Description
In this talk, I report on an instance in quantum gravity where a topological expansion resums into an effective description on a single geometry. The original theory whose gravitational path integral we study is JT quantum gravity with one asymptotic boundary at nonperturbatively low temperatures. The effective theory we derive is a deformation of JT gravity by a highly quantum and nonlocal interaction for the dilaton, evaluated only on a disk topology. This emergent description addresses a strongly quantum gravitational regime where all genera contribute at the same order, successfully capturing the doubly nonperturbative physics of the original theory.
This talk is based on 2412.08799 and on-going work with Sergio Hernández-Cuenca and Nico Valdes-Meller.