Core-collapse Supernovae: Nuclear matter and EOS

 $\boldsymbol{\lambda}$

K. Sumiyoshi (Numazu)

Status of supernova simulationsRole of EOS: when and how?

新学術「計算科学素核宇宙」そして「中性子星核物質」へ

Core-collapse supernovae are fascinating

– Birth of neutron stars and black holes

- Pulsars (1.4 solar mass in ~10km)
- Extremely dense: degenerate Fermions

Crab Nebula (SN1054)

- Bright displays and supernova neutrinos
 - Nobel prize in Physics in 2002
 - Probe of hot & dense matter

supernova v

Prof. Koshiba

– Origin of heavy elements

SN1987A

- Explosive nucleosynthesis
- Half of elements beyond Fe

http://periodictable.com/

Kamiokande

http://www-sk.icrr.u-tokyo.ac.jp/

time Massive stars to neutron stars ~10⁷ years • Fe core of ~20M_{sun} star

Exotic conditions: challenges in nuclear physics

- Equation of state (EOS) in supernova core
 - Dense more than nuclei: $\rho > \rho_0 = 3x10^{14} \text{g/cm}^3$
 - Neutron-rich: $Y_p < Z/A=0.46$ for ⁵⁶Fe
 - Very Hot: T > 10¹¹ K (~10 MeV)
- Neutrino reactions in hot-dense matter
 - Energy, angle dependent
 - All targets (n, p, nuclei, leptons)

Emission, absorption, scattering & pairs

- ex. $e^- + p \Leftrightarrow v_e + n$ $v_i + Fe \Leftrightarrow v_i + Fe$ $e^- + e^+ \Leftrightarrow v_i + \bar{v}_i$
- Necessary inputs for numerical simulations

neutrino transfer (Boltzmann eqn.) + hydrodynamics

<u>1% effects</u>: energy budget for explosion

- Iron core to neutron star ($M_{core} \sim 1.4 M_{solar}$) - $R_{Fe} \sim 10^3 \text{ km} \rightarrow R_{NS} \sim 10 \text{ km}$
- Gravitational energy released

$$\Delta E_{Grav} = -\left(\frac{GM^2}{R_{Fe}} - \frac{GM^2}{R_{NS}}\right) \sim 10^{53} erg$$

- Explosion energy: $E_{exp} \sim 10^{51} \text{ erg}$
- Neutrino carries away: $E_v \sim 10^{53} \text{ erg}$
- Only $\sim 1\%$ is used for the explosion
- Neutrino-matter interaction is essential

Bethe & Wilson ApJ (1985) 8

Multi-dimensions: new findings

- Convection, SASI, rotation, magnetic etc - Observations v-heating and/or hydro instability

To obtain enough v-heating

SN1987A

Wang (2002)

Challenges toward 3D simulations

Neutrino-transfer & hydrodynamics

- 1D: No explosion found
- first principle calculations
- 2D: Cases of explosions
- State-of-the-art, but approximate neutrinos

Several mechanisms, discussions not settled

- 3D: Explore new instabilities
- Major challenges of supernova simulations

New code to solve 6D Boltzmann eqn. (Sumiyoshi-Yamada, 2012 ApJS)

3D simulation of supernovae from a massive star Explosions obtained, but still not conclusive Need high resolutions, accurate v-transfer

 Simulations running at K-computer, 10Peta-flops

Takiwaki et al. (2012) ApJ

Naive questions on EOS in supernovae

- Different from NS? Which part of ρ , Y_p?
- Soft EOS is better? Hyperons/quarks affect?

From Slides by H. Tamura @Kyoto

Shen equation of state for supernovae

H. Shen, Toki, Oyamatsu & Sumiyoshi NPA, PTP(1998), arXiv:1105.1666 (2011)

- Relativistic mean field theory+ local-density approx.
 - Based on relativistic Brueckner Hartree-Fock (RBHF) theory
 - Checked by exp. data of n-rich unstable nuclei
 - Nuclear structure: mass, charge radius, neutron skin,...

Covers wide range of

- Density: $10^{5.1} \sim 10^{16} \text{ g/cm}^3$
- Proton fraction: $0 \sim 0.65$
- Temperature: $0 \sim 400 \text{ MeV}$

Uniform and non-uniform matter

• Data table ~140 MB (110 x 66 x 92 points)

– Quantities: ϵ , p, S, μ_i , X_i , m*

Shen-EOS

LS-EOS

- cf. Lattimer-Swesty EOS
 - Extension of compressible liquid model

Extensions of Shen EOS tables

• Appearance of hyperons & quarks

Ishizuka et al. JPG (2006), Nakazato et al. PRD (2008) Shen et al. ApJS (2012)

EOS table	Framework	Nucleons	Hyperons	Quarks	Max. NS
Shen EOS 1998, NPA	RMF	n, p, α, nuclei	-	-	2.2M _{sun}
Hyperon EOS 2008, JPG	RMF in SU(3)	n, p, α , nuclei	Λ, Σ, Ξ	-	1.6M _{sun}
Quark EOS 2008, PRD	RMF + MIT bag model	n, p, α , nuclei	-	u, d, s	1.8M _{sun}

• Mixture of nuclei in NSE

Furusawa et al. ApJ (2011)

NSE EOS 2011. (ApJ)	RMF + NSE	n, p, α , NSE of nuclei	-	-	2.2M
_ 011, (1 . pv)					_ · _ · sun

• Needs exp. data on nuclear mass, hyper-nuclei

EOS dependence: no explosion in 1D

EOS condition at core bounce

• Just above n₀

• Still proton-rich with v_e

Sumiyoshi et al. (2005) ApJ

Soft EOS is better: YES but...

- Initial energy of shock wave: E_{initial}~ 10⁵¹ erg
 - Size of bounce core: R_{bc} , (M_{bc})
 - Soft EOS \rightarrow Small R_{bc}
- EOS around n_0 , $Y_p \sim 0.3$ is important ex. L, K_{svm}

• Larger E_{initial} is better for 2D/3D

 $E_{initial} =$

 $\frac{GM_{bc}^{2}}{R_{bc}}$

- Position of stalled shock wave
- e-capture rates

EOS condition at 200ms after bounce

• Proto-NS at birth

Temperature 1~10 MeV

Sumiyoshi et al. (2005) ApJ

Soft EOS is better: also in 2D/3D?

EOS condition at 200ms after bounce

• Proto-NS at birth

- Important region
- >n₀ : proto-NS mass, radius
- $\sim 10^{-3} n_0$: surface
 - neutrino emission, $L_{\!_{\rm V}}$, $E_{\!_{\rm V}}$
- ~10⁻⁵n₀ : heating region — targets, composition

Sumiyoshi et al. (2005) ApJ

Proto-neutron star evolution

Sumiyoshi et al. (1995), H. Suzuki (2005), Nakazato (2012)

Simulation started from t_{pb}=0.4 sec

Neutrino burst from failed supernovae $40 \mathrm{M}_{\mathrm{sun}}$

• Probe EOS soft/stiff, hyperon-mixture

Summary and discussions

- Key role of EOS for successful explosion
 - Initial shock energy (just above n_0 with $Y_p \sim 0.3$)
 - Neutrino heating (proto-neutron star EOS)
- Supernova neutrinos from proto-neutron stars
 - Appearance of hyperons/quarks
- Needs systematic EOS for 2D
 - Link to nuclear data (radii, masses, K, A_{sym})
- Unique best EOS table for 3D
 - Experiments & nuclear many body theories
 - Neutron star mass & radius constraint

3D supernova project in collaboration with

- Supernova research
 - S. Yamada
 - H. Suzuki
 - K. Nakazato
- EOS table
 - H. Shen
 - K. Oyamatsu
 - H. Toki
- Extension of EOS table
 - S. Furusawa
 - A. Ohnishi
 - C. Ishizuka

- Supercomputing
 - H. Matsufuru
 - A. Imakura
 - T. Sakurai
- Numerical simulations
 - H. Nagakura
 - K. Kotake
 - T. Takiwaki
- Neutrino reactions
 - T. Sato
 - S. Nasu
 - S. Nakamura

新学術領域「計算科学による素核宇融合」

Support from: HPCI Strategic Program Field 5

- Grant-in-Aid for Scientific Research on Innovative Areas (20105004, 20105005)
- Grant-in-Aid for Scientific Research (22540296, 24244036)

Supercomputing resources at KEK, RCNP, YITP, UT