New embedding module for VTX

2012/11/29 RIKEN VTX meeting Ryohji Akimoto

Problem in current embedding module

- Sasha made a embedding module before QM2012.
 - SvxRawhits in real data are dumped into text file for the embedding.

✓So, handling many real events is difficult.

- Sasha and I talked and I updated to be able to handle DST of real data.
 - made a new module since it needs special setup.
- What want to do by the embedding study
 - evaluate DCA distribution of mis-association tracks.
 - evaluate DCA resolution including multiplicity effect.

Problem in embedding 1

There are two problems in embedding

- difference of VTX geometry
 - Geometries of VTX in simulation and in real data are different.
 - Simulation geometry is used for embedding and hit in real data are thought as "background".
 - It is fine for the evaluation of mis-association track and multiplicity effect.
- difference of primary vertex in simulation and in real data
 - In the current embedding code, get reconstructed primary vertex position in real data (only z-direction), and then run PISA and reconstruction.

Problem in embedding 2

- To get flexibility, I updated to move SvxGhit of simulation track in z-direction so that the primary z vertices are the same.
 - √ignore the difference of vertices difference in xy-direction.
 - DCA calculation is done using simulation vertex.
- Multiplicity effect on DCA resolution which does not includes primary vertex resolution can be evaluated.
 - ✓Primary vertex resolution is needed to be evaluated by other way.
- It is fine for the evaluation of mis-association track since its DCA distribution is much wider than primary vertex resolution.

What is done in embedding

(1) reconstruct both simulation and real data.

(2) calculate primary z vertex difference between simulation and real data.

(3) move SvxGhits of simulation track by the difference and make SvxRawhit from the moved SvxGhits.

- If a moved SvxGhit gets out of VTX acceptance, it is not saved.

(4) save SvxRawhits of real data.

(5) run SvxReco (clustering) and SvxCentralTrackReco (tracking).

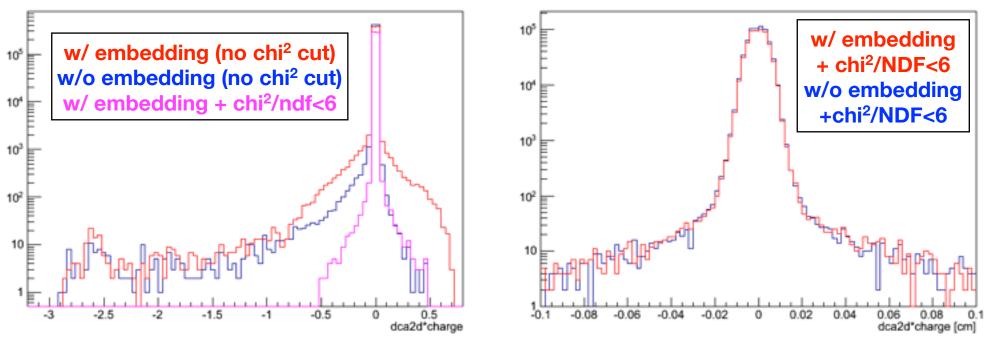
- Only PHCentralTrack (seed of tracking) in simulation is used.

Necessary nodes

- real data
 - SvxRawhitList
 - VtxOut
 - RunHeader
 - ✓ used in SvxCentralTrackReco
 - BbcOut
 - √used in SvxCentralTrackReco
 - PHGlobal

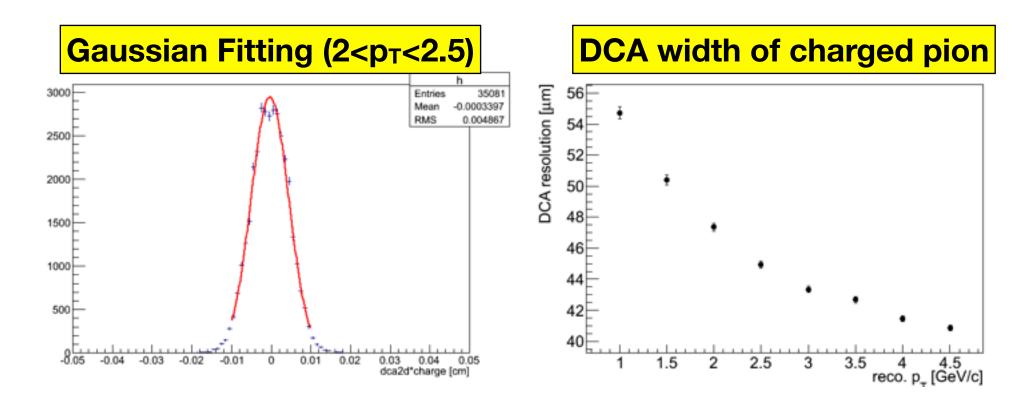
- simulation
 - SvxGhitList
 - VtxOut
 - PHCentralTrack
 - McSingle

Vertices in VtxOut

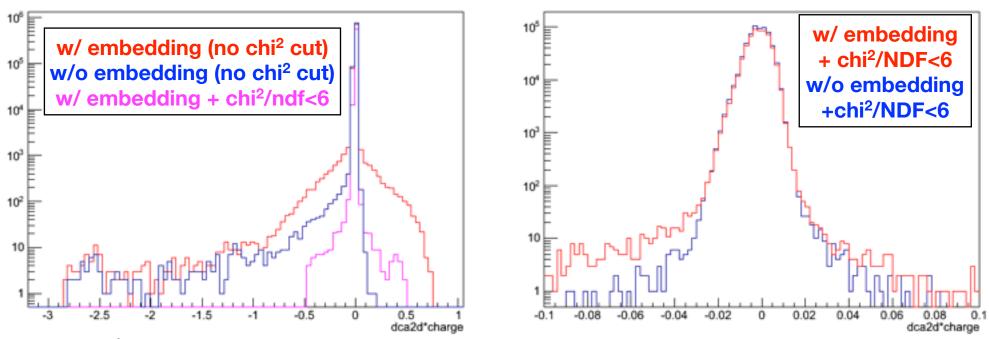

- following vertices are saved in VtxOut
 - event vertex in simulation : saved as "SIM"
 - reconstructed primary vertex in real data : saved as "SVX_PRECISE"
 - reconstructed beam center in real data : saved as "SVX"
 - combination of simulation and real data
 - ✓XY : simulation
 - ✓Z : real data

✓ saved as "FORCED" (when vertex is gotten from VtxOut without any argument, this vertex is returned.)

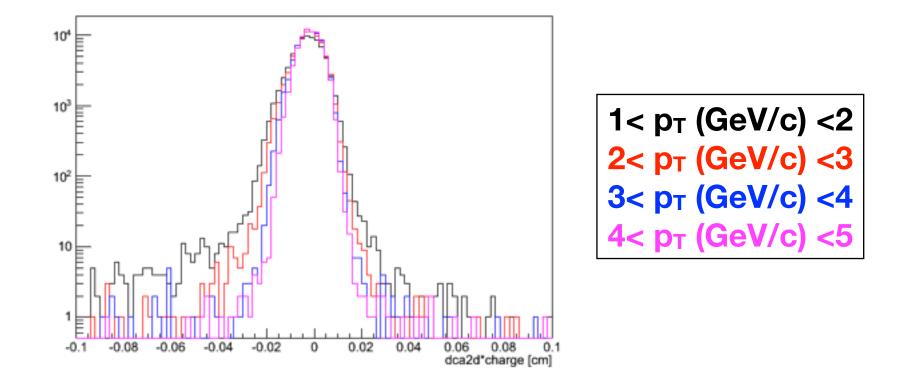
Embedding setup


- Real data
 - run : 347128
 - hot dead map : get from database
 - z-vertex : |BBC-Z|<10cm
- Simulation
 - particle : e^{\pm} , π^{\pm} , $\pi^{0} \rightarrow 2\gamma$, π^{0} Dalitz, eta $\rightarrow 2\gamma$, eta Dalitz, J/psi
 - pT : 0-10 GeV/c (flat distribution)
 - event vertex : (0.0515729, -0.0609596, 0.0) (fixed at beam center of run347128)
 - hot dead map : get from database

DCA distribution (charged pion)


- requirement
 - (B0 & B1 hits) + (at least one hit at stripixel layers)
 - reconstructed p_T>1GeV/c (no weight)
 - does not decay (generation==1)
- Changing of tail is small after chi² cut.
- Changing of width of the main peak is small.
- Source of large tail (DCA : 2~3) is not clear.

DCA width (charged pion)


- weight as a function of p_T(MC)
 - pT*pow(exp(-0.42172*pT-0.21329*pT*pT)+pT/0.70972,-8.34158)
- Widths are narrower than those in real data. (as expected)
- Gaussian fitting is not good at the peak.

DCA distribution (electron)

- requirement
 - (B0 & B1 hits) + (at least one hit at stripixel layers)
 - reconstructed p_T>1GeV/c (no weight)
 - does not decay (generation==1)
- Tail increases by embedding.
- Tail is smaller than that in pion (due to small multiple scattering?)
- DCA shape is asymmetric both for the case w/ or w/o embedding.

DCA distribution (electron) : pT dependence

- Requirements listed p.11 & chi²/ndf<6 are applied.
- •Asymmetry in DCA shape decreases as p_T increases.