新学術領域研究 「実験と観測で解き明かす中性子星の核物質」 2012年10月26日-10月27日 理化学研究所,和光市

ハイパー核生成と中性子星内部 のストレンジネス

Osaka Electro-Communication University/ J-PARC Branch, KEK Theory Center

Contents

- 1. Introduction Neutron stars and strangeness
- 2. S = -1 Nuclei
 - Λ hypernuclei
 - Σ hypernuclei
- 3. S = -2 Nuclei
 - Ξ hypernuclei
 - ΛΛ hypernuclei
- 4. Deeply bound K^{bar} Nuclei
- 5. Summary DO1「中性子星と核物質の理論研究」

高密度中性子星物質グループ 研究計画

Keywords Hyperon mixing + DCX

Neutron star core

= "An interesting neutron-rich hypernuclear system"

Hyperons and massive neutron stars

Thermal evolution of neutron stars

very sensitive to properties of YN, YY interactions

NN, YN, YY Interactions

Latice QCD

ストレンジネス核物理の展開

by E.Hiyama

"QCD,核力から核構造へ"と"核構造からQCD,核力へ"

Dynamics in Strangeness Nuclear Systems

- > Various effects on the hyperon mixing
- Related to the 3BF in nuclei

<u>ストレンジネス核物理</u>

- ▶ ストレンジネスは原子核深部を探るプローブ –ハイペロンはパウリ排他律を受けない
- Impurity Physics
 - "糊"としての役割
 - 原子核構造の変化

- Keywords
 - Hyperon mixing

- Baryon-Baryon Interaction
 - YN, YY Interaction based on SU_f (3)
 - 核力の統一的理解・斥力芯の起源
- "Exotic" Nuclear Physics
 - ストレンジネスが拓く新しい原子核の面白さ
- ➢ Neutron Starの構造と進化
 - 高密度核物質, EOS, 最大質量, 冷却, ...

← Serious Problems from hyperon-mixing (Takatsuka)

<u>2. S = -1 Nuclei</u>

Hypernuclear Production Reactions

<u>A s.p. potential and A spin-orbit splitting in ${}^{89}_{\Lambda}Y$ </u>

Role of the A-hyperon in nuclei

Gamma-ray spectroscopy of light hypernuclei

- > ΛN spin-dependent force/ ΛN - ΣN coupling force/Charge symmetry breaking ($\Lambda p \neq \Lambda n$)
- > Magnetic moments μ_{Λ} in a nucleus from B(M1)

 ${}^{4}{}_{\Lambda}\text{He}, {}^{10}{}_{\Lambda}\text{B}, {}^{11}{}_{\Lambda}\text{B}, {}^{19}{}_{\Lambda}\text{F}$

<u>A spectrum by (π^+ ,K⁺) reaction at 1.2 GeV/c (6°)</u>

Harada, Hirabayashi, NPA744 (2004) 323.

 ^{12}C

 \succ It suggests that Σ -nucleus potentials have a strong repulsion in the real part.

<u> Σ^{-} spectrum by (π^{-},K^{+}) reaction at 1.2GeV/c</u>

Short-range repulsive core in baryon-baryon interaction

Spin-flavor SU(6) symmetry

>SU(6)sp symm. \rightarrow Strongly spin-isospin dependence

Observation of a Σ^{4} **He Bound State**

VOLUME 80, NUMBER 8

PHYSICAL RE

BNL-AGS (1995-)

T. Nagae, T. Miyachi, T. Fukuda, H. Outa, T. Tamagawa, J. Nakano[,]R.S.Hayano, H. Tamura, Y. Shimizu, K. Kubota, R. E. Chrien, R. Sutter, A. Rusek, W. J. Briscoe, R. Sawafta, E.V. Hungerford, A. Empl, W. Naing, C. Neerman, K. Johnston, M. Planinic, Phys.Rev.Lett. 80(1998)1605. 4.6 MeV $B_{\Sigma^+} = 4.4 \pm 0.3 \text{ MeV}$ $\Gamma = 7 \pm 0.7$ MeV 7.9 MeV **Theoretical Prediction** $T \simeq 1/2$ $J^{\pi} = 0^{+}$ T.Harada, S.Shinmura, Y.Akaishi, H.Tanaka, NPA507(1990)715.

Isospin dependence of the (3N)-Σ potentials

Remarks

Properties of the Σ -nucleus potentials by comparing theoretical calculations with the available data:

$$U_{\Sigma}(\boldsymbol{r}) = U_{\Sigma}^{0}(\boldsymbol{r}) + \frac{1}{A_{\text{core}}}U_{\Sigma}^{\tau}(\boldsymbol{r})(\vec{\boldsymbol{T}}_{\text{core}}\cdot\vec{\boldsymbol{t}}_{\Sigma})$$

"repulsion inside the nuclear surface"
"shallow attraction outside the nucleus"

"strong isospin-dependence"

The calculated spectra for ${}^{4}\text{He}(K^{-},\pi^{\pm})$ reaction can explain consistently the available data from BNL, KEK, and ANL.

 Σ -3N potential: the Σ^4 He bound state with T=1/2, J^{π}=0⁺

Strong Lane (isospin-dependent) potential and Coherent Λ - Σ coupling

G-matrix calculation in symmetric nuclear matter

Overbinding Problem on s-Shell Hypernuclei

Dalitz et al., NP **B47** (1972) 109.

Akaishi et al., PRL 84 (2000) 3539.

"The 0⁺-1⁺ difference is not a measure of AN spin-spin interaction." by B.F. Gibson

Production of neutron-rich Λ-hypernuclei with the DCX reaction

 \succ Coherent A- Σ coupling in neutron-excess environment

<u>The Λ - Σ coupling effects in neutron matter</u>

First observation of the superheavy hydrogen ⁶<u>H</u>

- ▶ Produce neutron-rich hypernuclei: ${}^{6}_{\Lambda}$ H and ${}^{9}_{\Lambda}$ He
- ▶ precise measurement of B.E. of ${}^{6}_{\Lambda}$ H is possible

First production of neutron-rich Λ hypernuclei

 $^{10}B(\pi^-, K^+)^{10}_{\Lambda}Li$ A spectrum by DCX (π^-, K^+) reaction at 1.2GeV/c

(π^-, K^+) – Double Charge Exchange (DCX) Reaction

<u>A spectrum by DCX (stopped K⁻, π ⁺) reactions</u>

If the Σ^- admixture probability of ~0.6 % is <u>assumed</u> in {}^{12}_{\Lambda}Be, Early we demonstrate the (stopped K⁻, π^+) spectrum on a ¹²C target. **KEK** data 12**C** ${}^{12}C(K^{-},\pi^{+})$ Fitting to the QF spectrum from KEK 1000 3D orbits $\Sigma^- QF$ COUNTS [EXP.] ′×10⁻² 500 $^{12}_{\Lambda}\text{Be}$ $\frac{12}{\Sigma}$ Be Integrated \mathbf{p}_{Λ} production rate s_{Λ} $\sim 4 \times 10^{-6} / K^{-1}$ 0 -20 20 0 40 60 80 100 E_{Λ} (MeV)

DAPANE data: U.L. ~ $(2.0\pm0.4)\times10^{-5}/K^{-1}$

M.Agnello, et al., PLB640(2006)145.

<u>3. S = -2 Nuclei</u>

Studies of Ξ⁻ **s.p. potentials**

Ξ - spectrum in DCX (K⁻,K⁺) reactions at 1.8GeV/c

Spin-stretched Ξ^- states can be populated due to the high momentum transfer. ds/d Ω [¹⁵N(1/2⁻) \otimes s_{Ξ}](1-) = 6 nb/sr, ds/d Ω [¹⁵N(1/2⁻) \otimes p_{Ξ}](2+) = 9 nb/sr for V_{Ξ}=-14 MeV.

<u>Observation of AA Hypernuclei in E176/E373 Hybrid Emulsion</u>						
NAGARA #6 #5	$^{6}_{\Lambda}$ He $^{12}C+\Xi$	$ \xrightarrow{6} H $	$fe + {}^{4}He + t$ $\rightarrow {}^{5}_{\Lambda}He + p + \pi$	- 2 <i>M</i> _A -	$-B_{\Lambda\Lambda} < M_{\rm H}$ H-d Jaffe	ibaryon , PRL38(1977)195
#7 #7 #4 C	A #2 #3 VA	1ACHI- NAGI V ^{#2}		$^{0}_{\Lambda} \mathbf{Be}^{*}$ HIC	A #7	C #6 B #8 #2
T		A #4. C #1	1/		#5	#3 A #1"2
10 um	~ /	#6 B #5 #3	P		T	$^{11}_{\Lambda\Lambda}$ Be or $^{12}_{\Lambda\Lambda}$ Be
$\Lambda\Lambda$ bound energy	$\Delta B_{\Lambda\Lambda}(\Lambda)$	$^{A}_{\Lambda}Z) = $	$B_{\Lambda\Lambda}({}^{A}_{\Lambda\Lambda}Z) -$	$2B_{\Lambda}({}^{A-1}_{\Lambda}Z)$	Hiyama et al. PRL104(2010)21250	Gal-Millener, PLB701(2011)342
event	$A_{\Lambda\Lambda}Z$	Target	$B_{\Lambda\Lambda}$ [MeV]	$\Delta B_{\Lambda\Lambda}$ [MeV]	$= B_{\Lambda\Lambda}^{\rm CM}[{\rm MeV}]$	$B_{\Lambda\Lambda}^{\rm SM}[{ m MeV}]$
NAGARA	$^{6}_{\Lambda\Lambda}$ He	^{12}C	6.91 ± 0.16	0.67 ± 0.17	= (6.91)	(6.91)
MIKAGE	⁶ _{AA} He	^{12}C	10.06 ± 1.72	3.82 ± 1.72		
DEMACHIYANAGI	$^{10}_{\Lambda\Lambda}$ Be	^{12}C	11.90 ± 0.13	-1.52 ± 0.15	11.88	
HIDA	$^{11}_{\Lambda\Lambda}$ Be	^{16}O	20.49 ± 1.15	2.27 ± 1.23	18.23	18.40
	$^{12}_{\Lambda\Lambda}$ Be	^{14}N	22.23 ± 1.15	_		20.27
E176	$^{13}_{\Lambda\Lambda}B$	¹⁴ N	23.3 ± 0.7	0.6 ± 0.8		23.21
Danysz <i>et al</i> [17]	$^{10}_{\Lambda\Lambda} \mathrm{Be}(^{9}_{\Lambda}\mathrm{Be}^{*})$	¹⁴ N	14.7 ± 0.4	1.3 ± 0.4	= 14.74 (g.s.)	14.97 (g.s.)

H. Takahashi et al., PRL87(2001)212502 K. Nakazawa, NPA 835 (2010)207 K. Nakazawa, H. Takahashi, NPA 835 (2010)207 $\Delta B_{\Lambda\Lambda} ({}^{6}_{\Lambda\Lambda} \text{He}) \simeq 4.7 \longrightarrow 1.01 \longrightarrow 0.67 \text{ "weak attractive"} \\ \text{Prowse, 1966 Nagara, 2001} \equiv \text{mass update}$

Coupled Channel Approach to Doubly Strange Hypernuclei

41

Coupled-channels DWIA calculation for \Lambda\Lambda-\Xi production

Distorted waves for mesons

Eikonal distortion: $\sigma_{K-} = 19.4 \text{ mb}, \ \sigma_{K+} = 28.9 \text{ mb}, \ \alpha_{\pi} = \alpha_{K} = 0$

Ξ -AA spectrum in DCX (K⁻,K⁺) reactions at 1.8GeV/c

Ξ^- spectrum in DCX (K⁻,K⁺) reactions at 1.8GeV/c

The large momentum transfer $q_{\Xi^-} \simeq 400 \text{ MeV/c}$ leads to *the spin-stretched* $\Xi^$ *doorways states* followed by $[^{15}N(1/2^-, 3/2^-) \otimes s_{\Xi^-}]^1 \rightarrow [^{14}C(0^+, 2^+) \otimes s_{\Lambda}p_{\Lambda}]^1$

Search for $\Lambda\Lambda$ hypernuclei in the (K⁻,K⁺) reaction on ¹²C

K. Yamamoto et al. (E885 Collaboration), PLB478(2000)401.

Our results seem to be consistent with the E885 data, which taken from ¹²C, not ¹⁶O.

Remark

Studies of the DCX reactions (π⁻,K⁺), (K⁻,K⁺) for hypernuclear productions are very important and promising .

5. Deeply Bound K^{bar} Nuclei

Theoretical prediction for deeply-bound antiKaonic nuclei

Experimental Candidates for Deeply-Bound State K-pp

³He(K⁻,n)K-pp spectrum at 1.0GeV/c (0deg)

E15@J-PARC A search for deeply-bound kaonic nuclear states by in-flight ${}^{3}\text{He}(K^{-},n)$ reaction

missing mass spectroscopy +invariant mass spectroscopy

<u>中性子星の解明を目指して-ハイペロン相互作用</u>

 $\square \Lambda N$ $U_0(\Lambda) \sim (-30)$ MeV, $U_{LS}(\Lambda) \sim 2$ MeV \rightarrow 精密測定 E13@J-PARC -38 MeV ? ΣN $U_0(\Sigma) \sim 斥力的, U_{LS}(\Sigma) ? \longrightarrow \Sigma^+ p(=\Sigma^- n)$ 散乱 E40@J-PARC $\square \Lambda N - \Sigma N$ a few % mixing, <u>ANN3体力</u>→中性子過剰ハイパー核 E10@J-PARC EN $U_0(\Xi) \sim (-14) \cdot (-0) \text{ MeV } ? \rightarrow (K-,K+) 反 \overline{C}, \Xi - 原子X 線$ E03,05@J-PARC $\Lambda \Lambda - \Xi N - \Sigma \Sigma$ mixing prob. ?, H-particle ? \rightarrow Hybrid-emulsion, $\Lambda\Lambda$ 相関 E07, P42@J-PARC $K^-N-\Lambda(1405)-\pi\Sigma$ $U_0 (K^-) \sim -200 \text{ MeV}/-50 \text{ MeV}?$, "K-pp"? \rightarrow (K⁻,N), (π^+ ,K⁺)反応 E15,E23@J-PARC

Our understanding of hyperon s.p. potentials

D01「中性子星と核物質の理論研究」(代表:大西)

■ <u>高密度中性子星物質</u> – 研究計画 –

- ▶ 原田 融 ハイパー核の生成と構造
- ▶ 土手昭伸 K⁻中間子を含む原子核と高密度物質
- > 木村真明 中性子過剰ハイパー核の構造
- ▶ 山縣関原淳子 媒質中におけるK⁻中間子の性質
- ▶ 大西 明 ストレンジネスを含む原子核と核物質

微視的核模型による中性子過剰 A ハイパー核の 生成反応と構造 (井坂、木村、土手、大西、原田)

- Impurity effect
- Hyperon as a probe for nuclear structure
- ΛN (- ΣN) interaction in medium
- Evaluation and prediction of production cross section for J-PARC experiments

Research based on a microscopic model (AMD:Antisymmetrized Molecular Dynamics)

e.g.: Parity inversion and reversion of ${}^{11}\text{Be}$ and ${}^{12}_{\Lambda}\text{Be}$

<u>中性子星内部でのK-中間子(土手、関原-山縣、・・)</u>

<u>中性子星内部でのK-中間子の役割?</u>

K⁻ 中間子: ストレンジネスを伴うもう一つのハドロンの存在形態 核子と強い引力的相互作用

<u>高密度下でのK⁻中間子の振る舞い</u>

高密度状態方程式へのK中間子の影響

密度依存性 …「カイラル対称性の部分的回復」

> 相互作用の規定 *s-wave K^{bar}N 相互作用 •p-wave K^{bar}N相互作用? •K^{bar}NN三体力??

<u>中重核領域、多重K原子核の研究</u> near nuclear matter での K⁻ 中間子 ・複数ドが存在する場合

Kpp構造計算&反応研究 ・実験データの解析 ・観測された状態の正体

Conclusion

Studies of the production and spectroscopy of strangeness nuclei are very interesting and exciting at J-PARC.

▶ストレンジネスが拓く新しい状態の発見、"エキゾチック"な原子核

▶バリオン−バリオン間相互作用の理解、短距離斥力の起源

▶ハイペロン混合と中性子星の2大問題

中性子星物質の状態方程式の解明

Thank you very much.