Study of breakup channels for the 6He+64Zn reaction at energies around the Coulomb barrier.

7 Jun 2018, 16:54
18m
Kunibiki Messe (Matsue)

Kunibiki Messe

Matsue

Oral contribution Session 14

Speaker

Dr Juan Pablo Fernández-García (University of Seville)

Description

Reactions induced by neutron halo nuclei have been intensively studied in the last years. The neutron halo structure can affect the dynamic of reactions at energies around the Coulomb barrier producing a significant reduction of the elastic scattering cross section with respect to the Rutherford prediction. This effect can be associated with couplings to breakup channels, since the continuum of such nuclei is close to the ground state. The breakup channel can be split into two parts; the elastic breakup and non-elastic breakup.

The halo nucleus 6He is composed by an alpha core and two weakly bound neutron (S=0.97 MeV). These two neutrons have a large probability to be far away from the alpha core, producing the so-called nuclear halo.
New experimental elastic cross sections for the reaction 6He+64Zn at energies around the Coulomb barrier have been measured and compared with CRC and CDCC calculations. CDCC calculations are based on the elastic breakup of the projectile, while the CRC calculations consider the transfer of one/two-neutron to the bound and unbound states of the target, which is part of the non-elastic breakup. To compute the total non-elastic breakup, the formalism reported in [Phys. Rev. C 95, 044605 (2017)] has been performed. The results show the angular and energy distributions of the breakup fragment coming from 6He+64Zn reaction are well reproduced by the one/two-neutron transfer mechanism, indicating the importance of the non-elastic breakup.

Primary author

Dr Juan Pablo Fernández-García (University of Seville)

Presentation materials