研究計画B03:

冷却原子を用いた中性子過剰な低密度核物質の 状態方程式

東京大学(実験): <u>堀越宗一</u>(代表)、富樫康平、伊藤亜紀、池町拓也、五神真 電気通信大学(実験): 向山敬(分担)、土師慎祐、中筋拓也、畑聡祐 理化学研究所(理論): 中務孝(連携) ☆冷却原子⇔原子核 岡山大学(理論): 水島健(連携) ☆p波相互作用 APCTP(理論): 渡辺元太郎(協力) ☆冷却原子⇔原子核

inner crust region [Newton, et al., arXiv:1112.2018]

Cold atom system **Two-component Fermi gas** Laser cooling (magneto-optical trap) **Optical dipole trap** $N \sim 10^4$ *T*~100nK

- Approximately homogeneous system
- **Dilute** two-components Fermi systems
- **Tunable interactions** by Feshbach resonances
- Universal many-body system
- Precise measurements

Cold atom vs. Neutron matter

	Cold Fermi atom	Neutron matter
Interaction	s-wave	s-wave
Temperature : T	${\sim}10^{-7}$ K	$\sim \! 10^9 { m K}$
Fermi temperature : $T_{ m F}$	∼10 ⁻⁶ К	$\sim \! 10^{10}$ K
Interparticle distance : $\sim \! k_F^{-1}$	100nm	6~3fm
Scattering length: a	$-\infty{\sim}\infty$ (Feshbach resonance)	-18.5 ± 0.3 fm
Effective range : $r_{ m e}$	4.7nm	$2.75\pm0.11 \text{fm}$
\checkmark	\checkmark	\checkmark
Temperature : T/T_F	10~0 .05	0.1~0
Interaction : $-1/k_F a$	$-\infty$ (BEC limit)~ + ∞ (BCS limit)	0.28~0.04
Effective range: $k_F r_e$	0.05	0.53~3.3
Phase transition : T_C/T_F	~0.2	~ 0 . 1
Superfluid gap : $\Delta/E_{\rm F}$	~0.6	~0.2
Lattice potential	Optical lattice, Ion crystal	Nuclei crystal

Simulation of neutron matter using cold atoms

Our goal

Present status

BCS-BEC crossover in 2-conponent Fermi systems

Our method to determine the EOS

```
EOS for dilute Fermi gases : P(T, \mu, a^{-1})
```

But, cold atoms are trapped in a harmonic trap The gas has **inhomogeneous density distribution**

Position dependent EOS : $P(r) = \Omega(T, \mu(r), a(B)^{-1})/V$

Local pressure P(r): density distribution is pressure distribution \Rightarrow Resolution of imaging determine precision of the EOS

[Tin-Lun Ho. Nature Physics 6, 131 (2010)]

Temperature T : mixing 7Li for thermometry into 6Li[S. Nascimbène, et al., Nature 463, 1057 (2010)]

Local chemical potential $\mu(r)$: LDA $\Rightarrow \mu(r) = \mu(0) - U_{trap}(r)$

Thermodynamic relation for harmonically trapped system :

 $E_{\rm rel} = TS + \mu(0)N - \frac{5}{3}E_{\rm pot}$

EOS of unitary Fermi gases

EOS via ENS's route : $P(\mu, T, a^{-1}=0)$

Internal energy

Particle density : $n = (dP/d\mu)_{T,a}$

Entropy density : $s = (dP/dT)_{\mu,a}$

Internal energy density: $\varepsilon = Ts + \mu n - P$

Analyzed data correspond to [M. Horikoshi, *et al.*, Science **327**, 442 (2010)]

Determination of EOS for neutron matter

[Werner and Castin, Phys. Rev. A 86, 013626 (2012)]

Superfluid phase transition

Universal many-body function, Tan's contact

In 2005, Shina Tan suggested that, the tail of momentum distribution [Shina Tan, cond-mat/0508320] for the universal 2-component Fermi system become

Universal many-body function, Tan's contact

Recent measurement from JILA at unitarity limit ($|a| = \infty$)

[Yoav Sagi, et al., arXiv:1208.2067]

Peak at the critical temperature? Contact has some critical exponent?

• Adiabatic relation :
$$\frac{\partial E}{\partial x}\Big|_{\theta} = 2\varepsilon_F Nh(x,\theta) > 0$$

• **P-E** relation :
$$PV = \frac{2}{3}(E - N\varepsilon_F x h(x, \theta))$$

Verification of experimental result

Periodic potential

Dripped neutrons are moving in periodic potential by nuclei crystal

Cold atom **Neutron matter** 6Li, 40K **Fermion** neutrons Interparticle distance: $\sim k_F^{-1}$ 100nm $6 \sim 3 \text{fm}$ 15~50fm? Periodic potential : *d* 500nm 5 5~10 Ratio: $k_F d$ Lattice potential **Optical lattice** Nuclei crystal

Induced interaction : effects of Protons

	Cold atom	Neutron rich matter
Mixture	6Li个-6Li↓-7Li 6Li个-6Li↓-6Li →	n个-n↓-p个
Туре	Femi-Bose Fermi-Fermi	Fermi-Fermi
Scattering length : a_{nn}	$ \infty $ (unitarity limit)	-18.5 ± 0.3 fm
Scattering length : a_{np}	2nm (Femi-Bose) —174nm(个-→), —851nm(↓-→)	5.423 fm (triplet) -23.749 fm (singlet)
Interparticle distance : $\sim k_F^{-1}$	100nm	6~3fm

Tuning of effective range

	Cold atom	Neutron matter
Fermion	6Li	neutrons
Effective range: $k_F r_e$	0.05	→ 0.53~3.3

Feshbach resonance

Challenging issue

Cold Atom Lab at University of Electro-Communications

p-wave interaction, ⁶Li-⁴⁰Ca⁺ (Fermi-Ion) mixture

Interacting 6Li by p-wave collisions

Crystalized cold ions

p-wave superfluidity in neutron stars

Missions : EOS of many-body Fermi system with p-wave interactions Realization of p-wave superfluid

[T. Takatsuka and R. Tamagaki, Progress of Theoretical Physics Supplement <u>112</u>, 27 (1993)]

[Y.Inada, et al., Phys. Rev. Lett. **101**, 100401 (2008)]

What is p-wave scattering parameters ?

By knowing parameters of s-wave Feshbach resonances, studies of many-body physics using s-wave interactions have progressed dramatically

$$\frac{s - \text{wave interaction :}}{f_s(k, B)} = \frac{1}{-\frac{1}{a_s(B)} + \frac{1}{2}r_ek^2 - ik}} \qquad a_s(B) = a_{bg}\left(1 - \frac{\Delta B}{B - B_{res}}\right) \qquad \texttt{S}$$

$$\underline{p-\text{wave interaction :}} \\ f_p(k,B) = \frac{1}{-\frac{1}{V_p(B)} + \frac{1}{2r_e}k^2 - ik^3} \quad V_p(B) = V_{bg}\left(1 - \frac{\Delta B}{B - B_{res}}\right) \quad \mathbf{S}^{c} \begin{bmatrix} \mathbf{c} \mathbf{Li} : \mathbf{1} - \mathbf{1} \\ \mathbf{R} - \mathbf{R} \end{bmatrix} \\ \mathbf{First of all, we must determine them} \qquad \mathbf{B} \end{bmatrix}$$

First of all, we must determine them

Determination of p-wave scattering parameters

Method : measurement of thermalization rate

Momentum(temperature) space

Magnetic field is set to inside the p-wave Feshbach resonance

Exponential decay with a thermalization rate of au

Collisional cross section averaged over the trap : $\overline{\sigma}(T,B) = \frac{2.7\tau}{\overline{n}\overline{v}}$ Elastic collision cross $\sigma = 4\pi |f_p(k)|$ section :

Preliminary data

Summary

