The Japan-Korea PHENIX collaboration Workshop

R&D of RAON Experimental Systems at IBS/RISP

27th November 2012

Yong-Kyun KIM

Institute for Basic Science & Hanyang University

RAON [raon] new name of RISP (Rare Isotope Science Project) Accelerator Complex

RISP Status and Plan

- Conceptual Design report (Mar. 2010 Feb. 2011)
- IAC review (Jul. 2011 Oct. 2011)
- Rare Isotope Science Project started in IBS (Dec. 2011)
 Director Prof. Sunkee Kim
- RISP Workshop on accelerator systems (May 6 9, 2012)
- TAC (May 10, 2012)
- Conceptual Design of the Building and Conventional Facilities (May 2012)
- Baseline Design Summary (by July 2012) Base line parameters
- RISP Workshop on Advanced Experimental Techniques using RI Beams (16, July, 2012)
- IAC (July 26-27, 2012)
- Technical Design Report (by Jun. 2013)
- Ground Breaking (2014)

Rare Isotope Nuclear Science

"Nuclear science is entering a new era of discovery in understanding how nature works at the most basic level and in applying that knowledge in useful ways". - National Academy 2007 RISAC Report -

User Community (Domestic, 2010)

76 Ph.D.s and 43 graduate students in 8 working groups

PI of conceptual design	Y. (Hany	Y. K. Kim (Hanyang Univ.) B. G. Cheoun, B. H. Kang, M. S. Ryu, S. M. Kang, D. Y. Jang, B. H. Park, T. Schaarschmidt, S. K. Lee, J. S. Kang, K. H. Jo, B. K. Shin, S. H. Kim, I. S. Lee (4/10)						
Working Group	Nuclear Structure	Nuclear Astrophysics & Nucleosynthesis	Nuclear Matter	Nuclear Theory	Medical & Bio Application	RI Material Research	Nuclear Data	Atom traps for RI research
Leader (Institution)	S. H. Choi (Seoul National Univ.)	C. B. Moon (Hoseo Univ.)	C. H. Hyun (Daegu Univ.)	M. K. Cheoun (Soongsil Univ.)	W. Y. Park (Chungbuk National Univ.)	S. H. Park (KAERI)	Y.O. Lee (KAERI)	D. H. Yu (KRISS)
Group members	W. Kim I. K. Yoo S. Stepanian Sato H. S. Lee #K. S. Lee #E. J. Ha M. Evgeniy H. S. Do J. K. Lee C. W. Son K. S. Oh K. E. Choi J. H. Song H. K. Kim J. S. Song (6+2/9)	I. S. Hahn J. H. Lee Y. K. Kwon J. Y. Moon C. C. Yun J. S. Yoo A. Kim E. H. Kim J. S. Park (8/2)	S. H. Lee H. C. Kim E. J. Kim J. K. Ahn Y. S. Oh K. S. Lee C. H. Lee H. J. Lee B. Hong #K. S. Lee H. J. Jeong, J. H. Jeong K. B. Kim, S. H. Kim J. Y. Park, J. H. Jeong S. Y. Yu, H. S. Jo S. J. Kim, K. H. Lee M. E. Baek, B. H. Choi E. A. Joo, K. Y. Baek J. H. Jang, S. H. Hwang H. H. Shim, J. K. Lee Y. M. Kim (11/19)	C. Ryu *E. J. Ha K. Kim B. G. Yu T. Choi W. Y. So (7/0)	Y. C. Ahn I. G. Kim K. C. Kim I. L. Jeong T. R. Kim U. Jung H. J. Song J. R. No J. C. Ahn *J. W. Gwak *D. H. Shin *S. J. Ye *Join research not project member (7+3/3)	J. K. Kim W. Hong B. Y. Han S. K. Ahn H. S. Shin N. Y. Kim H. S. Kim B. J. Seo H. Im *Y. J. Rhee *J. M. Han *H. M. Park *K. H. Ko *G. Lim (15/0) * Joining 2 working groups	G. D. Kim J. G. Yoo HW. Choi H. J. Woo T. Y. Song H. I. Kim C. W. Lee *Y. J. Rhee *J. M. Han *H. M. Park *K. H. Ko *G. Lim (8+5/0)	Y. K. Lee C. Y. Park J. C. Moon T. Y. Kwon S. E. Park S. B. Lee H. S. Kang M. K. Oh Y. H. Park (10/0)

RAON : RISP Accelerator Complex

6

Main Research Subjects

	Nuclear Astrophysics & Nucleosynthesis	 Direct measurements of proton and alpha capture reactions Search for Super Heavy Elements beyond Z=113 			
Nuclear Science	Nuclear Structure & Matter	 - RI nuclear structure of neutron rich nuclei near N=126, 80<a<140< li=""> - Symmetry energies at sub-saturation density </a<140<>			
	Nuclear Data	- Neutron capture cross section measurements by using n-TOF			
	Nuclear Theory	- Development of RI nuclear theories			
Atomic & Molecular Science	Precision Mass Measurement & Laser Spectroscopy	- Hyperfine structure and characteristics of element and nuclei			
Material	RI Material	- Search for new material and its properties with β -NMR/ μ SR and			
Science	Research	RI beam			
Science	Research	RI beam			
Medical & Bio Science	Research Medical & Bio application	RI beam - Development of new cancer therapy - Biological effect of tissue and DNA by RI beam			

Key Science Drivers of RISP

- Highest priority research subjects
 - Nuclear reaction experiments important to nuclear-astrophysics : e.g. $^{15}\text{O}(a,\gamma)^{19}\text{Ne},~^{45}\text{V}(p,\gamma)^{46}\text{Cr}$
 - Search for super heavy elements : Z > 113
 - Nuclear structure of n-rich RI near N=126, 80<A<140
 - Nuclear symmetry energy at sub-saturation density

• Important scientific applications

- Precision mass measurement & Laser spectroscopy
- Material science : β-NMR, µSR
- Medical and bio-science
- Nuclear data for Gen-IV NPP and nuclear waste transmutation

Selected RI beams for Design

RI Beam species	Energy Range	Desired Intensity [pps]	Research fields	
¹³² Sn, ¹⁴⁴ Xe	> 100 A MeV	10 ⁸ , 10 ⁶	Nuclear structure	
¹⁵ O	< 10 A MeV < 30 keV	10 ¹⁰ 10 ⁸	Nuclear astrophysics Material Science	
^{26m} Al	< 15 A MeV	107	Nuclear astrophysics	
⁴⁵ V	0.6-2.25 A MeV	$10^7 - 10^9$	Nuclear astrophysics	
⁶⁸ Ni, ¹⁰⁶ Sn, ¹³² Sn, ^{140, 142} Xe	10-250 A MeV	10 ⁹	Symmetry energy	
^{6,8} He, ¹² Be, ²⁴⁻³⁰ O	50-100 A MeV	10 ⁹	Nuclear Study with Polarized target	
¹⁷ N, ¹⁷ B, ¹² B, ¹⁴⁻¹⁵ B, ³¹⁻³² AI, ³⁴ K	50-100 A MeV	10 ⁹	Nuclear Study with Polarized RI beam	
⁶⁴ Ni, ⁵⁸ Fe (stable)	A few A MeV	10 ¹²	SHE	
⁸ Li, ¹¹ Be, ¹⁷ Ne	< 30 keV	10 ⁸	Material science	
¹³³⁻¹⁴⁰ Sn	< 60 keV	1	Atomic physics	
⁸ B, ⁹⁻¹¹ C, ¹⁵ O	≥ 200 A MeV	$10^7 - 10^9$	Medical and Bio science	

Development Plan

We are here!!!

Essential experimental systems

- Study the preliminary researches
- Develop the experimental systems in parallel with the accelerator
- Make user program with the international collaboration

11

Thermal Analysis of 10 kW ISOL Target

• Under analysis to achieve the uniformity of temperature by adjusting the target gap spacing, size, thickness and etc.

Release efficiency of 10 kW ISOL Target

Preparation of UCx disk development

Technical design of FEBIAD Ion Source

Purpose : To produce gaseous neutron-rich RI beams Design Goals

- Must be compact
- Must withstand high radiation field (~1 MGy)
- Compatible with standard connections/interfaces
- · Compatibility with Front End interfaces

W

BeO BN

- · Maximal efficiencies for the desired beams
- Minimize Transverse emittance, energy spread

Support housing flange Anode support insulator External thermal screens Anode suppor 1500 - 2300°C Temperature End flange Cavity L = 2-3 cm Retainer nut $\Phi = 1-2 \text{ cm}$ Cathode extr.: 0.5-3 mm Support housing Anode heat Anode, Cathode, etc Materials C, Ta, Mo, W shields Anode Insulator BN, BeO, Al₂O₃ Ohmic heat, 100-1000 W Cathode Heating Transfer tube Anode support tube Anode grid 10⁷-10¹⁰ /cm³ Plasma density 70% of Anode V (50-100 V) Plasma potential 10-300 eV E_{e-} Graphite $15-25 \pi$ mm mrad ε_{95%}@30kV

Extraction Potential

30 kV

Design Sketch of the RAON FEBIAD ION source

RISP Recoil Spectrometer

Objective

- Design of Recoil Spectrometer for low energy (<18.5 MeV/nucleon) nuclear and nuclear astrophysics study
 - * Cancellation of velocity dispersion with two Wien filters
 - * Large angular acceptance of < ±100mrad for more dissipative reactions

Necessity

Low energy beam scheme

Main experimental facility for nuclear physics with SI (stable isotope) and RI (rare isotope) beams up to 18.5 MeV/nucleon

Performance at RISP

- 1. First-order beam optics calculation
 - In-flight separation (IF) mode with SI beams from LINAC
 - Recoil tagging (RT) mode with n-rich RI beams from ISOL
 - Recoil separation (RS) mode with p-rich RI beams from ISOL
- 2. Case study
 - ${}^{44}\text{Ti}(\alpha,p){}^{47}\text{V}$: ${}^{44}\text{Ti}$ yield in SN II. IF mode
 - ${}^{15}O(\alpha,\gamma){}^{19}Ne$: breakout to rp-process. RS mode
- 3. Design of detection system
 - Beam tracking: PPAC, MCP
 - Particle detection: ΔE -E telescope array
 - Gamma-ray detection: HPGe and Scintillator array
- 4. Design of gas target system
 - Supersonic gas jet target

Preliminary result

Design goal for recoil spectrometer

Maximum magnetic rigidity (T·m)	~ 1.5
Mass resolution (Δ M/M)	< 0.5 %
Momentum resolution ($\Delta p/p$)	~ 0.05 %
Angular acceptance (mrad)	< ± 100
Background reduction	< 10 ⁻¹²

• Available experiments at the RISP Recoil Spectrometer

Physics topics	Measurements		
rp-process	radiative capture, transfer reaction, elastic/inelastic scattering		
s- & r-process	transfer reaction (d,p), decay measurement		
neutron drip line studies, halo nuclei	transfer reaction, scattering		
proton drip line studies	transfer reaction, fusion-evaporation reaction		
Super heavy elements search	fusion-evaporation reaction		

- Double achromatic focusing system using two electrostatic components Wien Filter
- Four dipoles + Twenty four quadruples + Eight multi-poles + Two Wien Filters
- Total length ~ 36 m

RISP Heavy-ion Collision Experiment

Objective

- Design of Heavy-ion Collision Experiment using **RI** beam
 - Study of Nuclear symmetry energy
 - * To cover entire energy range at RISP with complete event reconstruction within large acceptance (3π Sr TPC & \pm 50mSr Dipole Spectrometer)

• System size (e.g. Ca, Ni, Ru, Zr, Sn, Xe, Au, U), energy (e.g. lowest to top energies), centrality, rapidity and transverse momentum dependence studies of Pigmy/Giant dipole resonance, Particle spectrum, yield, ratio, Collective flow, and more

Performance at RISP

- 1. Design of experimental setup
 - For low energy ($E_{beam} = 0 20 \text{ MeV/u}$)
 - For high energy ($E_{beam} = 20 250 \text{ MeV/u}$)
- 2. Optics calculation for high resolution spectroscopy
 - Rotatable dipole magnet (~2T) and focal plane
- 3. Detector simulation and R&D
 - TPC (~ 3π Sr acceptance)
 - ΔE -E (Si+CsI)
 - MWDC (3 tracking stations)
 - ToF ($\sigma_{\rm t}$ < 100 ps for $\Delta p/p$ < 10⁻³ at β = 0.5)
 - Neutron Wall (capable for neutron tracking)
 - Gamma Array (for measurement of Pigmy/Giant dipole resonance)

RISP Neutron Science Facility

Objective

Design of Nuclear Data Production Facility
 -Nuclear data : Total, Capture, Fission cross section(FC) etc.
 * Especially within the uncertainty of 1 % for FC

- OECD/NEA high priority & General request : 36 species
 - E_n <20 MeV, Fission 13 species, Capture 10 species, Total 3 species

Performance at RISP

- 1. Simulation of neutron source
 - 70 MeV, 1mA proton(Cyclotron), Li target ± Moderator
- 2. Design of n-TOF system
 - Simulation for optimum condition of n-TOF by MCNP
- 3. Design of vacuum line and collimator
- 4. Design of detection system
 - Capture cross section : C_6D_6 detector
 - Fission cross section : TPC

Preliminary result

• Neutron spectrum for Li target with thickness of 17 cm for 70 MeV p beam, distance of 1 m from target , and radius of 1 m

RISP Precise Mass Measurement Facility

Objective

- Design of High Precision Mass Measurement Facility
 - Multi-Reflection Time-of-Flight for Isobaric Mass Separation
 - Highly Charged Ions for Accuracy Improvement
 - Sympathetic Laser Cooling Technique for Reducing Energy Spread
 - : Mass resolution better : ~ $10^{-8} \rightarrow 10^{-9}$

Necessity

- Test of the conserved vector current hypothesis and the unitarity of the CKM matrix
- Nuclear masses far from stability to test new mass models
- Proton-neutron interactions and the new masses
- Understanding nuclear structure
- Probing and resolving isomer states of nuclides

Target Specification

 Relative mass accuracy: ~10⁻⁸ for short lived rare isotopes ~10⁻⁹ for stable nuclides

Performance at RISP

- 1. Simulation for ion motion in Penning trap
- 2. Analyzing the statistical and systematic uncertainty in mass measurement system
- 3. Building laser system for sympathetic cooling of Ca⁺ ions

RISP Laser Ion Source

Rare Isotope Science Project

Objective

• For the production of **isobarically pure** & **highly efficient** beams of radioactive ions

Necessity

- Due to unwanted **isobars** (same mass number A, but different proton number Z) emerging from the target, additional separation between nuclides with different proton number Z is required.
- **Laser Ion Source** based on resonant excitation is known to be the most efficient way to remove the isobaric contamination.
- Using two hyperfine ground level s : efficiency will be increasing (about 30% -> about 70%

Laser tuned to Z = 50 132SnMagnet set to A = 132

Performance at RISP

- 1. Laser System Design (in progress)
- High repetition tunable Ti:Sapphire lasers (3 ea)
- Repetition rate: >10 kHz
- Tuning range: 700-1000 nm
- Line width: <5 GHz
- Power: $\sim 5 \text{ W}$
- 2. Ion Source Design (in progress)
- Hot metal cavity (T>2000 K)

Preliminary result

[Ionization scheme for Sn]

- Ionization efficiency of Sn: ~22 % (Oak Ridge National Laboratory)
- Ionizer tube length: 30 mm
- Initial state: 5p² ³P₀
- Improving the ionization efficiency
- 1) Optimization of the tube geometry : ~**80 mm** in length
- 2) Using **one more laser** (300.91 nm) to excite the atoms in two ground states
- \rightarrow Estimated efficiency of Sn: ~70 %
- High repetition & tunable Ti:Sa laser design

[Layout of the Ti:Sa laser]

RISP Material Science Facility

Objective

- Design of β -NMR and μ SR facilities
- 10~10³ times higher sensitivity than those of conventional analysis methods.

Necessity

Lack of usable facilities and difficulties in securing beam time from the existing facilities
Rapid increase in the number of user around the world

* Applicable research topics of $\beta\text{-NMR}$ and μSR

\clubsuit $\beta\text{-NMR}$ and μSR facilities operating in the world

Using muon and Li as probe	Using muonium as probe	β-NMR	μSR
 Magnetic materials and devices Colossal magnetoresistance Secondary batteries Thermoelectric Oxides Photo-induced magnetism Organic/Inorganic hybrid materials Heavy fermions Magnetic vortices Exotic superconductors Charged particle transport Frustrated magnetic system Charge dynamics at interfaces 	 Molecular structure and conformational motion of organic free radicals Hydrogen atom kinetics Green chemistry in supercritical CO₂ Catalysis Mass effects in chemical processes Reaction kinetics as probes of potential energy surfaces Electron spin exchange phenomena in glass Hydrogen in semiconductors 	 TRIUMF (Canada) the only facility operating for material science in the world using a ⁸Li beam about 1 month per year beam time 	 PSI (Germany) CW muon beam Ultra low-energy (0.5~30 keV) muon beam total 6 ports TRIUMF (Canada) CW muon beam total 4 ports ISIS (UK) Pulse muon beam Ultra low-energy muon beam J-PARC (Japan) Pulse muon beam

Characteristics of β -NMR and μ -SR facilities at RISP Rare Isotope Science Project ⁸Li, ¹⁵O, ¹⁷Ne beams (E ~ 30 keV, Intensity ~ 10⁸ pps, polarizability ~ 70%) Total 3 ports (2 exclusive ports for a ⁸Li beam and 1 port for searching new beams) β-NMR Collinear optical pumping method for highly polarized beams Temperature controllable HF and LF spectrometers (0.3 K < T < 500 K) CW and ultra-low energy muon beams • Minimum 4 ports (2 ports for a surface muon, 1 port for low-energy muon and 1 port high-energy muon) μSR Using a Wien filter for rotating a spin axis of muon • Temperature controllable HF and LF spectrometers (0.3 K < T < 500 K)

Conceptual layout of β-NMR facility

Spectrometer Low-energy muons High/low-field magnet Temperature control Beta detection Graphite target - RF coil Proton beam ergy: 15 ±10 eV - E > 500 MeV ∆E: 450 eV - I. ~ 10¹² pp Surface muons (µ+ - E ~ 4 MeV Spin rotator (Wien filter) - I ~ 107~108 pps Spectrometer - Polarization ~ 100% High/low-field magnet Temperature control - Beta detection - RF coil B field Spectrometer

✤ Conceptual layout of µSR facility

- High/low-field magnet Temperature control - Reta detection - RF coil

Preliminary Results

1. Feasibility study for ⁸Li beam production using a ⁹Be(p, 2p)⁸Li reaction

Without ISOL ion source : Patents Pending

2. Optimization for Neutralizer

• Key parameters for achieving the maximum neutralization efficiency

$$\begin{aligned} A^+ + B &\to A + B^+ + \Delta E \\ \sigma &\sim \exp(-|\Delta E|)^* \\ P &\sim \exp(-\sigma n l)^{**} \end{aligned}$$

- σ : Charge exchange cross section
- ΔE : Energy defect, depends on the species of an ion and atom
- n : Density of target vapor, depends on vapor temperature T_v
- *l* : Effective length of an ion in vapor, depends on a geometry of chamber

RISP Bio-Medical Science Facility

- Electromagnet and power supply system
- Beam diagnostics system
- Vacuum system
- Cooling system
- Sample target system
- Control system

Specification

- Irradiation from perpendicular beam line
- Beam irradiation size : 5~20 cm
- Beam window for atmosphere irradiation
- Cooling system to prevent heat
- Beam energy degrader for control

Thank you for attention !

Question or comment ?

