「多重ストレンジネスのバリオン間相互作用」 (計画研究AO1) Baryon-Baryon Interaction with Multi-Strangeness AO1班代表 高橋俊行(KEK素核研)

1. Introduction

- 1-1 Neutron-star and Strangeness
- 1-2 Known information on S=-2

2. Research Project (Experiments)

- 2-1 Emulsion Experiment (J-PARC E07)
- 2-2 Ξ-hypernuclear Spectroscopy (J-PARC E05)
- 2-3 Search for H dibaryon with Hyperon Spectrometer (J-PARC E42)
- 2-4 Schedule
- 3. Summary

Strangeness in the Neutron Star

Hyperon Matter should be appeared at high density

EOS should support $2M_{\odot}$

J.Schaffner-Bielich, NPA804(2008)309

to be experimentally determined

新学術領域「中性子星核物質」キックオフ シンポジウム

Hyperon Potential & Interactions

 Ω^-N :

S=-2 Baryon-Baryon Interaction

Strong attraction in the flavor singlet channel

$$BB^{(1)} = H = -\sqrt{\frac{1}{8}}\Lambda\Lambda + \sqrt{\frac{3}{8}}\Sigma\Sigma + \sqrt{\frac{4}{8}}\Xi N$$

No repulsive core

Recent L-QCD suggests the existence of bound or resonance *H* dibaryon

HAL: SU(3)_f limit 30 - 40 MeV bound *H* from ($\Lambda\Lambda$ - $\Sigma\Sigma$ - Ξ N)

NPQCD:

 B^{H}_{∞} =16.6±2.1±4.6 MeV (m_{π}~ 389MeV)

Expermentally confirmation of the existance of *H*

Information on S = -2 System, so far (1)

Information on S = -2 System, so far (2)

<u>E-Nucleus</u> Missing mass spectroscopy of ${}^{12}C(K^-,K^+){}^{12}_{\Xi}Be$

No clear peak was observed...,

Spectrum shape suggests attractive potential for Ξ .

Study on S=-2 System by Emulsion-Counter Hybrid Method (J-PARC E07)

Strategy of the E07@J-PARC

For Hybrid method

 \Leftrightarrow automatic tracking of Ξ - hyperons

10times (Statistics) ==> Fully automatic scan

Precise position alignment in plate by plate tracking

For overall scanning

fast image capture

At present (Developed)

- OS : Win2000 sp4
- CPU : 3.0 GHz

1.57GB RAM

emulsion : 500μm Objective lens : x50 area : 0.1x0.1mm² Camera : 100Hz (CCD) # of image : ~100/cycle Time : 3sec/cycle [~ hard limit]

Developing

emulsion : 1000μm Objective lens : x20 area : 0.8 x 0.3 mm² Camera : 800Hz (CMOS) # of image : ~ 60/cycle Time : 0.1 sec/cycle <u>× 1000 faster !!</u>

2012/10/27

新学術領域「中性子星核物質」キックオフ シンポジウム

Scanning Device

Stage	present	change	Scan	upgrading by "this Kakenhi Budget"
Gifu				plan to finish hybrid analysis
#1, #2	30Hz	100Hz	Hybrid by 1 year from the irradiation	
#3	100Hz	100Hz	Overall	Image capture
#4, #5	100Hz	800Hz	Overall	8 hrs / 1 sheet (1000µm)
#6			Analysis	x 12 sheets x 106 stacks
Kyoto				/ 2 devices
(#7 8)	100Hz	100Hz	Hybrid	= 200-250 days
(#1,0)	TOOLIZ	TOOLIS	пумпа	Analysis by Overall Method
Toho/Korea 1		100Hz	Hybrid	???

Spectroscopy of Ξ -hypernucleus, ${}^{12}_{\Xi}Be$ (J-PARC E05)

T.Nagae (Kyoto Univ.)

- First observation of Ξ-hypernucleus by the (K[−],K⁺) missing mass with high-resolution and high-statistics.
- Ξ -Nucleus potential (inside nucleus) \leftrightarrow complimentary to Ξ -Atom

Potential depth $\rightarrow \Xi$ -N interactionWidth of state(s) $\rightarrow \Xi$ -N $\rightarrow \Lambda\Lambda$ interactionEOS of high-density neutron-star matrice

 $-B_{\pi} [MeV]$

S-2S under construction by Grant-In-Aid for Specially Promoted Research(2011-2015 T.Nagae)

 $\Delta \Omega = \sim 50 \text{ msr}$ $\Delta p/p = 0.05\% \rightarrow \Delta M = 1.5 MeV(FWHM)$

Construction completed in 2014 Data-taking 2015?—

Search for *H*-Dibaryon with a Large Acceptance Hyperon Spectrometer (J-PARC E42)

J.K.Ahn (Pusan Univ.)

- Search for *H*-dibaryon via the A(K⁻,K⁺)*H*X $H \rightarrow \Lambda\Lambda$, $\Lambda\pi^-p$, Σ^-p $\Lambda \rightarrow \pi^- p$ $\Sigma^- \rightarrow \pi^- n$
- High statistics
 of >10k events (x 100)
- Good invariant mass resolution
 - of $\sim 1 MeV/c^2$ (x 1/10)

INC(Intra Nuclear Cascade model): Y. Nara, A. Ohnishi, T. Harada, A. Engel,

Nucl. Phys. A 614 (1997), 433. <u>AA FSI and Evaporation effects</u>: A. Ohnishi, Y. Hirata, Y. Nara, S. Shinmura, Y. Akaishi, Nucl. Phys. A670(2000),297c, A684(2001),595, A691(2001),242c; Few-Body Syst. Suppl. 12 (2000), 367.

Proposal was approved as Stage-1 at the 15th PAC Meeting (2012 July 13-15)

1x10⁶ K⁻ /spill beam 30 days

K1.8BL + KURAMA + Hyperon Spectrometer

Design of H.S. (TPC) is underway ...

TPC+GEM:

Sensitive volume: $50 \text{ cm}\phi \times 50 \text{ cm}\phi$ (1st prototype we have: 10cm角× 20cm) Pad size: 2.5 x 9 mm, 2.5 x 13 mm GEM structure 50 x 50 x 100µm Gas P10

DAQ:

Readout electronics GET

Laser calibration method Field uniformity ExB

- Information on hyperon potential and B-B interaction with strangeness are very important to understand high-density nuclear matter and to construct the EOS.
 - − S=−2 B.B interaction has unique feature no repulsive core in flavor-singlet channel \rightarrow H-dibaryon
- Experiments to study S=–2 system and B-B interaction
 - Emulsion experiment to obtain 100 $\Lambda\Lambda$ hypernuclear events
 - Ξ -hypernuclear spectroscopy on ${}^{12}{}_{\Xi}$ Be
 - Search for *H*-dibaryon both bound and resonance states
 - $\Lambda\Lambda$ interaction from nuclear dependence of $\Delta B_{\Lambda\Lambda}$, existance of *H* ?
 - Ξ potential and ΞN , $\Xi N \rightarrow \Lambda \Lambda$ interaction from Ξ -nucleus

研究組織(A01)

役割	氏名	所属	担当
研究代表者	高橋俊行	高エネルギー加速器研究機構・ 素粒子原子核研究所・准教授	研究の統括、超伝導電 磁石
研究分担者	仲澤和馬	岐阜大学·教育学部·教授	エマルジョン実験統括
研究分担者	佐藤進	日本原子力研究開発機構・先端 基礎研究センター・研究副主幹	ハイペロン相関実験、 ハイペロン崩壊検出器 及び読出回路
連携研究者	高橋仁	高エネルギー加速器研究機構・ 素粒子原子核研究所・准教授	エマルジョン実験、検 出器整備
連携研究者	成木恵	高エネルギー加速器研究機構・ 素粒子原子核研究所・助教	ビームライン検出器整 備
連携研究者	今井憲一	日本原子力研究開発機構・先端 基礎研究センター・研究員(グ ループリーダー)	ハイペロン相関実験、 ハイペロン崩壊検出器
連携研究者	住浜水季	岐阜大学·教育学部·准教授	エマルジョン画像解析

新学術領域「中性子星核物質」キックオフ シンポジウム