18-22 October 2021
Matsue, Shimane Prefecture, Japan
Asia/Tokyo timezone

Transverse Single Spin Asymmetries of Midrapidity Heavy Flavor Electrons and Charged Pions in 200 GeV $p^{\uparrow}+p$ Collisions at PHENIX

22 Oct 2021, 07:36
Room 601 (Kunibiki Messe)

Room 601

Kunibiki Messe

Parallel Session Presentation Transverse momentum structure (TMD) Transverse Momentum Structure (TMD)


Dillon Fitzgerald (University of Michigan, Ann Arbor)


Understanding the transverse spin and momentum structure of the proton is of large interest to the nuclear physics community and it is one of the main goals of the spin physics program at the Relativistic Heavy Ion Collider (RHIC). Transverse single spin asymmetry measurements for particles produced in proton-proton collisions provide insight into initial and final state spin-momentum and spin-spin parton-hadron correlations. In particular, electrons from heavy flavor decays provide access to initial state spin-momentum correlations of gluons in the proton, while charged pions provide access to both initial and final state transverse spin effects of quarks and gluons. Electrons and charged pions are measured at midrapidity at PHENIX using the central arm spectrometers which consist of an electromagnetic calorimeter, a ring-imaging Cherenkov detector, as well as drift and pad chambers. In addition, the heavy flavor decay electron analysis uses the silicon vertex detector in order to veto background from conversion electrons. Recent results from both the electron and charged pion measurements from the 2015 running period (200 GeV $p^{\uparrow}+p$) will be presented.

Primary author

Dillon Fitzgerald (University of Michigan, Ann Arbor)

Presentation Materials