Asymptotics in astrophysics iTHEMS workshop
The asymptotics in astrophysics iTHEMS study group workshop will bring together physicists and mathematicians who work with asymptotics and perturbation theory techniques (Bender, C., Orszag, S., Advanced Mathematical Methods for Scientists and Engineers, 1978) across cosmology, high energy physics, quantum gravity, solar physics specializations.
In astrophysics, asymptotics and perturbation theory has been applied to determine the eigenfrequencies of simplified stellar models (Unno, W. ; Osaki, Y. ; Ando, H. ; Shibahashi, H., Nonradial oscillations of stars, 1979). By observing frequencies associated with periodic changes in brightness of stars, the convective properties, rotation speeds of the stellar interior can be determined. This technique, called asteroseismology (The Kavli Prize 2022 in Astrophysics, The Crafoord Prize in Astronomy 2024) was a remarkable breakthrough, given that stars are completely opaque at their surface.
Purpose and brief outline
This workshop will include overview talks of application of asymptotics and perturbation theory techniques in (wave transport or oscillation related) astrophysics and cosmology eigenvalue problems. In addition, there will be introductory talks about fundamental asymptotics and perturbation theory techniques used in theoretical physics.
The purpose of this interdisciplinary workshop is to identify problems in astrophysics and related fields including, but not limited to, stellar structure and evolution, black holes and high-energy physics which can be solved using existing asymptotics and perturbation theory methods in theoretical physics problems (e.g. quantum field theory, gravity), and vice versa.
Christy Kelly (RIKEN iTHEMS)
Lucy McNeill (Kyoto University)
Ryo Namba (iTHEMS)
Naritaka Oshita (Kyoto University)
Ryota Shimada (Kyoto University)
Masao Takata (University of Tokyo)
Topics covered sessions
- History and current status of asteroseismology
- Computing black hole quasi normal modes via WKB method and related asymptotic techniques
- Use of WKB approximation in deriving buoyancy supported stellar eigenmodes (internal gravity waves) and dispersion relations
- Internal gravity wave transport in core-collapse supernovae progenitors
- Solar eigenmodes and magnetic fields in helioseismology
- Asymptotics in hydrodynamics solvers: reducing time resolution requirements for low Mach number, compressible flow
- Mathematica for perturbations in the WKB approximation
- Resurgence for resummations of divergent series
- Exact WKB method applied to black hole quasinormal modes
- Measuring red giant core rotation rates with "mixed" modes
+ more ....
Organisers
Christy Kelly (iTHEMS)
Masazumi Honda (iTHEMS)
Lucy McNeill (Kyoto U / iTHEMS) *contact at luc . mcneill - @ - gmail.com
Shigehiro Nagataki (iTHEMS)
Ryo Namba (iTHEMS)
Naritaka Oshita (Kyoto U)