev *et al.*: Quasi-particle time-blocking approximation (QTBA) (T5 Skyrme interaction) $[K_{\infty} = 202 \text{ MeV}?!]$

Softness of Sn-nuclei is still unresolved

university of

groningen

Shonan , Japan ; 22-26 October 2012 44

/ university of groningen

E. Khan, PRC 80, 011307(R) (2009)

Shonan, Japan; 22-26 October 2012

The Giant Monopole Resonances in Pb isotopes E. Khan, Phys. Rev. C 80, 057302 (2009).

FIG. 2: Excitations energies of the GMR in ²⁰⁴⁻²¹²Pb isotopes calculated with constrained HFB method, taking into account the MEM effect (see text). The experimental data is

45

Mutually Enhanced Magicity (MEM)?

Monopole strength Distribution

Shonan , Japan ; 22-26 October 2012 47

university of

groningen

Decay of giant resonances

- Width of resonance
 - $\Gamma, \Gamma^{\uparrow}, \ \Gamma^{\downarrow} \ (\Gamma^{\downarrow\uparrow}, \Gamma^{\downarrow\downarrow})$
 - Γ[↑]: direct or escape width
 - Γ[↓]: spreading width
 - $\Gamma^{\downarrow\uparrow}$: pre-equilibrium, $\Gamma^{\downarrow\downarrow}$: compound
- Decay measurements
 - \Rightarrow Direct reflection of damping processes

Allows detailed comparison with theoretical calculations

university of

groningen

Excitation of ISGDR in ²⁰⁸Pb

- In ²⁰⁸Pb located around 22 MeV and width of 4 MeV
- L=1 angular distribution peaks close to a scattering angle of 0°
- Difficult to identify in nuclear continuum and rides on instrumental background

university of

groningen

Si-ball 16 Si-detectors at 10 cm from the target total solid angle: 1 sr

Ą

university of

groningen

total solid angle: 0.37 sr

KVI Big-Bite Spectrometer (BBS)

Proton-decay detection

α-*p* separation using rise time of signal SiLi

-

university of

groningen

Microscopic structure of ISGDR

Transition operator

Spurious centerOvertoneof mass motion

 $3\hbar\omega$ excitation (overtone of c.o.m. motion)

²⁰⁸Pb(α,α') followed by *p* decay

30 ²⁰⁸Ρb(α,α ́ρ)² E_=200 MeV 25 **Decay to hole** .5°<©, <6.0° states in ²⁰⁷Tl; 20 branching ratios ө W) 15 Ш ⁷TI (E =0, 0.35 MeV predicted by ²⁰⁷TI (E. =1, **3**5, 1,68 M Gorelik et al. 10 =0.MeV5 M. Hunyadi et al., Phys. Lett. B576 (2003) 253 ISCOR M. Hunyadi et al., Phys. Rev. C75 (2007) 014606 0 30 10 15 20 25 35 5 E, in ²⁰⁸Pb (MeV)

Shonan , Japan ; 22-26 October 2012 55

university of

groningen

Branching ratios for decay

ISGDR in ²⁰⁸Pb in p decay

Shonan , Japan ; 22-26 October 2012 57

university of

groningen

Branching ratios for decay

university of

groningen

Overtone of the ISGQR? $[r^4Y_2]$

Shonan, Japan; 22-26 October 2012 59

Data analysis: Proton decay

Experimental results

M. Hunyadi et al., Phys. Rev. C80 (2009) 044317

Experimental results

Strength distribution of ISGDR in ⁵⁸Ni

Spectra of L = 1 strengths obtained with DOS method in percentage of isoscalar EWSR; a) coincidence data gated on g.s. decay and b) singles data.

Differential cross section of resonance structure fitted with L = 1and L = 3 DWBA calculations.

university of groningen

Proton-decay branching ratios Normalized to 100%

		Exp. (%)	Cal. (%)
		(24-38 MeV)	(15-40 MeV)
	7/2-	61.3 (with 5/2 ⁻)	47
	3/2-	7.9	3.1
	3/2, 1/2	9.9	2.2 (only for 1/2-)
	5/2-	3.2±3.4	-
	$1/2^{+}$	2.0±4.2	13.4
	3/2+, 5/2+	15.9	34.3
Σ		100 %	100%

Calculations: M.L. Goerlik, I.V. Safonov, and M.H. Urin, Phys. Rev. C69 (2004) 054322

university of

groningen

Conclusions!

- There has been much progress in understanding ISGMR & ISGDR macroscopic properties
 - Systematics: E_x, Γ, %EWSR
 - $\Rightarrow K_{\rm nm} \approx 240 {
 m MeV}$
 - $\Rightarrow K_{\tau} \approx -500 \text{ MeV}$
- Sn nuclei are softer than ²⁰⁸Pb and ⁹⁰Zr.
- Recently, Microscopic Structure for a few nuclei CRPA has some success in ²⁰⁸Pb & ⁵⁸Ni but fails badly in ¹¹⁶Sn & ⁹⁰Zr.
- Possible observation quadrupole compression mode, i.e. overtone of ISGQR

Outlook

Radioactive ion beams will be available at energies where it will be possible to study excitation of ISGMR and ISGDR RIKEN, FAIR, SPIRAL2, NSCL, EURISOL

Determine ISGMR and ISGDR in unstable Sn nuclei. A = 106 to 134 possible

 \Rightarrow A more precise determination of K_{τ}

5

KVI

/ university of groningen

Shonan, Japan; 22-26 October 2012

68 **E**

Detection system @ FAIR

Figure 1: Schematic view of the EXL detection systems. Left: Set-up built into the NESR storage ring. Right: Target-recoil detector surrounding the gas-jet target.

Use of EXL recoil detector is under evaluation

Shonan , Japan ; 22-26 October 2012 69

university of

groningen

ISGDR in ⁵⁶Ni: 2nd ISGDR in Ni after ⁵⁸Ni

Conditions

- ⁵⁶Ni(α, α ') and ⁵⁶Ni(α, α 'p)
- LISE beam at the highest energy possible (\geq 50A MeV)

Setup

- MAYA in D6, filled w/ He (>95%), CF₄ mixture.
- All ancillary detectors (Si & CsI + S1)
- "Active" masking of the beam

Predictions

- Detect alpha down to ≈ 1 MeV, between [2°,10°] in C.M.
- Remeasure ISGMR in ⁵⁶Ni
- Detect protons coming from ISGDR decay

Kinematics: energies

Experimental Method

Setup: MAYA (Active target)

Experimental Method

Setup: MAYA (Active target)

Experimental Method

Predicted angular distribution

Recent works: ISGMR

ISGMR in unstable nuclei

⁵⁶Ni: active target MAYA filled with deuterium gas bombarding energy of 50*A* MeV

Shonan , Japan ; 22-26 October 2012

Multipole assignment with $\alpha - \gamma$ angular correlation

groningen

SKV

Multipole assignment with $\alpha - \gamma$ angular correlation

Comparison of $(\alpha, \alpha' \gamma)$ with (γ, γ') on ¹³⁸Ba

E1 strength distribution in ¹⁴⁰Ce, ¹³⁸Ba, ¹²⁴Sn, and ⁹⁴Mo

$$- (\gamma, \gamma') \& (\alpha, \alpha' \gamma) - (\gamma, \gamma') only$$

university of groningen