LINKING NUCLEAR REACTIONS AND NUCLEAR STRUCTURE ON THE WAY TO THE DRIP LINES

5 Jun 2018, 14:00
18m
Kunibiki Messe (Matsue)

Kunibiki Messe

Matsue

Oral contribution Session 7

Speaker

Prof. Willem Dickhoff (Department of Physics, Washington University in St. Louis)

Description

The dispersive optical model (DOM), originally conceived by Claude
Mahaux [1], provides a unified description of both elastic nucleon scattering and structure information related to single-particle properties below the Fermi energy [2]. Extensions of this framework have introduced a fully non-local implementation for 40-Ca [3,4]. For the first time properties below the Fermi energy like the charge density and the presence of high-momentum nucleons can be included in the DOM description while elastic cross section data can be represented as accurately as in the local DOM implementation. Application of the non-local DOM to 48-Ca incorporates the effect of the 8 additional neutrons and allows for an excellent description of elastic scattering data of both protons and neutrons [5]. The corresponding neutron distribution constrained by all available data generates a prediction for the neutron skin of 0.249 +/- 0.023 fm for this nucleus [5] which is larger than most mean-field and available ab initio results.

We report on the most recent developments including a non-local DOM analysis for 208-Pb, an extension to heavier Ca isotopes, an analysis of the energy density in comparison with ab initio nuclear matter calculations, applications to (d,p) and (p,d) transfer reactions with DOM ingredients, and a reanalysis of (e,e'p) data to determine if experimental data can constrain the magnitude of absolute spectroscopic factors.

[1] C.Mahaux and R.Sartor, Adv.Nucl. Phys. 20, 1 (1991).
[2] W.H.Dickhoff, R.J.Charity, and M.H.Mahzoon, J. Phys. G: Nucl. Part. Phys. 44, 033001 (2017).
[3] M.H.Mahzoon et al., Phys. Rev. Lett. 112, 162503 (2014).
[4] H.Dussan et al., Phys. Rev. C 90, 061603(R) (2014).
[5] M.H.Mahzoon et al., Phys. Rev. Lett. 119, 222503 (2017).

Primary author

Prof. Willem Dickhoff (Department of Physics, Washington University in St. Louis)

Presentation Materials

Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×