## A brief introduction to particle accelerators

1．What is＂particle accelerator＂？
2．How accelerators work？：principles and history
3．A bit about beam dynamics ：focusing of beams
4．Application of accelerators
5．RIKEN cyclotrons and RI Beam Factory

Osamu Kamigaito（上垣外修一）<br>Accelerator Group，RIKEN Nishina Center

## 1. What is "particle accelerator"?




An accelerator consists of many components....

## Particle accelerators are, simply speaking...



But, for what?...

## Accelerators were invented for exploring nuclear world.

## Lecture by Rutherford at the Royal Society (1927.11.30)

It would be of great scientific interest if it were possible in laboratory experiments to have a supply of electrons and atoms of matter in general, of which the individual energy of motion is greater even than that of the $\alpha$-particle. This would open up an extraordinarily interesting field of investigation which could not fail to give us information of great value, not only on the constitution and stability of atomic nuclei but in many other directions.

It has long been my ambition to have available for study a copious supply of atoms and electrons which have an individual energy far transcending that of the $\alpha$ and $\beta$-particles from radioactive bodies. I am hopeful that I may yet have my wish fulfilled, but it is obvious that many experimental difficulties will have to be surmounted before this can be realised, even on a laboratory scale.

[^0]
## Exercise

What is the potential energy between two identical spheres (radius = $\left.1[\mathrm{fm}]=10^{-15}[\mathrm{~m}]\right)$ charged uniformly by $e\left(=1.6 \times 10^{-19}[\mathrm{C}]\right)$ at contact?


High voltage devices > 1 MV are necessary for nuclear collisions

$$
\begin{aligned}
& \text { Electric potential }=>\quad V(r)=\frac{e}{4 \pi \varepsilon_{0} r} \quad[\mathrm{~V}] \\
& \varepsilon_{0}=8.85 \quad[\mathrm{pF} / \mathrm{m}]=8.85 \times 10^{-12} \quad[\mathrm{~F} / \mathrm{m}] \\
& \left.V\right|_{r=2[\mathrm{fm}]} \approx \frac{1.6 \times 10^{-19}}{4 \times 3.14 \times 8.85 \times 10^{-12} \times 2 \times 10^{-15}} \approx 719000[\mathrm{~V}] \approx 0.7[\mathrm{MV}]
\end{aligned}
$$



$$
\left.e V\right|_{r=2[\mathrm{fm}]} \approx 719000[\mathrm{eV}] \approx 0.7[\mathrm{MeV}] \approx 1[\mathrm{MeV}]
$$

2. How accelerators work?

Acceleration by static electric field


Beam: DC
High voltage

The first man-made nuclear reaction (1932)
J. D. Cockcroft and E. T. S. Walton, Proc. R. Soc. London A137 (1932) 229.

$$
\mathrm{p}(500 \mathrm{keV})+{ }^{7} \mathrm{Li}=>\alpha+\alpha
$$



1951 Nobel prize in Physics

E. T. S. Walton

## Dawn of nuclear physics

## Cockcroft-Walton Circuit




Modern C-W accelerator

RF linear accelerator
Successive acceleration in rf-gaps


Became popular after WW-II


## Modern Linacs



## Lawrence driven by Wideroe's paper (1929)

Re-use of rf-acceleration => compact!


E. O. Lawrence (1901-1958)

## Cyclotron



H!

## Principle of cyclotrons: Isochronism

$F_{R}=m v^{2} / R$
$F_{B}=q v B$
$F_{R}=F_{B} \Rightarrow m v^{2} / R=q v B \Rightarrow$
$R=m v / q B$
(=>Faster particle has a larger R)


Revolution period:
$T=2 \pi R / v=2 \pi m / q B$
(does not depend on the velocity as far as the velocity is low)

## How cyclotrons work?

Cyclotron


1


3


Cyclotron


Beam : CW

The $1^{\text {st }}$ cyclotron


The $1^{\text {st }}$ cyclotron (1931)
Proton $80 \mathrm{keV} \quad(\mathrm{v}=0.013 \mathrm{c})$
Diameter 10 cm

Ernest O. Lawrence (1901-1958)
1929 Invention of cyclotron
1939 Nobel prize in physics:
「Invention of cyclotron \& RI production」

## Evolution of cyclotrons-1



Laurence - Livingston (1932)
Proton 1.2 MeV ( $\mathrm{v}=0.048 \mathrm{c}$ )
Diameter 28 cm


Laurence • Livingston (1932)
Deuteron $5 \mathrm{MeV}(\mathrm{v}=0.073 \mathrm{c})$
Diameter 69 cm

## Evolution of cyclotrons-2



Laurence's team (1939) Deuteron 16 MeV Diameter 152 cm


Nishina's team (1944) Deuteron 16 MeV Diameter 152 cm

World's largest before WW-II


Laurence's group (1941)
Intended for proton $100 \mathrm{MeV} \quad(\mathrm{v}=0.43 \mathrm{c})$
Diameter $470 \mathrm{~cm} /$ Weight 4,000 ton
Did not work as a cyclotron due to the relativistic effect

## Principle of phase stability (1945) => Birth of synchrotron

-Constant, closed orbit
-Two synchronization condition

1) Momentum and $B$

$$
p(t)=q \rho B(t)
$$

2) Momentum and rf-frequency

$$
f_{\text {rev }}(t)=\frac{v(t)}{2 \pi \rho}=\frac{p(t)}{m_{0} \gamma(t)} \frac{1}{2 \pi \rho}
$$

V. Veksler, J. Phys. (USSR) $\underline{9}$ (1945) 153
E. M. McMillan Phys. Rev. 68 (1945) 143



## Beam : Pulse

## Evolution of synchrotron


"Cosmotron" (BNL/1952)
Proton $3 \mathrm{GeV} \quad(\mathrm{v}=0.971 \mathrm{c})$
Diameter 18 m
Weight 2,000 ton
Meson-Baryon

"Bevatron" (LBL/1954) Proton 6 GeV ( $\mathrm{v}=0.991 \mathrm{c}$ )

Diameter 39 m
Weight 10,000 ton
Anti-proton(1955)•Meson•Baryon

Limitation of classical (weak-focusing) synchrotron

"Synchrophastron" (Dubna/1957)
Proton 10 GeV ( $\mathrm{v}=0.996 \mathrm{c}$ )
Diameter 56 m /Weight 36,000 ton

## Principle of strong focusing (1952)

R. D. Courant, M. S. Livingston, H. S. Snyder, Phys. Rev. 88 (1952) 1190

"AGS" (BNL/1960)
Protons 33 GeV ( $\mathrm{v}=0.9996 \mathrm{c}$ )
Diameter 257 m
Muon-neutrino (1962) CP-violation (1964) J-particle (1974)

"CERN PS" (CERN/1959)
Proton 28 GeV ( $\mathrm{v}=0.9995 \mathrm{c}$ ) Diameter 200 m


GSI（Germany）


## Invention of collider (1959-61)

G. Budker (INP/RU)
B. Touschek (Frascati/IT)

$$
2 E_{\mathrm{lab}} m_{0} c^{2}=E_{\mathrm{cm}}^{2}
$$

(=> Prove this!)
e $100 \mathrm{MeV}+\mathrm{e} 100 \mathrm{MeV} \Leftrightarrow \mathrm{e} 40 \mathrm{GeV}+\mathrm{e} 0 \mathrm{MeV}$


HEPL(Stanford/1960s)

"KEKB" (KEK)
eletron $8 \mathrm{GeV}+$ positron 3.5 GeV
Origin of CP-violation (2001)

## Large Hadron Collider (CERN : 2009~)

Proton ( $7 \mathrm{TeV}+7 \mathrm{TeV}$ ) /Diameter $9 \mathrm{~km} / \mathrm{v}=0.99999999 \mathrm{c}$


Inside of tunnel (undergrond 100 m )

$<=$ SC-magnet

SC-cavity=>


## Evolution of high-energy accelerators



What has driven the evolution?
-The accelerators has provided the answers to the fundamental question: "How are the matters formed?"
-The accelerators has created various research fields and/or applications which could not be covered with the other methods:
e.g. RI production, Synchrotron radiation, Cancer treatment etc..

Nobel prizes related to the Accelerator

| 1939(P) Lawrence | (US) | Invention of cyclotron |
| :--- | :--- | :--- |
| 1951(P) Cockcroft \& Walton | (UK) | First man-made nuclear reaction |
| 1951(C) Seaborg \& McMillan | (US/Cyc) | Transuranium elements |
| 1959(P) Segre \& Chamberlain | (US/Bevatron) | Antiproton |
| 1961(P) Hofstadter | (US/SLAC) | Electron scattering |
| 1968(P) Alvarez | (US/Bevatron) | Bubble chamber |
| 1976(P) Ting \& Richter | (US/AGS, SLAC) J/ $\Psi$ |  |
| 1980(P) Cronin \& Fitch | (US/AGS) | Discovery of CP violation |
| 1984(P) Rubbia \& van der Meer | (CERN/SppS) | W/Z boson |
| 1988(P) Lederman, Schwarts, Steinberger | (US/AGS) Muon neutrino |  |
| 1988(C) Deisenhofer, Huber, Michel (GR/DESY PF) | Photosynthesis |  |
| 1990(P) Friedman, Kendal, Taylor | (US/SLAC) | Quark |
| 1995(P) Perl | (US/SLAC) | Tau lepton |
| 1997(C) Boyer \& Walker | (UK/SRS Daresbury) ATP synthesis |  |
| 2003(C) Mackinnon | (US/CHESS,NSLS) Potassium channels |  |
| 2006(C) Kornberg | (US/SLAC) Eukaryotic transcription |  |
| 2008(P) Kobayashi \& Maskawa | (JP/KEKB, US/SLAC) Origin of CP violation |  |
| 2009(C) Yonath | (JP/KEK-PF,GR/DESY-PF) Ribosome |  |

## Classification of accelerators

| E | B | Linear | Spiral orbit | Closed orbit |
| :---: | :---: | :---: | :---: | :---: |
| Static | Static | Cockcroft-Walton, <br> Van de Graaff |  | (Impossible!)* |
| RF(fixed) | Static | (RF) Linac | Cyclotron, <br> Microtron | (e-Storage Ring) |
| RF(mod) | Static |  | Synchro- <br> Cyclotron, <br> FFAG |  |
| RF(mod) | Varying |  |  | Synchrotron |
| Induction |  | Induction Linac |  | Betatron |

* => Prove this!


## 3. A bit about beam dynamics

## Particle motion: Lorentz force

$$
d \boldsymbol{p} / d t=q(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})
$$



Motion of a charged particle in a uniform magnetic field

## Basics of kinematics-1

$$
\begin{aligned}
c & \equiv 299792458 \mathrm{~m} / \mathrm{s} \\
& \approx 2.998 \times 10^{8} \mathrm{~m} / \mathrm{s} \approx 3 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

-Kinematical factor (dimension-less)

$$
\beta \equiv \frac{|\boldsymbol{v}|}{c} \quad \gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}}
$$

-Equivalence

$$
\gamma^{2}-\beta^{2} \gamma^{2}=1 \quad \text { or }
$$

$$
\beta \gamma=\sqrt{\gamma^{2}-1}
$$

- Total energy of a particle with the rest mass $m_{0}$

$$
E=m_{0} c^{2} / \sqrt{1-\beta^{2}}=m_{0} c^{2} \gamma \quad \Rightarrow \gamma=E / m_{0} c^{2}
$$

Low-velocity particle.. $E \approx m_{0} c^{2}+\frac{1}{2} m_{0} \boldsymbol{v}^{2}$

- Kinetic energy

$$
T=E-m_{0} c^{2}=m_{0} c^{2}(\gamma-1)
$$

$$
\Rightarrow \gamma=T / m_{0} c^{2}+1
$$

## Basics of kinematics-2

-Momentum

$$
\boldsymbol{p}=m_{0} c \boldsymbol{\beta} \gamma=m_{0} \gamma \boldsymbol{v}
$$

## - Energy gain

$$
\begin{array}{ll}
\frac{d T}{d t}=m_{0} c^{2} \frac{d \gamma}{d t}=\dot{\boldsymbol{x}} \cdot \frac{d \boldsymbol{p}}{d t}=q \boldsymbol{E} \cdot \dot{\boldsymbol{x}} & (=>\text { Exercise }) \\
\Rightarrow \Delta T=\int q \boldsymbol{E} \cdot \dot{\boldsymbol{x}} d t=q \int \boldsymbol{E} \cdot \boldsymbol{d} \boldsymbol{x} & \text { Unit }:[\mathrm{eV} \text { (electron-volt })]
\end{array}
$$

-Rest mass
Electron $\quad m_{e} c^{2}=511 \mathrm{keV} \approx 0.5 \mathrm{MeV}$
Proton $\quad m_{p} c^{2}=938 \mathrm{MeV} \approx 1 \mathrm{GeV}$
Ion $\quad 1 \mathrm{amu} \Rightarrow 931.494 \mathrm{MeV} \quad m_{A} c^{2}=931.494 \mathrm{~A} \mathrm{MeV}$

## Exercise

-Calculate velocity of a proton of $\mathrm{T}=400 \mathrm{MeV}$

$$
\begin{aligned}
& \gamma=T / m_{p} c^{2}+1=400 / 938+1=1.426 \ldots \\
& \beta \gamma=\sqrt{\gamma^{2}-1}=\sqrt{1.426^{2}-1}=1.017 \ldots \\
& \beta=1.017 \ldots / 1.426 \ldots \approx 0.713
\end{aligned}
$$

-Calculate velocity of an electron of $\mathrm{T}=400 \mathrm{MeV}$

$$
\begin{aligned}
& \gamma=T / m_{e} c^{2}+1=400 / 0.511+1=783.778865 \ldots \\
& \beta \gamma=\sqrt{\gamma^{2}-1}=783.778227 \ldots \\
& \beta=783.778227 \ldots / 783.778865 \ldots \approx 0.999999186
\end{aligned}
$$

## Bending of charged particle beams

$$
\begin{aligned}
& d \boldsymbol{p} / d t=q(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B}) \\
& |\boldsymbol{E}|=>30 \mathrm{kV} / 1 \mathrm{~cm}=3 \times 10^{6}[\mathrm{~V} / \mathrm{m}] \\
& |\boldsymbol{B}|=>1[\mathrm{~T}], \quad|\boldsymbol{v}|=>3 \times 10^{8}[\mathrm{~m} / \mathrm{s}](=c), \\
& |\boldsymbol{v} \times \boldsymbol{B}|=>3 \times 10^{8}[\mathrm{~V} / \mathrm{m}]
\end{aligned}
$$

=> Magnetic force is more effective for bending and focusing of beams in high-energy accelerators
$\boldsymbol{E}$ : Acceleration
$\boldsymbol{B}$ : Bending and Focusing

## Focusing of beam

An accelerators should accelerate not only a single particle, but also a bunch of particles as well.
=> It is designed so that the eq. of motion have a stable region....
Focusing effects in bending magnets


Fig. 6-7. Radially decreasing magnetic field between poles of a cyclotron magnet, showing shims for field correction.

## "Weak" focusing

Weak focus
gradual B


H-plane


V-plane

Focusing effects at the edge of BM


## Edge focusing in ring cyclotron

-Consistent with the relativistic effect

- Suitable for high-power ion beams with compact space -First proposed by Thomas (1938), constructed later (1972)



## Focusing with quadrupole magnets

- Magnet field in quadrupole


$$
\begin{aligned}
& \boldsymbol{B}=\left(B_{x}, B_{y}, B_{s}\right)=(a y, a x, 0) \\
& \left.\quad a \equiv \frac{\partial B_{y}}{\partial x}\right|_{x=0, y=0} \quad: \text { field gradient }
\end{aligned}
$$

## Equation of motion in quadrupole magnets

-Lorentz force

$$
\begin{gathered}
\boldsymbol{v}=\left(v_{x}, v_{y}, v_{s}\right)=(0,0, v) \quad \boldsymbol{B}=\left(B_{x}, B_{y}, B_{s}\right)=(a y, a x, 0) \\
\boldsymbol{v} \times \boldsymbol{B}=\left(v_{x}, v_{y}, v_{s}\right)=(-v a x, v a y, 0)
\end{gathered}
$$

-Equation of motion

$$
\begin{array}{ll}
m \frac{d^{2} x}{d t^{2}}=-q v a x \quad m \frac{d^{2} y}{d t^{2}}=q v a y & \Rightarrow s \equiv v t, \quad B \rho=\frac{m v}{q} \\
\Rightarrow \frac{d^{2} x}{d s^{2}}=-\frac{q a}{m v} x=-\frac{1}{B \rho} \frac{\partial B_{y}}{\partial x} x \quad \frac{d^{2} y}{d s^{2}}=\frac{q a}{m v} y=-\frac{1}{B \rho} \frac{\partial B_{y}}{\partial x} y \\
\left.\begin{array}{ll|}
\frac{d^{2} x}{d s^{2}}+K x=0 & : \text { Focusing in } x
\end{array} \quad K \equiv \frac{1}{B \rho} \frac{\partial B_{y}}{\partial x}\right|_{x=0, y=0} \\
\frac{d^{2} y}{d s^{2}}-K y=0 & : \text { Defocusing in } y
\end{array}
$$

"Strong" focusing २. D. Courant, M. S. Livingston, H. S. Snyder, Phys. Rev. 88 (1952) 1190
Beam envelope


F $\quad \mathrm{D} \quad \mathrm{F} \quad \mathrm{D} \quad \mathrm{F} \quad \mathrm{D}$

Quadrupole Magnet
Horizontal: Defocus (D)
Vertical : Focus (F)
Particle trajectory


## Strong focusing everywhere




KEK 3GeV RCS

## General equation of motion in accelerators

-Equation of motion in a single element

$$
\begin{aligned}
& \frac{d^{2} x}{d s^{2}}+K_{x} x=0 \\
& \frac{d^{2} y}{d s^{2}}+K_{y} y=0
\end{aligned}
$$


-Accelerators are composed of many elements:

$$
\begin{aligned}
\frac{d^{2} x}{d s^{2}}+K_{x}(s) x & =0 \quad K_{x}(s+C)=K_{x}(s) \\
\frac{d^{2} y}{d s^{2}}+K_{y}(s) y & =0 \quad K_{y}(s+C)=K_{y}(s) \\
& (C \text { : circumference })
\end{aligned}
$$

## 4. Application of accelerators

Example: Cancer therapy with heavy-ion beams


## HIMAC synchrotron for cancer therapy



図4 放射線医学総合研究所の重粒子線がん治療装置（HIMAC）
［出典］放射線医学総合研究所：重粒子線がん治療装置HIMAC，1995年8月

## 治療例＠放医研HIMAC

## PET（positron－emission tomography）picture



## Other applications



Varian medical systems
X-ray treatment system


Sumitomo Heavy Industries Cyclotrons for PET 18F

$1^{\text {st }}$ (the first Japanese cyclotron) (Nishina /1937)

$3^{\text {rd }}$ (Sugimoto / 1952)


$2^{\text {nd }}$ (one of the largest in the world) (Nishina /1944)

$4^{\text {th }}$ (in Wako campus) (Kumagai / 1966)



## RIBF accelerators

- AVF-injection mode (< $440 \mathrm{MeV} / \mathrm{u}$ )
- Variable-energy mode (< $400 \mathrm{MeV} / \mathrm{u}$ )
- Fixed-energy mode ( $345 \mathrm{MeV} / \mathrm{u}$ )




$$
\begin{aligned}
& \text { •Beam Energy > } 100 \mathrm{MeV} / \mathrm{u} \\
& (\text { Speed }>0.4 \mathrm{c}) \\
& \text { •High Intensity }
\end{aligned}
$$

Ring cyclotrons are suitable for RI-beam production

## Nuclear landscape



## RIB facilities in the world

RIB facilities world-wide - from the National Academies' report


## Backup

## Trajectory in weak focusing machines - 1

$$
\frac{d^{2} x}{d s^{2}}=-\frac{v_{r}^{2}}{\rho^{2}} x, \quad 0<v_{r}<1
$$

$x$ : Horizontal deviation from the design orbit
$s$ : Orbit length
=>Harmonic oscillator

$$
\rho=25[\mathrm{~m}]=>C \approx 157[\mathrm{~m}], \quad v_{r}=0.7
$$

$$
x(0)=0, \quad \frac{d x}{d s}(0)=0.005
$$




## Trajectory in weak focusing machines - 2

-Hamiltonian of harmonic oscillator

$$
H(x, p)=\frac{1}{2}\left(p^{2}+k x^{2}\right)
$$

-Hamiltonian is invariant ("first integral" of motion)
$H(x(s), p(s))$


Trajectory in strong focusing machines - 1

$$
\frac{d^{2} x}{d s^{2}}=-K(s) x, \quad K(s+C)=K(s)
$$

e.g.

$$
K(s)=0.1+1.2 \times \cos (50 s / \rho) \quad: \sim 50 \text { Fs }+50 \text { Ds inserted in the ring }
$$



Trajectory in strong focusing machines - 2


Trajectory in strong focusing machines - 3

$$
\begin{aligned}
H(x, p, s) & =\frac{1}{2}\left(p^{2}+K(s) x^{2}\right) \quad: \text { not conserved }(=>\text { exercise }) \\
\Rightarrow \frac{d x}{d s} & =p, \quad \frac{d p}{d s}=-K(s) x
\end{aligned}
$$

$$
H(x(s), p(s), s)
$$

"Phase curve"



Comparison of weak/strong focusing -1


-Phase curve

Comparison of weak/strong focusing -2



[^0]:    E. Rutherford, Proc. Roy. Soc. (London) A117 (1927) 300

