Nuclear Physics

Sakura-i Hiro-yoshi 櫻 井 博 儀

日研究人员称第三次合成113号元素

新华网东京9月27日电(记者蓝建中)日本研究人员27日称,他们第三次成功合成了113号元素。日本研究人员曾两次报告合成这一新元素,但均未被相关国际专门机构承认。

日本理化学研究所研究人员在新一期《日本物理学会志》网络版上报告说,

他们从2003年开始,在加速器中使30号元素锌和83号元素铋融合,开始进行合成新元素的实验,2004年和 2005年都曾成功合成113号元素。113号元素合成后平均2毫秒(1毫秒是千分之一秒)就开始衰变。此次合成的 元素与过去两次合成的元素相比,衰变次数更多,而且能够在理论上预测其衰变是以一定概率发生,这进一步证 实了新元素的存在。

日本理化学研究所此前曾两次宣称合成了113号元素,但是国际纯粹与应用化学联合会和国际纯粹与应用物 理联合会认为"数据过少",不予承认。俄罗斯和美国研究人员也曾于2004年宣布合成113号元素。

这今为止, 排在元素周期表第105号元素之后的超重元素, 在自然界中都很难出现。科学家们发现的一系列超 重元素都是在实验室中合成的, 它们往往在生成后极短时间内就衰变成原子量较小的其他元素。

Element 113th

Fundamental interactions

Elementary particles

Composite particles

Nuclear Physics is not Particle Physics, not Condensed Matter Physics

Interaction? Effective interaction ? Correlations ? Isospin, Density, temperature dependences ? Surface boundary, non-linear, finite system Collective motions

- Q. 1 Life time of neutron?
- Q. 2 Age of universe is 13.7B Years after BigBang. At present, there are neutrons in materials. Why?
- Q. 3 Spin-parity for ground state of deuteron?
- Q. 4 Limits of existence of nuclei?
- Q. 5 Magic numbers of nuclei?
- Q. 6 Size of nuclei?
- Q. 7 Collective motions of nuclei?
- Q. 8 How and where elements around us have been created ?

Exploration of the Limit of Existence

Nuclear Collective Motion

Solar Abundance of Elements

T.Motobayashi

Gold

Exploration of the Limit of Existence

New frameworks for the new region of nuclear chart

To write up new text book: Exotic phenomena, Systematics, etc. Isospin-, density-dependences of effective interactions, nucleon-corrections Microscopic system (nuclei) to Macroscopic system (neutron stars)

Liberation from Stable Region and Exotic Nuclei

Shell Evolution : magicity loss and new magicity

Dynamics of new "material" : Neutron-skin(halo)

New quantum objects with two surfaces $_{neutron\ skin}$,Skin thickness ? Density distribution ? Role of skin in reactions? Pairing in skin? di-neutrons? Exotic modes of skin?

RIBF provides data for nuclei far from the stability line

Challenges in establishing new frame work of nuclear physics

Challenge for r-process path and explosion in supernovae

Synthesis up to U (r-process) unknown neutron-rich nuclei theoretical predictions only

Necessary of experimental investigation for nuclear properties of heavy and neutron-rich nuclei Mass, life-time, decay mode

Explosion mechanism of supernova No explosion in theoretical works Outer clast of neutron star

<u>Necessary of experimental study for</u> <u>Equation-of-State for nuclear matter</u>

1987A

Challenge to investigate EOS of neutron matter

from nuclei to neutron stars

3NF

T=3/2 channels? density dependence?

Elastic d+p for T=1/2 Nuclear structure in very neutron-rich nuclei for T=3/2? Heavy-ion Collisions to achieve ρ~2-3ρ0 ?

³P₂ correlation

pairing gap? Density dependence?

????

Role of di-neutron in skin? : collectivity, transfer reactions

RIKEN RI Beam Factory (RIBF)

Intense (80 kW max.) H.I. beams (up to U) of 345AMeV at SRC Fast RI beams by projectile fragmentation and U-fission at BigRIPS Operation since 2007

Exploration of the Limit of Existence

Large-scaled Facilities in the world

RI beam production via in-flight method

World's First and Strongest K2600MeV Superconducting Ring Cyclotron

400 MeV/u Light-ion beam 345 MeV/u Uranium beam

World's Largest Acceptance 9 Tm Superconducting RI beam Separator

~250-300 MeV/nucleon RIB

Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a ²³⁸U Beam at 345 MeV/nucleon

T. Ohnishi, et al., JPSJ 79, 073201 (2010).

Nov., 2008 Averaged beam intensity ~0.2 pnA Maximum intensity 0.4 pnA

Mn (Z=25) to Ba (Z=56) Covered by three Brho settings Be and Pb targets Total dose 1-2x10¹⁴ for each Brho setting

Even Z

Odd Z

150

Yield rates reasonably reproduced by LISE++

Press-Conference on June 8th, 2010

June 8, 2010 RIKEN

Scientists discover 45 new radioisotopes in 4 days

2004
2003

> 2002

2001

2000

, 1999

BigRIPS has found 45 new radioisotopes

The chart of the known nuclides has been extended significantly by physicists in Japan, who have discovered 45 new neutron-rich isotopes. The nuclei were spotted at the RIKEN laboratory by smashing a powerful beam of heavy ions into beryllium and lead targets.

Half-Lives of Very Neutron-Rich NucleiS. Nishimura et al.(Kr,Rb,Sr,Y,Zr,Nb,Mo,Tc) around 2nd R-Process PeakS. Nishimura et al.

8 hour data acquisition
T1/2 data of 38 isotopes including first data for 18 isotopes
FRDM may underestimate Q-value for Zr and Nb by 1 MeV at A~110
More rapid flow in the rapid neutron-capture process than expected

S. Nishimura et al., PRL 106 (11) 052502

1/3 ~ 1/2 Shorter Half-lives of Zr and Nb (A~110)

Faster r-process synthesis in supernova explosion ? —new half-life data for 18 neutron-rich nuclei

	平成
超新星爆発で重元素再現	
超新星爆発で重い元素が作られる様子	
を地上で再現したところ、一部の元素は	
これまでの理論よりも多く作られること	
がわかった。理化学研究所が発表した。	
太陽系にあるいくつかの元素は理論予想	由子屋きえは
より10倍多く、どう作られたのか20年間	性核市たた、
議論が続いていたが、超新星爆発が重元	防止あるのな子子の説超恒
素の工場だった可能性が高まった。	に 過 た が 新 星 変 剰 鉄 有 星 が わ と な 力 爆 寿
理研の西村俊二先任研究員らは、埼玉	るなどだ発命での「ない」では、
県和光市の大強度重イオン加速器施設	て超だはタ
「RIBF」で、ウランを光速の70%に加	い新け「ーき星は重のた爆ぎ元元
速し、ベリリウムに毎秒10億個ぶつけた。	い発取案相
ウランが分裂してできた元素のうち、18	(小話程。の先野すをこ謎任
種類は世界で初めて寿命が調べられたと	晋 。 解れを研 明か少 第 しらし 信
いう。(フィジカル・レビュー・レターズ)	0 7 0 4

													-	-	-	-	7	-			
				ম	平成	2	3±	₹(2	2011年) 2			2月7日		月曜日				9 (
									ムの実験で得られた。超新	研究所などの国際共同チー	合成された証拠が、理化学	論予測の2~3倍の速さで	で、一部の元素は従来の理	り重い元素が作られる過程	超新星爆発によって鉄よ		超新星爆発		国フラに矢	自己に自たした。	
中性子が陽子に変わる「ベ	子核が中性子過剰となり、	星中心にあった鉄などの原	きたとする説が有力だ。恒	えたときの超新星爆発でで	は、巨大な恒星が寿命を迎	ウランまでの元素の約半分	自然界に存在する鉄から	(電子版)に発表した。	レビュー レターズ」	う。米科学誌「フィジカル	謎を解く糸口になるとい	論予測よりも多く存在する	太陽系の一部の重元素が理	程を再現したのは世界初。	星爆発による重元素合成過		元の再現は世界初		日日でそ万	寺目で一支	
(小野晋史)	ていきたい」と話す。	超新星爆発の過程を解明し	だけはぎ取った。これから	は「重元素合成の謎を少し	ターの西村俊二先任研究員	理研仁科加速器研究セン	崩壊することが判明した。	ブは理論の2~3倍も速く	過剰なジルコニウムとニオ	を測定。その結果、中性子	生成し、ベータ崩壊の過程	中性子過剰な重い原子核を	ベリリウム原子にぶつけて	まで加速したウラン原子を	(埼玉県)で、光速の約70%	「RIビームファクトリー」	強度重イオン加速器施設	国際チームは、理研の大	されていくという。	り重い安定した元素が合成	ータ崩壊」を繰り返してよ

日本研究称超新星爆发时元素合成速度比预测快

2011-02-07 09:10:15 来源:新华网(广州) 跟贴 21 条 手机看新闻

核心提示:日本对38种中子过剩的放射性同位素的寿命进行精确测定,发现质量数 在110左右的放射性同位素的衰变速度超过理论预测值的两三倍。这表明超新星爆发时的 元素合成速度远高于预想。

新华网东京2月6日电 日本理化研究所日前发表公报说,该所研究人员与国内外同行 通过对38种中子过剩的放射性同位素的寿命进行精确测定,发现质量数在110左右的放射 性同位素的衰变速度超过理论预测值的两三倍。这表明超新星爆发时的元素合成速度远高 于预想。

公报说,科学界认为,从铁到铀,自然界稳定存在的重元素中有约半数是大质量恒星 在生命终结阶段发生超新星爆发时生成的。为了验证这一假说,有必要人工合成超新星爆 发时生成的中子过剩的放射性同位素,并测定它们的寿命。

刊。

研究小组利用仁科加速器研究中心的重离子加速 器"放射性同位素束流工厂"将铀238束流加速到345 兆电子伏特,然后轰击铍9,从而人工制造出从氮97到 傅117等数十种中子过剩的放射性同位素。接着,研究 人员把这些放射性同位素分离,并让分离后的原子核 束射入理化研究所研发的高性能寿命测定装置,精确 测定它们的寿命,也即同位素衰变前保持稳定的时 间。测定结果显示,质量数在110左右的放射性同位素 的寿命只有理论预测值的二分之一到三分之一。这表 明,超新星爆发时的重元素合成速度远高于理论预测 值。

本次研究成果将发表于美国《物理评论通讯》周

Feb 7th 2011

日本研究称超新星爆发时元素合成速度比预测快 网易新闻中心

(本文来源:新华网)

Extension of the deformation region up to the drip-line

How the deformation region is expanding ? Something new associated with weakly bound natures? pairing gap ~ separation energy pairing? di-neutron ? cluster formation?

Doornenbal, Scheit, et al. Ne-32 1st excited states: PRL 103, 032501 (2009) New states in 31,32,33 Na: PRC 81, 041305R (2010) Mg-36,-38: ARIS11; in preparation F-29: in preparation Chevier, Ueno et al., Intruder state in S-43: PRL 108, 162501 (2012) Takeuchi et al. Si-42 : ARIS11; submitted

Collectivity of the neutron-rich Mg isotopes

New Devices of RIBF

To maximize the potentials of intense RI beams available at RIBF

Recoiled proton tagged knockout reaction for He-8 at RIPS

PKU-RIKEN-IMP-TITech-Seaul

Ye et al., July 2009

"Quasi-elastic scattering of He-6 from C-12" Lou and Ye et al., PRC 83, 034612 (2011)

"Recoil proton tagged knockout reaction for He-8" Cao and Ye et al., PLB 707, 46-51 (2012)

Challenge

Action

Discussion

Enjoy

Next challenges for next 30 years

